

MASTER THESIS

TITLE: Contribution to the development of microwave remote sensing
for UAV systems.

MASTER’S DEGREE: Master's degree in Applications and Technologies
for Unmanned Aircraft Systems (Drones) (MED)

AUTHOR: Tuvshinbayar Alagbaatar

PROFESSIONAL ADVISOR: Jové Casulleras, Roger
ACADEMIC ADVISOR: Gonzalez Arbesu, Jose Maria

DATE: July, 13rd 2022

Abstract

Current telecommunication systems have transitioned from analogical systems
to digital ones. Such transformation has been enabled by the use of Software
Defined Radios (SDR). Nowadays, such change is moving to the Remote
Sensing applications.

This Master thesis has been developed within the industrial framework of the
company Microwave Sensors and Electronics Ltd, known by its trademark
"Balamis".

Balamis develops microwave sensors. In particular: L-band radiometers and
multi-frequency radars. Following the telecommunication trend, the Company
is currently implementing its new systems based on Software Defined Radios
with the objective to provide remote sensing data.

The use of Software Defined Radio technology on-board an L-band radiometer
allows the detection of the interferences. Previous Balamis internal works
partially funded by CDTI (part of the Ministry of Industry) showed how drone
electronics create interferences that mask L-band radiometry measurements.
Consequently, a contribution towards the detection of the interferences that
affect the L-band radiometry measurements is the first objective of this Master
Thesis: Designing and implementing a “FFT system in FPGA” using the most
recent architecture of XILINX 7-series FPGA. Digilent’s Arty z7 evaluation
board, its XILINX’s previously generated in-system peripherals, such as FFT,
DMA, XADC Intellectual Property (IP) cores, and Zynq processing system are
used for the development. In the software development, bare-metal C and
PetaLinux embedded operating system are used.

The second objective of this Master Thesis is the temperature stabilization with
“Thermal control”. FPGA-based systems like SDRs tend to have a high power
consumption which has to be dissipated. However, temperature stability is a
requirement beyond the cooling need of the FPGAs. L-band radiometer
accuracy depends on the thermal stability of the system itself. Consequently, a
“thermal control system” has been developed as the second part of this thesis.
The thermal control is developed using a microcontroller (STM32), ADC, H-
bridge driver for controlling Peltier cell.

The report starts with technical characteristics, descriptions and configurations
of in-system or physical components used for both implementations. Then
followed by some explanation of software. Methodologies of designing the
systems are described in the Chapter 3 with all the steps walked through for
the system design. At the end, before the conclusion, the result of whole project
is illustrated.

CONTENTS

INTRODUCTION ... 7

CHAPTER 1 THEORETICAL BACKGROUND .. 8

1.1 Digital signal processing... 8

1.2 Sampling Process .. 9

1.3 Digital Filtering ... 11

1.4 FFT system in FPGA .. 11

1.5 PID controller .. 12

CHAPTER 2 HARDWARE AND SOFTWARE PLATFORM 13

2.1 Initial Consideration and Platform Selection .. 13
2.1.1 Hardware selection of FFT system in FPGA ... 13
2.1.2 Hardware selection of Thermal Control .. 13
2.1.3 Software selection of FFT system in FPGA .. 13
2.1.4 Software selection of Thermal Control .. 14

2.2 Hardware Platform Description .. 14
2.2.1 Hardware Platform Description of FFT system in FPGA .. 14
2.2.2 Hardware Platform Description of Thermal Control .. 26

CHAPTER 3 SYSTEM DESIGN ... 31

3.1 Overall design flow of FFT implementation .. 31
3.1.1 Functionality testing and configuration verification of used IPs 32
3.1.2 Implementation of FFT system in FPGA ... 44

3.2 Overall design flow of “Thermal control” implementation .. 48
3.2.1 Implementation of “Thermal control” ... 48

CHAPTER 4 RESULTS .. 53

4.1 Results of FFT system in FPGA ... 53

4.2 Results of Thermal control.. 56

CONCLUSIONS .. 58

ACRONYMS .. 59

REFERENCES .. 60

ANNEX I. OVERALL HARDWARE SCHEMATIC OF FFT SYSTEM IN FPGA
 ... 61

ANNEX II. OVERALL HARDWARE SCHEMATIC OF THERMAL CONTROL 62

LIST OF FIGURES

Figure 1.1 Conventional DSP and FPGA ... 8
Figure 1.2 Basic DSP operation .. 9
Figure 1.3 Analog signal sampling .. 10
Figure 1.4 Signal components in the time and frequency domain [7]................ 11
Figure 1.5 Block diagram of PID controller ... 12
Figure 2.1 Arty z7 evaluation board (top) ... 15
Figure 2.2 Arty z7 evaluation board (bottom) ... 16
Figure 2.3 Block diagram of Zynq APSoC [11] ... 17
Figure 2.4 Structure of the APU .. 20
Figure 2.5 Zync-700 device Application Processing Unit (APU)........................ 21
Figure 2.6 Structure of Programmable Logic [10] .. 22
Figure 2.7 Zynq Design Flow .. 22
Figure 2.8 XADC block diagram [12] .. 24
Figure 2.9 Transfer function for unipolar mode [12] ... 24
Figure 2.10 Unipolar input range [12] .. 25
Figure 2.11 Transfer function for bipolar mode [12] ... 25
Figure 2.12 Bipolar input range [12].. 26
Figure 2.13 A microcontroller's basic layout ... 27
Figure 2.14 ADC block diagram .. 28
Figure 2.15 Schematics of H-Bridge driver ... 29
Figure 2.16 Peltier cell ... 30
Figure 3.1 Design flow of FFT implementation ... 32
Figure 3.2 Block design of DMA IP verification lab work.................................... 33
Figure 3.3 Hardware schematics of DMA IP. ... 34
Figure 3.4 Hardware configuration of DMA IP. ... 34
Figure 3.5 Block design of FFT IP verification lab work 35
Figure 3.6 Hardware schematics of FFT with input of locally generated signal

using DMA IP. .. 36
Figure 3.7 Hardware configuration of FFT with input of locally generated signal

using DMA IP. .. 37
Figure 3.8 Output of the FFT IP and computed FFT .. 38
Figure 3.9 Block design of XADC IP verification lab work 39
Figure 3.10 Hardware schematics of XADC IP .. 39
Figure 3.11 Schematic used in the testing of XADC .. 40
Figure 3.12 Hardware configuration of XADC IP .. 41
Figure 3.13 Hardware configuration of XADC IP .. 42
Figure 3.14 Overall hardware schematic of FFT system in FPGA 44
Figure 3.15 Hardware configuration of FFT IP with the real analog signal 46
Figure 3.16 Scaling schedule of 1024-bit FFT with Pipelined 47

Figure 3.17 Algorithm of the software of FFT system in FPGA 48
Figure 3.18 Block diagram of the hardware implementation of “Thermal control”

 .. 49
Figure 3.19 Layout design of PCB .. 50
Figure 3.20 The final electronic board of the “Thermal control” 50
Figure 3.21 Algorithm of the software of “Thermal control” 51
Figure 3.22 Testing of the “Thermal control” .. 52
Figure 4.1 Connection of the analog signal (sine wave) 53
Figure 4.2 Output of 1024 point FFT of the FFT IP (sine wave) 54
Figure 4.3 Connection of the analog signal (square wave)................................ 55
Figure 4.4 Output of 1024 point FFT of the FFT IP (square wave) 56
Figure 4.5 The records of measurements during the experiment 57

INTRODUCTION 7

INTRODUCTION

Microwave technology is very sensitive to Radio Frequency Interferences (RFI).
Works previously done within this Master by Marc Jou [1] showed the
impossibility to retrieve measurements using L-band radiometers on-board
drones. After detecting such issue, Balamis first tried to solve it by hardware: a
new antenna design and the extensive use of shielding on the drone were tried
without success.

