3,607 research outputs found

    Real-Time Fault Detection and Diagnosis System for Analog and Mixed-Signal Circuits of Acousto-Magnetic EAS Devices

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper discusses fault diagnosis of the electronic circuit board, part of acousto-magnetic electronic article surveillance detection devices. The aim is that the end-user can run the fault diagnosis in real time using a portable FPGA-based platform so as to gain insight into the failures that have occurred.Peer reviewe

    Quantifiable Assurance: From IPs to Platforms

    Get PDF
    Hardware vulnerabilities are generally considered more difficult to fix than software ones because they are persistent after fabrication. Thus, it is crucial to assess the security and fix the vulnerabilities at earlier design phases, such as Register Transfer Level (RTL) and gate level. The focus of the existing security assessment techniques is mainly twofold. First, they check the security of Intellectual Property (IP) blocks separately. Second, they aim to assess the security against individual threats considering the threats are orthogonal. We argue that IP-level security assessment is not sufficient. Eventually, the IPs are placed in a platform, such as a system-on-chip (SoC), where each IP is surrounded by other IPs connected through glue logic and shared/private buses. Hence, we must develop a methodology to assess the platform-level security by considering both the IP-level security and the impact of the additional parameters introduced during platform integration. Another important factor to consider is that the threats are not always orthogonal. Improving security against one threat may affect the security against other threats. Hence, to build a secure platform, we must first answer the following questions: What additional parameters are introduced during the platform integration? How do we define and characterize the impact of these parameters on security? How do the mitigation techniques of one threat impact others? This paper aims to answer these important questions and proposes techniques for quantifiable assurance by quantitatively estimating and measuring the security of a platform at the pre-silicon stages. We also touch upon the term security optimization and present the challenges for future research directions

    Workload prediction based on supply current tracking : a fuzzy logic approach

    Get PDF

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Contribution to the development of microwave remote sensing for UAV systems.

    Get PDF
    Microwave technology is very sensitive to Radio Frequency Interferences (RFI). Works previously done within this Master by Marc Jou [1] showed the impossibility to retrieve measurements using L-band radiometers on-board drones. After detecting such issue, Balamis first tried to solve it by hardware: a new antenna design and the extensive use of shielding on the drone were tried without success. Balamis started the development of its first digital radiometer based on the use of Software Defined Radio architecture on 2017, partially funded with the support of CDTI. The resulting minimum viable digital radiometer was ready by June 2019, but it did not include any RFI mitigation capability. Developments done my Master student Ahmad Daoud [2] demonstrated the identification of RFI using Fast Fourier Transform (FFT) over RAW data but could not provide any efficient implementation of its mitigation on-board the L-band radiometer. The proposed solution is the implementation of the FFT and the RFI filters using Field Programmable Gate of Array (FPGA) for the input signals, and its concurrent performance. Filtering an analog signal by introducing in-system FFT of ZYNQ7000 FPGA is implemented in this project. Additionally, the power consumption of FPGA, and the need to dissipate it, forces the development of a temperature control system with cooling capabilities. It is done to improve the previous heating-only thermal control of Balamis radiometer. Such more advanced thermal control will be also used for the Interferometric Ground-based Synthetic Aperture Radar that Balamis is developing. Solving these two goals are therefore the purpose of this Master Thesis

    A Biomedical Application by Using Optimal Fuzzy Sliding-Mode Control

    Get PDF
    • …
    corecore