28,611 research outputs found

    COVID-19 Vaccination and PPKM Policy with the Implementation of the Fuzzy Sugeno Method to Income Classification

    Get PDF
    This study aims to determine the implementation of Fuzzy Sugeno in classifying textual data obtained from Twitter so as to determine the polarity of public opinion regarding PPKM policies and Covid-19 vaccinations. This study uses primary data via Twitter related to COVID-19 vaccination and PPKM policies in Indonesia starting from February 9, 2021 to January 17, 2022. There are several stages carried out, namely data collection, data pre-processing, data labeling, data weighting. , identification of membership functions, determination of fuzzy sets, formation of classification systems, and evaluation of classification results. The results of this study explain that Fuzzy Sugeno's performance in classifying tweets is quite good with an average accuracy of 89.13%. Meanwhile, public opinion regarding PPKM policies and Covid-19 vaccinations tends to be balanced with 36.92% of tweets classified as positive sentiments, 22.85% negative sentiments, and another 40.23% classified as neutral sentiments. In addition, the fuzzy set that is formed based on the data observation method is very well done because it is able to adjust the frequency of the data in each category. This really helps improve the performance of the built classification system.

    Adaptive probability scheme for behaviour monitoring of the elderly using a specialised ambient device

    Get PDF
    A Hidden Markov Model (HMM) modified to work in combination with a Fuzzy System is utilised to determine the current behavioural state of the user from information obtained with specialised hardware. Due to the high dimensionality and not-linearly-separable nature of the Fuzzy System and the sensor data obtained with the hardware which informs the state decision, a new method is devised to update the HMM and replace the initial Fuzzy System such that subsequent state decisions are based on the most recent information. The resultant system first reduces the dimensionality of the original information by using a manifold representation in the high dimension which is unfolded in the lower dimension. The data is then linearly separable in the lower dimension where a simple linear classifier, such as the perceptron used here, is applied to determine the probability of the observations belonging to a state. Experiments using the new system verify its applicability in a real scenario

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Comparative performance of intelligent algorithms for system identification and control

    Get PDF
    This paper presents an investigation into the comparative performance of intelligent system identification and control algorithms within the framework of an active vibration control (AVC) system. Evolutionary Genetic algorithms (GAs) and Adaptive Neuro-Fuzzy Inference system (ANFIS) algorithms are used to develop mechanisms of an AVC system, where the controller is designed based on optimal vibration suppression using the plant model. A simulation platform of a flexible beam system in transverse vibration using finite difference (FD) method is considered to demonstrate the capabilities of the AVC system using GAs and ANFIS. MATLAB GA tool box for GAs and Fuzzy Logic tool box for ANFIS function are used to design the AVC system. The system is men implemented, tested and its performance assessed for GAs and ANFIS based algorithms. Finally, a comparative performance of the algorithms in implementing system identification and corresponding AVC system using GAs and ANFIS is presented and discussed through a set of experiments
    corecore