Balamis started the development of its first digital radiometer based on the use
of Software Defined Radio architecture on 2017, partially funded with the support
of CDTI. The resulting minimum viable digital radiometer was ready by June
2019, but it did not include any RFI mitigation capability. Developments done my
Master student Ahmad Daoud [2] demonstrated the identification of RFI using
Fast Fourier Transform (FFT) over RAW data but could not provide any efficient
implementation of its mitigation on-board the L-band radiometer.

The proposed solution is the implementation of the FFT and the RFI filters using
Field Programmable Gate of Array (FPGA) for the input signals, and its
concurrent performance. Filtering an analog signal by introducing in-system FFT
of ZYNQ7000 FPGA is implemented in this project.

Additionally, the power consumption of FPGA, and the need to dissipate it, forces
the development of a temperature control system with cooling capabilities. It is
done to improve the previous heating-only thermal control of Balamis radiometer.
Such more advanced thermal control will be also used for the Interferometric
Ground-based Synthetic Aperture Radar that Balamis is developing.

Solving these two goals are therefore the purpose of this Master Thesis.

8 Contribution to the development of microwave remote sensing for UAV systems.

CHAPTER 1 THEORETICAL BACKGROUND

1.1 Digital signal processing

Filtering, convolution, correlation, and Fourier transforms are examples of Digital
Signal Processing (DSP) operations. These operations necessitate addition and
multiplication, so the unit know as a multiply-accumulate (MAC) must be included
in DSP processing system. DSP processors are used for running DSP
applications. In the DSP processors, multiplying and summing are performed one
after another. A DSP processing unit can only accomplish an only one
summation-multiplication operation in a one cycle when digital filters are used
in filtering. Consequently, the output of each filter is performed in a one cycle, but
more iterations are needed to implement the filter specific requirements in a
higher order filter.

FPGAs’ parallel processing and multi-threading are well-known. The
summing and multiplying processes run parallel in FPGAs. In contrast to DSP
processing units, an FPGA can execute numerous such operations in a single
cycle. FPGAs thus require fewer iterations than DSP processors.

As application demand grows, so does algorithmic complexity. To implement
these new algorithms, signal processing system with hight efficiency is
necessitated. Traditional DSP processors with fixed hardware platforms could
really keep up. As a result, as algorithmic intensity increases, so does the deficit
[3]. The difference between a formal DSP processing unit implementation and an
FPGA integration is visualized in Fig 1.1.

Figure 1.1 Conventional DSP and FPGA

THEORETICAL BACKGROUND 9

For a variety of reasons, FPGAs are well appropriate to filling this technology gap.
These chips provide incredibly high signal processing capacity, thanks to their
parallel processing.

• Because of the flexible architecture, they ensure very low risk.

• They allow for design transition in order to accommodate modifying norms.

• Engineers can use FPGAs to create a unique and customized
technical solution.

• They are reasonably priced.

• They have a low power to function ratio [4].

A DSP or FPGA manages computational models in accordance with the digital
filter of a system. The filter which takes digital inputs and produces digital outputs
is a digital filter. During filtering, a DSP unit or a FPGA retrieves a sampled analog
signal from an analog to digital converter (ADC), completes computational
operation based on the filtering form, and outputs to a digital to analog converter
(DAC).

1.2 Sampling Process

Analog-to-digital conversion, also known as digitization of analog signals,
consists of sampling which is time digitization and quantization which
is digitization in magnitude. An analog signal is represented as a series of values
by the sampling component. This procedure is carried out with the help of a
"sample-and-hold" circuit, which keeps the sampled value of the signal until the
next sample [5]. A fundamental DSP procedure is shown in Figure 1.2.

Figure 1.2 Basic DSP operation

The analog to digital conversion is performed in the following manner: the analog
input signal is sampled by the ADC in uniformly pierced samples. In this way, an
analog signal is transformed into a discrete time signal.

𝑥[𝑛] = 𝑥(𝑛𝑇) − ∞ < 𝑛 < ∞ (1.1)

where 𝑇 is the sampling time and 𝑛 is a positive integer.

10 Contribution to the development of microwave remote sensing for UAV systems.

Every quantized 2𝑘 level belongs to one sample's magnitude, where 𝑘 is the
number of bits of ADC. These samples are also binary encoded. An ADC is
similar to a switch that is opened and closed in every T seconds. As a result, the
sampling frequency is represented as follows:

𝑓𝑠 =
1

𝑇
 (1.2)

where 𝑓𝑠 is in hertz. At discrete time nT, being n = 0,1,2,..., the discrete-time
signal 𝑥(𝑛𝑇) can be represented by a positive integer [1]. This is depicted in
Figure 1.3.

Figure 1.3 Analog signal sampling

To define precisely an analog signal 𝑥(𝑡) as a discrete-time signal 𝑥(𝑛𝑇), the
sampling frequency 𝑓𝑠 must be at least twice as large as the frequency part of the

analog signal 𝑓𝑀. It is written as follows:

𝑓𝑠 ≥ 2𝑓𝑀 (1.3)

Where 𝑓𝑀 is usually referred to it as the "Nyquist frequency," and 2𝑓𝑀, that must
be exceeded by the sampling frequency, is referred to as the "Nyquist rate" [2].

∆=
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2𝑏−1
 (1.4)

THEORETICAL BACKGROUND 11

where 𝑥 represents the input signal and 𝑏 stands for the number of bits that reflect

the signal. ∆ recognizes the quantizer phase size specified by an ADC [3].

According to Equation 1.4, increasing the number of bits results in a significant
improvement in signal resolution. An analog amplitude of 1V can represent this
situation. There are only sixteen steps to indicate that 1V if a four-bit digital signal
is utilized to depict it. Steps are fitted, however, if the analog signal is defined by
a 24-bit digital signal. If the quantization is homogeneous, every step has such a
fitted size, and one step equals:

1𝑣

224−1
= 0.0596𝜇𝑉 (1.5)

In case of digital signal with 4-bit is used, then every quantization is:

1𝑣

24−1
= 125𝑚𝑉 (1.6)

1.3 Digital Filtering

Digital filtering is accomplished through the application of mathematical
operations to sampled data (digitized data). Electronic circuits are used to
perform filtering operations for analog filtering. Coefficients are used to perform
digital filtering on sampled signals [6]. There are numerous filters, but in this
thesis, one of the digital filters known as the FFT system in FPGA is used.

1.4 FFT system in FPGA

In the field of DSP, the "Fast Fourier Transform" (FFT) is a major method of
measurement. It decomposes a signal into individual spectral information and
provides frequency components of the signal as a result. FFTs are used in
machine or system for specific purposes, such as fault analysis, quality control,
and condition monitoring.

Figure 1.4 Signal components in the time and frequency domain [7]

In its most basic form, The FFT itself is the popular algorithm for accomplishing
the "Discrete Fourier Transformation" (DFT). Over time, a signal is processed and

12 Contribution to the development of microwave remote sensing for UAV systems.

sampled, and its frequency components are separated. These elements are
single sine wave with distinct frequencies and amplitudes and phases. This
transformation is depicted in the Figure 1.4 above. In the example, the signal
contains three distinct dominant frequencies over the measured time period.

These spikes in the figure are belonged to useful frequency components of the
original signal whereas the smaller spikes are of noise. Based on this
characteristic, unwanted noise elements of the signal can be eliminated by setting
a threshold relative to the amplitude of frequency components.

1.5 PID controller

Figure 1.5 Block diagram of PID controller

The controller determines the P, I, and D actions and multiplies each parameter
by the error, or E, which is equal to

𝐸 = 𝑆𝑉 − 𝑃𝑉 (1.6)

Where, SV - Set Variable, PV – Process. The Control Variable (CV) is then
created by adding the results of all parameter calculations. In Figure 1.5:

P: The proportional gain, not a quantity but rather a "ratio", is the phrase
"proportional" which is also called the "P" Constant. The parameter is also known
as 𝐾𝑝, Gain. This parameter controls how quickly the system reacts. A higher

setting for this tuning parameter may result in more sensitive, less stable loops
for controllers which use the term "Gain." Conversely, lowering this tuning
parameter has the same effect on the loop on controllers with proportional band
units [8].

I: The integral term, sometimes known as the "I" Constant or "Reset," can also
have varied measurements. 𝐾𝑖 is another name for this parameter. This variable
controls how quickly the steady state error is eliminated [8].

"D" or derivative the usual constant units are seconds or minutes. Predicting
change is the goal of the "Derivative" constant. The Process Variable's rate of
change is acted upon by the Derivative action. How far into the future you want
to estimate the pace of change is essentially indicated by the value of this
parameter. This setting can aid in making the loop operate better and respond
more quickly [8].

HARDWARE AND SOFTWARE PLATFORM 13

CHAPTER 2 HARDWARE AND SOFTWARE PLATFORM

2.1 Initial Consideration and Platform Selection

2.1.1 Hardware selection of FFT system in FPGA

In both situations, studying for or working with FPGAs, it is always critical to select
correct chip or evaluation board for one’s desired implementation. FPGA itself
allows number of possibilities to design “In-system design” for engineers and
scientists because of its adaptive logic modules (ALMs) and logic elements (LEs)
which are connected with each other through programmable interconnects.

In our case, a system for implementing the Fast Fourier Transformation (FFT)
based filtering in Digital Signal Processing (DSP) domain has to be developed.
The system also must include an access for Direct Random Access Memory
(DRAM) to be able to write and read the results. I choose an evaluation board of
XILINX’s FPGA, “Arty Z7-20” with Zynq 7000 processor and external DDR3. The
reasons why I choose Arty Z7 are follows.

• The FPGA in Arty Z7 board is big enough for large projects

• It features enough built-in peripherals, including FFT IP and XADC for
signal processing, USB for a webcam and HDMI input and output.

• Sufficient I/O headers and Peripheral Module Interface (PMOD)

2.1.2 Hardware selection of Thermal Control

To implement any system which controls devices (such as motors or Peltier cells,
a thermal sensor, an ADC, a driver) and a control unit are needed. In our case, I
have chosen a microcontroller STM32 by STMicrocontrollers as my control unit.
There are many other options for the microcontroller, such as AVR series by
Atmel, Nios series by Altera and MSC series by Intel so on.

2.1.3 Software selection of FFT system in FPGA

Since FPGA developed by XILINX is used in this project, it is easy and straight
forward to select VIVADO as my FPGA development environment and XILINX
SDK as a software development environment. In fact, according to the
recommendation by XILINX where they suggest that Ubuntu Linux 16.04.5,
16.04.6, 18.04.1, 18.04.2, 18.04.3, and 18.04.4 LTS (64-bit) versions are
compatible with VIVADO tool [8]. I used VIVADO in Ubuntu 18.04 which is 5 years
old open-source software and has less bugs to implement FPGA designs.

The Logic Analyzer (a piece of tool that records and shows numerous signals
from a given circuit or system) and High-Level Synthesis (HLS) (a piece of
software that converts high-level C code into Verilog logic gates. It enables users
to create hardware accelerators for sophisticated ML algorithms on FPGA even
if they are not knowledgeable with logic design) features of VIVADO are now
available for everyone to access for all WebPACK targets (a bunch of software

14 Contribution to the development of microwave remote sensing for UAV systems.

for a specific environment), including the Arty Z7, start from VIVADO
2015.4 release [8]. The Logic Analyzer assistance in logic debugging, and a C
code can be compiled directly into HDL by the HLS tool. Arty Z7 follows suitability
for embedded Linux systems as any Zynq platform does. Digilent offers a
PetaLinux OS (Embedded Linux operation system) platform to support users for
use of Linux OS in their system directly [8].

As a specification of the project, the output of FFT must be stored in any kind of
storages such as a SD card. By doing so, these outputs would be available for
further signal processing, like filtering. To fulfil this specification, an embedded
operation system PetaLinux is chosen because one can develop stand-alone
applications for certain system and can use numerous libraries to compile or build
these applications. Alongside the reason mentioned above, thanks to the drivers
of XILINX’s IP block for PetaLinux, it makes engineers’ life easier to work with the
IP blocks.

2.1.4 Software selection of Thermal Control

In the field of designing the PCBs, there are plenty of choices available as
software including Altium, KiCAD, EasyEDA, Proteus and so on. Among them, I
have chosen KiCAD software by Jean-Pierre Charras to design my PCB layout
design of “Thermal Control” because it open source, used as professionally and
its output is accepted by PCB manufacturers [9]. To write a program for
controlling the whole system, Microsoft Visual Studio with PlatformIO IDE is used.

2.2 Hardware Platform Description

2.2.1 Hardware Platform Description of FFT system in FPGA

As specification of the project, the FPGA technology has to be utilized in this
project. There are plenty of supplier of FPGA, such as XILINX Inc, Altera
Corporation, Lattice Semiconductor, Achronix, QuickLogic Corporation,
Microchip Technology and Microsemi Corporation. The FPGA of XILINX Inc
(XILINX) is chosen because this company provides plenty of supporting
materials, like datasheets and instructions for each IP, to its users.

2.2.1.1 XILINX’s Arty Z7 20 evaluation board

The Arty Z7 is an evaluation platform that is ready to use and is based on Xilinx's
Zynq-7000 All Programmable System-on-Chip (AP SoC). The Zynq-7000
incudes XILINX's 7-series FPGA logic and a dual-core ARM Cortex-A9
processing system which is running at 650 MHz. This combination enables one
to cover a complex multifunctional processing system with a customized set of
softly pre-designed peripherals and processing system for the desired application
[10].

The toolsets, such as Vivado, Petalinux and SDSoC, offer a straightforward
way between defining one’s custom peripheral set and bringing its functions and
features are limited to the Linux OS or processor's bare-metal platform. For

HARDWARE AND SOFTWARE PLATFORM 15

designers who is looking for an engineering experience of a more classical logic
gate design, the ARM processors can be ignored, and the Zynq's FPGA can be
programmed in the same way just like any other Xilinx FPGA. Variety of
documentations and datasheet of the Arty Z7 that really can be handy to play with
the toolkit are provided by Digilent.

The Arty Z7 is fully compatible with the Vivado Design Suite from Xilinx. This
toolset integrates FPGA logic circuit design and integrated ARM processor
programming into a simple, user-friendly design process. It is being used to
implement solutions for any complex system, from an entire operating system
running multiple applications at the same time to a simple bare-metal C
code controlling some inputs or outputs.

To those who don't want to use the ARM processor in their target system, FPGA
part of Zynq, without the processor, can be used for standalone FPGA system.

Figure 2.1 Arty z7 evaluation board (top)

In figure 2.1, 1 – Zync 7000, 2 – External DDR, 3 – JP4 (Booting option), 4 –
PMOD header, 5 – Arduino extension connector.

16 Contribution to the development of microwave remote sensing for UAV systems.

Figure 2.2 Arty z7 evaluation board (bottom)

In Figure 2.2, 1- SD card holder.
There are two main subsystems in the Zynq APSoC which are The Processing
System (PS) and the Programmable Logic (PL). The overall picture of the Zynq
APSoC architecture is illustrated in Figure 2.3 where the PS is highlighted in light
green and the PL is highlighted in yellow [11].

HARDWARE AND SOFTWARE PLATFORM 17

Figure 2.3 Block diagram of Zynq APSoC [11]

The PL is remarkably similar to a Xilinx 7-series Artix FPGA, with the exception
of a few specialized pins and buses connect PL to the PS. The PL lacks the same
settings for the hardware which a typical 7-series FPGA includes, and one
can configure them by using the ARM processor or with its JTAG port.

The PS is made up of several devices, such as the Application Processing Unit
(APU) with two Cortex-A9 processors, the Advanced Microcontroller Bus
Architecture (AMBA) Interconnect, the DDR3 Memory Controller, and numerous
peripheral controlling units, (known as Multiplexed I/O, or MIO 54 pins).
Peripheral controlling units with inputs and outputs that are not connected to MIO
pins can route their I/O via the PL using the Extended-MIO (EMIO) interface [11].

The controllers of peripheral are slaves to the PS through the Interconnect IPs
and include accessible control registers that can be found in the PL’s memory.
The PL must be hooked up as a slave to the interconnect, and the designer can

18 Contribution to the development of microwave remote sensing for UAV systems.

use the FPGA fabric for implementing multiple cores, each with addressable
control registers. In addition, interrupts can be sent by cores implemented in the
PL to processors. This is how DMA completes the access to DDR3 memory.

Both of the USB port, what we call JTAG and another kind of powering, such as
an external battery or a power adapter, can power the Arty Z7. The power source
is determined by jumper JP5 (located near the power switch). According to the
specifications, a USB 2.0 port can power it at a maximum current of 0.5A. This
can be sufficient for simpler designs or applications. Some applications, such as
those that requires number of peripheral systems or other additional USB
devices, may necessitate more powerful course than the one delivered by the
USB port. Power consumption will rise in this case until limitation of the USB host.
This limit varies significantly between chip makers and is determined by a number
of factors. When the current limit is reached, or when the voltage rails drop below
their nominal value, Power-on Reset signal forces Zynq to reset, and power
consumption to inactive. Furthermore, in some systems, it is required
operating without having connection of a USB port of a control PC. In these
situations, an external power source can be used, such as a battery.

APSoC devices, unlike Xilinx FPGA devices, are developed with a use of the PL,
which serves as a master port to the PL fabric and to all those other types of on-
chip devices, such as DMA IP, FFT IP, ADC IP .. etc, in the FPGA. As a result,
the boot process of Zynq can be seen it as a microcontroller rather than an
FPGA. The PL loads and executes a Zynq Boot (file) Image, which contains a
First Stage Bootloader (FSBL), a configuration for the PL, known as a bitstream,
and a custom application. There are three stages the booting process is divided:

Stage 1: When the Arty Z7 is powered on or the Zynq is reset (such as through
software or the reset button, SRST), one of its processor cores, such as CPU0,
begins executing an inner part of read-only predesigned software known as the
BootROM. If the Zynq is only recently turned on, the BootROM initially loads the
states of mode pin in terms of the mode register. In eather case, the BootROM is
being operated as a result of a reset event mode or the mode pins are still not
asserted, and the previous state of the mode register is used. This implies that
any change in the jumper (which changes programming mode) requires a power
cycle to be registered by the Arty Z7.

Stage 2: The FSBL first completes configuring the PS settings, like the control of
DDR, during this stage. The bitstream is then read and used to configure the PL
if it is present in the Zynq Boot Image. Finally, the Zynq Boot Image is used to
load the user application into memory, and execution is passed to it.

Vivado and the Xilinx Software Development Kit are used to create the Zynq Boot
Image (Xilinx SDK). We will discuss little bit about this process in the following
chapters. The Arty Z7 supports three different boot modes: microSD, Quad SPI
Flash, and JTAG. After powering on, the Mode jumper (JP4) is used to select the
boot mode, that also modify the condition of the Zynq settings pins.

HARDWARE AND SOFTWARE PLATFORM 19

Stage 3: The accomplishment of the FSBL-loaded software application is the final
stage. This could range from a "Hello World" application to a Second Stage Boot
loader used for booting an OS, like Linux [5].

2.2.1.2 Zynq 7000 processor

The digital revolution now allows inventors to sum up different system
components into extremely small devices, furthermore into a single complex chip,
introducing the new concept namely System-on-Chip (SoC) to the field of
electronics. Because of usage of XILINX's FPGA in this project, Zynq-7000 is
explained as an instance of a SoC. It incorporates number of on-chip devices,
such as two hard PSs, PL, numerous peripherals like ADC block or FFT block
into a single silicon chip.

Prior to the discovery of the Zynq, PSs were accompanied with a FPGA, that had
complicated interaction between the PL and the PS. The newer model of Xilix's
all-programmable System-on-Chip (SoC) families, the Zynq architecture, merges
a dual-core ARM Cortex-A9 processor with a traditional FPGA [10]. The
Advanced eXtensible Interface (AXI) standard-based interface is responsible for
communication be between the various elements, such as ADC, DAC, DMA IP,
in Zynq-7000. This interface allows for high bandwidth and low latency
connections.

Users were previously utilizing a soft-core processor, like XILINX's Microblaze
before developing the ARM processor inside the Zynq device. The flexibility of
cpu cores instances inside a layout was and continues to be the primary benefit
of Microblaze. In Zynq, however, the addition of a hard processor results in
greater improvements in performance. Moreover, by minimizing the system to a
single chip, the total cost and physical dimensions of the device are reduced.

20 Contribution to the development of microwave remote sensing for UAV systems.

Figure 2.4 Structure of the APU

The APU has two ARM cortex-A9 processor units, each of them consists of a
NEON unit, a floating-point unit (FPU), a memory management unit (MMU), and
L1 caches. Snoop control and L2 caches are also included in the APU. Figure
2.4 depicts the structure of the APU [10].

HARDWARE AND SOFTWARE PLATFORM 21

Figure 2.5 Zync-700 device Application Processing Unit (APU)

• NEON: This unit supports Single Instruction Multiple Data (SIMD), one that
dramatically enhances DSP and media computational methods on the
main ARM processor.

• FPU: This unit gives floating point operation acceleration.

• Level 1 cache: For storing instructions and data, each processor has its
own instruction and data caches.

• MMU: It translates data from virtual memory addresses to physical
memory addresses.

• Snoop Control Unit (SCU): One of the SCU's primary functions is to
interface between processors, L1 and L2 caches.

• L2 cache: This cache is shared by the processor cores and allows them to
access the most current variable update.

The Zynq SoC's programmable logic, like that of other FPGAs, is formed of
configurable logic blocks (CLBs) with 2 slices. Four look-up tables (LUTs), eight
flip-flops (FFs), and a switch matrix are included in each slice. There are also
Block RAMs and DSP slices. The PL structure is depicted in Figure 2.6.

• Slice: The resources used to build the combinatorial and sequential
circuits are divided into individual slices.

• Look-up Table (LUT): LUTs are used in RAM, ROM, or shift registers to
implement a logical design with up to six inputs.

• Flip-flop (FF): A 1-bit register with reset feature is implemented using this
sequenced component.

• Switch Matrix: It links the different components within and between the
CLBs as well as other components of the PL.

22 Contribution to the development of microwave remote sensing for UAV systems.

Figure 2.6 Structure of Programmable Logic [10]

The Zynq designing method is equivalent to that of a classic FPGA. Specifying
the needs and requirements for the system is the first step. During the system
design phase, a process called task partitioning assigns the various tasks
(functions) to be implemented in either a PL or PS. This stage is very important.
Because of that, missions are delegated for implementation in the most
appropriate technique: hardware or software, will determine the desired system's
performance.

Following that, testing, and evaluation of hardware in PL and software in PS must
be completed. The task for the PL is to choose or decide the functional blocks
needed to accomplish the design features, and perhaps to consolidate them as
IPs and hook up them suitably. Likewise, the software activity entails writing lines
of code that will be executed by the PS. As a consequence, both the wares are
merged, and testing will be required to finish the design. Figure 2.7 depicts the
Zynq SoC design flow.

Figure 2.7 Zynq Design Flow

HARDWARE AND SOFTWARE PLATFORM 23

2.2.1.3 DMA IP of Zynq 7000

In fact, the Zynq processing system contains its own DMA channels. But these
DMA channels are only for memory-to-memory (M2M) transfers and not for
stream-to-memory (S2MM) or memory-to-stream transfers (MM2S). Therefore, it
is obvious that if one wants to perform the memory-to-memory transfers,
the peripherals must already have a DMA capable interface as Zynq has DMA
channels.

The M2M transfers (read or write) data between memory locations. The S2MM
transfers take a serial streaming data then sends it to a specific memory location.
The MM2S transfers read data from memory and convert it to a serial format. The
AXI DMA IP block enables any peripheral with an AXI stream interface, such as
FFT IP, to access the system's main memory via S2MM or MM2S transfers. For
FPGA developers, DMA IP is used more often for S2MM/MM2S transfers, so
I'm using the AXI DMA IP for this project.

2.2.1.4 FFT IP of Zynq 7000

The most popular and efficient computational algorithm for computing the
Discrete Fourier Transform (DFT) of a sequence is the Fast Fourier Transform
(FFT). The FFT is a powerful tool for analysing and designing a signal in digital
signal processing domain. The FFT is, in general, a widely used transform in a
variety of digital signal processing applications.

A hardware implementation of FFT can be difficult due to its complex algorithm.
As a result, customizable FFT IP cores have been created by various FPGA
vendors. These IPs can be introduced to a system design with a few clicks.
However, before using such IP cores with confidence, the designer must first
understand some relevant information about the FFT's hardware implementation
in a system design. There are numerous FFT IP cores available by vendors such
as Intel, Lattice Semiconductor, and Dillon Engineering. Since I am using
XILINX's FPGA, it is obvious to take a look at Xilinx's FFT IP core in this projec.

2.2.1.5 XADC IP of Zynq 7000

A dual 12-bit ADC with 1 Mega sample per second (MSPS) and on-chip sensors,
such as internal temperature are included in the Xilinx analog-to-digital converter
(XADC). This ADC is designed for general-purpose, high-precision applications
[12]. Figure 2.8 depicts the XADC block diagram.

24 Contribution to the development of microwave remote sensing for UAV systems.

Figure 2.8 XADC block diagram [12]

2.2.1.5.1 Unipolar mode of XADC

The analog signal's amplitude range in this mode is 0-1 V. When you apply 0 V
to the XADC, it outputs "000h," and when you apply 1 V to the input, it outputs
"FFFh" [12]. Figure 2.9 depicts the transfer function for unipolar mode, whereas
Figure 2.10 depicts the unipolar input amplitude range.

Figure 2.9 Transfer function for unipolar mode [12]

HARDWARE AND SOFTWARE PLATFORM 25

Figure 2.10 Unipolar input range [12]

2.2.1.5.2 Bipolar mode of XADC

The input amplitude range of the analog signal in this mode is between -0.5V and
+0.5V. In fact, this mode may be helpful for learning more about the analog input
signal while analyzing differential signal types. 0 V is the same as "000h." The
value "800h" is assigned when the input voltage is -0.5 V. The input is identified
as "7FFh" when 0.5 V is applied. As may be observed, the comparative Vn and
Vp are shown using the complementary of two [12]. Figure 2.12 shows the bipolar
transfer function, while Figure 2.13 shows the bipolar input amplitude range.

Figure 2.11 Transfer function for bipolar mode [12]

26 Contribution to the development of microwave remote sensing for UAV systems.

Figure 2.12 Bipolar input range [12]

2.2.1.6 Interconnect IP of Zynq 7000 processor

One or more AXI memory-mapped Master devices and one or more memory-
mapped Slave devices are connected by this IP in general. The AXI interfaces
are compatible with the AXI4-Lite control register connection subset of the ARM
AMBA AXI version 4 specifications. AXI4-Stream transfers are not supported by
the Interconnect IP; only memory-mapped transfers are intended. The AXI
Interconnect IP can be utilized as a core from the Embedded Development
ToolKit (EDK) or as a standalone IP from the CORE Generator TM IP catalog
included in the Vivado IP catalogue [13].

2.2.2 Hardware Platform Description of Thermal Control

2.2.2.1 Microcontroller

A microcontroller (MCU) is a microchip that is embedded in the majority of
electronic home appliances that people use every day. In an embedded system,
it is a small integrated controller that handles a specific operation. A typical
microcontroller is a single chip with a processor, memory, and I/O peripherals. A
microchip contains timers, communication interfaces, digital and analog I/O pins,
as well as timers and analog I/O pins. A processor is in charge of organizing
instructions and arranging input/output. The manufacturer has defined the

HARDWARE AND SOFTWARE PLATFORM 27

inclusive input/output devices and hardware performance. The basic layout of a
microcontroller is as follows.

Figure 2.13 A microcontroller's basic layout

As part of the master’s thesis, for the thermal control system, STM32 MIU has
been chosen due to its characteristics and availability of developing the system
in future work.

ARM Cortex-M processor based STM32 MCUs are manufactured by
STMicroelectronics. The 32-bit RISC ARM processor cores are intended for low-
cost, low-power microcontrollers.
The RISC ARM (Reduced Instruction Set Computer) instruction set divides
commands into simple and straightforward instructions designed to achieve
specific goals. The STM32 family includes many devices that combine:

• Complete integration

• • The large environment and professional design tools, including free ones,
make development easier.

• For some families, extremely high performance is provided by the Arm
Cortex-M core and the ST ART AcceleratorTM.

• Capabilities in real time.

• Processing of digital signals.

• Low-voltage and low-power operation Connectivity.

• Graphical elements [14].

Practically, STM32 microcontroller can used in many fields. Such as:

• Control systems for industry

• Human-machine interface devices

• Metering in the cloud

• Motor control

28 Contribution to the development of microwave remote sensing for UAV systems.

• Medical equipment

• Security and buildings (alarms, access control, etc.)

• Consumer goods (PC peripherals, GPS, gaming, etc.)

• The Internet of Things (IoT) [14]

2.2.2.2 ADC

An ADC converts a continuous analog signal into a digital signal with discrete
time and amplitude. Because the conversion requires quantization of such input,
some error or noise is introduced. Furthermore, an ADC performs the conversion
on a regular basis, rather than repeatedly, by sampling and limiting the
reasonable bandwidth of the input signal.

Figure 2.14 ADC block diagram

An ADC's signal-to-noise ratio (SNR) and bandwidth serve as general indicators
of its performance. An ADC's sampling rate essentially determines its bandwidth.
An ADC's SNR is affected by the resolution, linearity, accuracy (how closely the
quantization levels match the actual analog signal), as well as aliasing and jitter.
An ADC's effective number of bits (ENOB), or the number of bits it typically
returns for each measurement that are not noise, is frequently used to describe
its SNR. An ideal ADC's resolution and ENOB are essentially comparable. The
needed bandwidth and SNR of the digitized signal are taken into account while
choosing the ADCs. According to the Nyquist-Shannon sampling theorem, if an
ADC runs at a sample rate larger than twice the signal bandwidth, complete
reconstruction is feasible. Quantization error is a constraint on even the SNR of
a perfect ADC. The effects of the ADC can be disregarded, resulting in a nearly
flawless digital reproduction of the analog signal, though, if the SNR of the ADC
is higher than that of the input signal.

2.2.2.3 Bridge driver

What engineers use for DC motors to move forward or backward is, generally, a
type of electronic circuit named H-bridge, also known as a bridge driver. In our
thermal control circuit, changing the polarity of a voltage applied to a load by using
H-bridge decides which side of the Peltier cell cools down or warms up.

HARDWARE AND SOFTWARE PLATFORM 29

Figure 2.15 Schematics of H-Bridge driver

The polarity of the power of the device (in our case, peltier sell) can be changed
by properly arranging the switches. For example, transistors Q1 and Q4 are open
in the left circuit of the Figure 2.15 while Q2 and Q3 are open in the right circuit
of the Figure 2.15. As illustrated in both images, therefore, the direction of electric
current can be changed, and the polarity of a load can be swapped. There are
"short" cases that can cause the power source and switches to short connect
when switching. As a result, not every combination of switching conditions is safe.
The short cases can occur when certain combinations (Q1&Q2 and Q3&Q4) of
the transistors are opened.

2.2.2.4 Peltier cell

A Peltier cell is an electrothermal device that can generate cold or hot
temperature when it is connected to an electrical current source. This functions
as a solid-state heat pump, allowing heat to be transferred from a cold focus to a
hot one, generating an opposition to the temperature gradient. When a Peltier
cell is activated, one side begins to heat up while the other side cools. There are
much more efficient heat generation systems, which is why it is typically used for
cooling. Developing a cooling system with a Peltier cell for FPGA based system
of drones is simple because the Peltier cell itself is easy to control, and is efficient
in terms of weight.

30 Contribution to the development of microwave remote sensing for UAV systems.

Figure 2.16 Peltier cell

Its operation for thermoelectric cooling is straightforward. It is essentially a
sandwich of two metal plates filled with two semiconductors. Typically, these two
semiconductors are:

• P-doped semiconductors: Boron, indium, and gallium are some
examples.

• N-doped semiconductors: Phosphorus, arsenic, and antimony are
examples [15].

One of the ceramic plates cools when a current is passed between them. All the
heat lost by one of the ceramic plates is collected by the second, which heats up.
Because the heat of the Peltier cell is not affected by the ambient temperature,
we can have a liquid that is colder than the ambient temperature.
Thermodynamics prevents any air sinks or liquid cooling from lowering the
temperature below the ambient temperature. This system enables us to achieve
better cooling of our components.

Despite its benefits, its application in the hardware world is quite limited. Because
it necessitates high currents, this device is far less efficient than liquid cooling,
and forget about air-cooled heatsinks. It is important to remember that the heat
produced by the heater must also be drained away. To reduce excessive heat
generation, we must install a heatsink.

It is important to remember that the temperature difference of the two sides of the
Peltier cell is normally around 70℃. The cell becomes inefficient at this point, and
the cold face begins to heat up. Furthermore, both faces are very close, and heat
starts to rise, affecting the cold plate of the cell [15].

A small 40x40cm plate can generate 60W of heat, which must be cooled, adding
to the difficulties of requiring heat dissipation systems like heat pipes, heat sinks
and fans.

SYSTEM DESIGN 31

CHAPTER 3 SYSTEM DESIGN

3.1 Overall design flow of FFT implementation

Despite having some experiences regarding embedded systems, FPGA itself is
completely new for me. Therefore, I decided to develop my project step by step
while familiarizing and studying FPGA. Completing small tutorials and looking at
results of them or how the IPs work are my first approaches alongside the reading
and understanding whole picture of FPGA. To understand the key features and
workflow of all the IPs which I used for my project, I started with testing and
configuring them. By doing so, I was able to realize what configuration I must do
for each IP and what result or output I would expect from peripherals.

Initial steps I walked through this project are splitting up the whole project in
several minor parts which are:

• FFT implementation and verification using FFT IP

• Stream to Memory Mapping transfer implementation and verification using
DMA IP

• Real input (analog signal) sampling implementation and verification using
XADC IP

• Booting Zynq processor using PetaLinux operation system and installing
costume application on PetaLinux.

Finally, once all the steps mentioned above of the project are succussed, all the
verified parts of the project’s schematics, such as the XADC IP part, the FFT IP
part and the DMA IP part, are merged. Because there were verifications for each
previous part, the final result of the project was expected to be correct.

Those who want to implement any design must implement a hardware part where
internal IPs are chosen, connected and configured, and a software part where an
operation system platform and individual software of the system are developed.
In the following figure, overall design flow of any system (in our case, every step
I walked through including lab works and final FFT system in FPGA) is illustrated.

32 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.1 Design flow of FFT implementation

In the first 2 steps, one has to decide which kind of hardware or software solutions
are needed for the certain design. After that, system designing has to be done.
In this phase, if you use any FPGA for the implementation hardware and software
parts are assumed separately. In our case, since XILINX’s FPGA has been
chosen, the hardware part where all the IPs are connected each other properly
and configured is done in VIVADO tool, and the software development of the
project has been done by using XILINX SDK (System Development Kit). Finally,
in the system integration and testing step, the hardware and the software are
joined together for whole system and tested together.

3.1.1 Functionality testing and configuration verification of used IPs

3.1.1.1 Understanding and testing DMA IP

As mentioned in 3.1, the first step is to test and verify DMA IP. Direct Memory
Access, or DMA as it is more commonly known, is a crucial component of the
design of embedded systems because it enables the main memory (DDR) of such
systems to be accessed without the CPU being connected, allowing the CPU to
carry out other tasks during the read/write cycle to memory. DMA enables the
processor to start a transfer to read from or write to the primary internal or external
memory. Once the transfer is complete, the CPU generates an interrupt. Until the
interrupt skips its corresponding service procedure, this allows the CPU to work
on other tasks.

Although the idea behind DMA is straightforward, it can be challenging to picture
how to apply it to an FPGA with an embedded processor, such as the ARM-core
processor in the Xilinx Zynq SoC. It only becomes worse when you add the extra
complication of connecting it from the user space of an operating system like
Linux.

SYSTEM DESIGN 33

The idea to test DMA and verify its function is to examine if the transferred data
from DDR by passing DMA (Memory Mapped to Stream) is sent back and
received correctly by passing the same DMA (Stream to Memory Mapped). In
other words, it was the test to compare what has been sent by Memory Mapped
to Stream and what has been received by Stream to Memory Mapped as seen in
the figure below.

Figure 3.2 Block design of DMA IP verification lab work

This (what I call lab work) has been done initially with bare metal software which
is coded in C language. Then as a specification of the project, the bare metal C
code has been transferred to an application which is compatible with and
installable in PetaLinux.

34 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.3 Hardware schematics of DMA IP.

Figure 3.3 shows the hardware schematics of DMA IP testing lab. What we have
in the schematic alongside the ZYNQ processing system and the DMA are AXI
Interconnect IP, AXI Smart Connect IP and Processor System Reset. These IPs
are generated and connect automatically after executing “Run connection
automation” when you add a DMA IP in your system. “Run connection
automation” automatically connects every clock signal, reset signal and most of
the necessary connections properly. For example, in Figure 3.3, all the
connections except the red one are done by the command. Of course, one can
choose the clock or reset source before executing it.

Figure 3.4 Hardware configuration of DMA IP.

SYSTEM DESIGN 35

The configuration of DMA IP is illustrated in Figure 3.4. In our case, Scatter
Gather Engine is disabled. Therefore, the control register of DMA IP is configured
every transaction via its AXI Lite interface from PS. All the data widths of stream
and memory map data are 64 bits because data transferred from PS to PL and
from PL to PS are 64 bits float complex data type. Slave AXIS S2MM port and
Master AXIS MM2S are connected that you can see in Figure 3.3. So, the dataset
sent from PS through DMA IP’s MM2S goes directly to DMA IP’s S2MM port then
passed to PS via AXI Smart Connect IP.

In this lab, thanks to the direct connection in red (in Figure 3.3), bunch of float
complex type data was transferred from PS to DMA IP (MM2S transfer) and that
data received to PS from DMA IP (S2MM transfer). As a result of this lab, data
sent from PS via MM2S and data sent from PL via S2MM were exactly the same.
Therefore, both S2MM and MM2S are verified, and configuration of the IP is
confirmed.

3.1.1.2 Understanding and testing FFT IP

It is crucial to make sure the configuration and performance of IPs are correct.
Second and the most important part is testing and verifying FFT IP of XILINX’s
FPGA. To do so, an artificially generated signal is used as input of FFT IP and
output of FFT IP must be compared with calculated output of FFT in bare-metal
C (in my FFT IP testing lab, 8 points FFT is used). The block diagram of this lab
work looks like:

Figure 3.5 Block design of FFT IP verification lab work

As mentioned in previous chapter, the connection between DMA and FFT is
steam interface while the connection between processing system and DMA is
memory mapped interface. The idea here is to transfer the artificially generated
signal to FFT as its input through MM2S by using DMA and FFT solution as its
output received to the processing system via S2MM by passing DMA.

36 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.6 Hardware schematics of FFT with input of locally generated
signal using DMA IP.

As shown in Figure 3.6, the input of FFT IP (S_AXIS_DATA port) is connected
MM2S interface of DMA IP while the output of FFT IP (M_AXIS_DATA port) is
connected S2MM interface of DMA IP. Thank to this connection in red, memory
mapped complex signal which is generated in PS is turned into stream signal and
input the FFT IP. The 8-point FFT of this stream signal is calculated in the FFT
IP. Then the output of FFT IP which is stream data transferred to the PS via the
DMA IP’s S2MM interface. The goal of this lab work is to compare both results
computed in the PS and the PL. The result of this lab work is shown in Figure 3.8.

SYSTEM DESIGN 37

Figure 3.7 Hardware configuration of FFT with input of locally generated
signal using DMA IP.

Figure 3.7 shows us the configuration of FFT IP where number of channels is 1,
transfer length is 8 (this is because 8-point FFT is computed in the PS),
architecture is in auto mode (the proper architecture is chosen automatically),
data format is floating point (as the complex signal is transferred in data type of
float complex), scaling option is scaled (scaling scheme register has to be set, in
3.6, Constant IP whose value is 0b1111111 in 7 bits is connected to
s_axis_config_tdata port of the FFT IP) and rounding mode is truncation.

38 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.8 Output of the FFT IP and computed FFT

Since my code inside the processing system is able to calculate a correct FFT
manually which is correct (in Figure 3.8, values defined as PS output), I was
expecting the same result (there could be negligible difference) from the output
of FFT IP as output of the software (in Figure 3.8, values defined as PL output).
The code of this lab work is also transferred to the Linux application. Since both
outputs of the PS FFT and PL FFT compared and functionality of the FFT IP is
verified as the difference of both FFT output is less than 0.001, I can say this lab
work has been done successfully. Therefore, I am sure that my configuration of
the FFT is correct, and I expect correct FFT outputs in my FFT system in FPGA.

3.1.1.3 Understanding and testing XADC IP

The use of XADC in this project is simply as sampling a real signal. But to be
sure, again, with its performance, verification of its output compared to its input
is needed. Before input an analog signal, the output of ADC is verified by using
DC voltage (0-1V) as the input. Arty Z7’s dedicated analogy input (in Figure 3.10,
Vp_Vn and in ArtyZ7 evaluation board, V_n & V_p connector) for XADC is used.

SYSTEM DESIGN 39

Figure 3.9 Block design of XADC IP verification lab work

As seen in the block diagram in Figure 3.9, either of the DMA IP or the XADC IP
are configured via their Lite Interfaces. There are 2 different configuration
interfaces in XADC IP (AXI4Lite & DRP). The AXI4Lite is used in this lab but the
other one (DRP) is used in another version of the hardware schematic in Figure
3.10 which is bootable in PetaLinux OS.

Figure 3.10 Hardware schematics of XADC IP

In the schematic in Figure 3.10, since we are using the DMA IP to steam signal
to memory map data, most of the IPs, such as AXI Interconnect IP and System
Reset IP, are connected automatically. What is to be careful about is, in this

40 Contribution to the development of microwave remote sensing for UAV systems.

scheme, AXI4 stream output of XADC Wizard (XADC) does not include TLAST
signal which is high only at the end of data frame. To transfer streaming output
of the XADC Wizard IP to DMA IP, therefore, we must connect it with the AXI4-
sream Subset Converter which generates TLAST.

As highlighted in red in Figure 3.10, the real analog signal comes through XADC
IP’s dedicated analog input Vp_Vn. In other word, real signal from outside world
(a sine signal generated by signal generator or constant voltage) is connected to
the connectors named V_p and V_n (ground) whose maximum amplitude is 1V
of Arty Z7 board. And the real signal is directly connected to the XADC IP where
the signal is sampled, then it is connected to the DMA IP by passing by the AXI4-
sream Subset Converter where the TLAST signal is added. Then the streaming
sampled values are transferred as memory map data to PS. Finally, in the bare-
metal C application, one can read digitalized value of real signal. By doing so, it
is possible to verify the output of the XADC by comparing it with mathematically
computed sampled value.

Figure 3.11 Schematic used in the testing of XADC

To be sure with the output of the XADC, its input is initially tested with direct
current (DC). In this experiment, a 10K Ohm potentiometer is used as a voltage
divider and powered with 1V DC as shown in Figure 3.11. The output of this circuit
is directly connected to V_p and V_n headers of Arty Z7. The purpose of this
experiment is to measure voltage value at the output of the scheme using a
mustimeter and compare it with the values at the output of the XADC IP. By doing
so, it is possible to validate the performance of the XADC. For example, the
output must be 0x000 when the input is DC 0V, and the output must be 0xFFF
when the input is DC 1V. Once this verification has been done, one can be sure
that the configuration of the XADC is correct, and the functionality is verified.

SYSTEM DESIGN 41

Figure 3.12 Hardware configuration of XADC IP

42 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.13 Hardware configuration of XADC IP

In the group of screen shots in Figure 3.12 and Figure 3.13, all the configuration,
needed for the XADC in case of a real-world input signal, is shown. Architecture
is AXI4Lite (configuration by AXI4Lite interface), Channel selection is Channel
sequencer (with this option, one can input 16 different inputs). Sequencer mode
is continuous (XADC IP samples and streams the input continuously). All the
alarms are disabled (in fact, there is an interrupt for every alarm). In the Channel
Sequencer part, only VP_VN (the dedicated analog input) is chosen and set as
bipolar. So that, the input of the XADC is set as Vp_Vn and amplitude between -

SYSTEM DESIGN 43

0.5V and +0.5V due to its bipolar type. For the timing option of the XADC, clock
frequency is chosen as 104 MHz meaning its sampling rate is 1 MSPS. To supply
104 MHz, the Clocking Wizard IP is used as shown in Figure 3.10. Once the
output of XADC is satisfied, we can directly use its configuration for a real signal
input of FFT system in FPGA.

3.1.1.4 Booting Zynq processor using PetaLinux operation system and
installing costume application on PetaLinux.

The Yocto Linux distribution is built upon by a collection of high-level commands
known as PetaLinux. Embedded Linux solutions and Linux images for Xilinx
processing systems can be modified, created, and deployed using PetaLinux
tools. It is designed to increase design productivity, and it integrates with Xilinx
hardware design tools (like Vivado) to make it simpler to construct Linux systems
for Zynq-7000 SoCs, and MicroBlazeTM. Two steps of the PetaLinux design flow
are mentioned below.

Step 1: Creation of the hardware platform
The procedures to follow when using Vivado 2019 to design unique hardware for
your board are covered in this step. A Hardware Description File (HDF) must be
produced from Vivado. The HDF file is generated automatically after the bit
stream file generated from Vivado project. The PetaLinux tools must be aware of
the board's underlying hardware system in order to create a specific PetaLinux
project for it. Your board's hardware architecture is described in the HDF file. It is
necessary if you are going to create a PetaLinux project so that the finished image
can appropriately setup the board when it is powered on.

Detailed instructions for installing PetaLinux Tool Chain can be found in the
following link location: https://aerotenna.readme.io/docs/using-petalinux-os

Step 2: Creation of the Petalinux project

Using the HDF file generated in the previous phase, in this step we will establish
a fundamental PetaLinux project. On a system running Linux OS, several
procedures are carried out. You should use a virtual machine with Linux OS and
PetaLinux 2018.3 installed if your primary computer is Windows. PetaLinux
projects can be created from two sources: Board Support Packages (BSP) and
template projects.

Finally, one can copy the bootable image file and root system files to a SD card.
Then, if you have a custom application for your system, you can cross-compile it
with your Linux OS and Petalinux OS. By doing so, the custom application can
be bootable from the embedded OS.

https://aerotenna.readme.io/docs/using-petalinux-os

44 Contribution to the development of microwave remote sensing for UAV systems.

3.1.2 Implementation of FFT system in FPGA

3.1.2.1 Hardware implementation of FFT system in FPGA

Figure 3.14 Overall hardware schematic of FFT system in FPGA

The complete hardware schematic of FFT system in FPGA is illustrated in Figure
3.14 (more visible version of the schematic is attached in Annex I). Once the
functionality testing and configuration verification of the main peripherals, such
as the FFT IP, the DMA IP, and the XADC IP, are succeed in the previous lab
works mentioned in 3.1.1, the implementation of FFT system in FPGA is straight
forward. Obviously, there must be some differences in the configuration of the
FFT IP due to different input signal source. In other word, we use locally
generated complex signal in 3.1.1.2 as input of the FFT IP while the real analog
signal is the input in this final schematic (shown in Figure 3.12) of FFT system in
FPGA.

As usual, the main trace of the signal flow is marked as red in the Figure 3.12.
The real analog signal comes through XADC IP’s dedicated analog input Vp_Vn.
Then this signal directly connects to the input of the XADC IP of which
configuration is the same with that of the one shown in Figure 3.11. The XADC
IP itself is a 12-bit ADC. The output of XADC is with width of 16 bits and its higher
4 bits are zeros. When this stream passes throughout the AXI4-sream Subset
Converter, the TLAST signal is added to the signal. Now, it is the time to input
the FFT IP with the sampled stream value of the real analog signal. According to
the datasheet and configuration mentioned below, in case of real input signal,

SYSTEM DESIGN 45

imaginary part of the input signal must be zeros. For this purpose, I used the
Concat IP which merges several inputs into a single output. The 16 bits of the
first input of this Concat IP is connected to the output of the AXI4-sream Subset
Converter and considered as the real part of the input signal of the FFT IP. The
16 bits of the second input of this Concat IP is connected to the Constant IP
whose constant value is 0x00 and considered as the imaginary part of the input
signal of the FFT IP.

Finally, the 1024-bit FFT is computed by the FFT IP and its AXIStream output is
connected to the DMA IP to be converted into the memory map data. Then this
memory map data is written to the memory.

46 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.15 Hardware configuration of FFT IP with the real analog signal

As shown in Figure 3.15, configuration of the FFT IP is: Number of channel 1,
transform length is 1024, architecture choice is Pipelined (continuous stream data
processing), Streaming I/O, Data format is Fixed point (sampled real signal),
scaling option is scaled, Rounding Mode is Convergent Rounding, Input data
width is 16 bits (16 bits for real part and 16 bits for imaginary (16 bits of zeros)
part of the input signal), and Output ordering is Natural order.

Three bits from input can be added to output in case of Radix-4 butterfly
algorithm, that is why the bit growth needs to be considered to prevent the data
overflow. The same effect happens in Pipelined Streaming I/O designs of FFT.

SYSTEM DESIGN 47

The highest amount of bit expansion in the stage determines how many output
data bits must be shifted to the right after it is complete. Data is only shifted in
conditional block scaling if bit growth happens. The entire block of data is moved
to the right and the block exponent is changed if one or more outputs increase.

That is why SCALE_SCH register of the FFT IP must be configured. In the
Pipelined Streaming I/O architecture, overflows are totally avoided by the
conservative schedule SCALE_SCH = [10 10 10 10 11]. The last group only has
one stage when the point size is not a power of four, and the higher bit growth for
the last group is one bit. Consequently, the scaling schedule's two MSBs can only
be 00 or 01 [16].

Figure 3.16 Scaling schedule of 1024-bit FFT with Pipelined

Streaming I/O architecture

The scaling schedule mentioned above can be done by writing conservative
schedule to the SCALE_SCH register. To do so, we must write SCALE_SCH =
[10 10 10 10 11] by writing constant values to the s_axis_config_tdata port of the
FFT IP as shown in Figure 3.16.

3.1.2.2 Software implementation of FFT system in FPGA

In the software part, configuring the XADC IP and FFT IP by using their AXILite
interfaces. Once these configurations are done, all we have to do is wait for the
receiving data which is the output of the FFT IP in the single precision data type.

48 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.17 Algorithm of the software of FFT system in FPGA

The algorithm of the software is shown in Figure 3.17. Since most of the
configuration of IPs are completed in the hardware part, some minor
configurations of the IPs, such as a transfer word length for the DMA IP and
resetting the IPs, are done in the bare-metal application. Then once the IPs are
configured successfully in both hardware and software, the only thing to do in the
software is to wait for the 1024-point FFT output of FFT IP. Finally, one can use
the FFT output for filtering a signal by using its frequency components. For
example, we can get rid of an interference by omitting the frequency component
corresponds to the interference signal from the FFT output and input that
remaining bunch of data to Inverse Fourier Transform (IFFT). In fact, the FFT IP
itself has a mode to compute IFFT.

3.2 Overall design flow of “Thermal control” implementation

Implementation of the thermal control is straight forward as of any other
embedded systems. Deciding a solution, completing scheme design, drawing
layout of PCB, soldering and testing are the all the steps which I walked through
its implementation.

3.2.1 Implementation of “Thermal control”

3.2.1.1 Hardware implementation of “Thermal control”

From choosing electronic components to designing a schematic, all the steps are
explained in this section. Choice of the components, these days, are highly
depending on its availability in stocks of the vendors rather than inventors’
decisions due to a shortage of such component in the market under COVID
situation. As most of the engineers are experiencing, some components I had
chosen for the thermal control system had not been available in the market.
Therefore, during the first phase of this project, it costed me spending several

SYSTEM DESIGN 49

days to choose the components, check the technical characteristic and
availabilities because once one of the components is changed, the whole
schematics may be changed. Thanks to the variety of the vendors in the market,
satisfied elements of the schematic has been chosen.

After decided every single component of the thermal control, the schema
designing task is carried out. In this step, the software used was KiCAD which is
free and can be used for professional purposes. Designing the schematic for
thermal control is straight forward as the purpose of the system is to control a
Peltier cell, which must be fixed in the box to balances the temperature inside,
based on surrounding temperature. As seen in the Figure 3.18, a microcontroller
takes control of whole system, for example it gets digitized values of temperature
from the ADC through its SPI interface and controls Peltier cell through the H-
bridge by using a software PID which controls values of PWM. An analogy digital
converter (ADC) converts an analog signal to digital signal. Alongside those
electronic components, what we need for overall system are thermal sensors to
sense the temperature and the Perltier sell to cool or heat inside of the box.

Figure 3.18 Block diagram of the hardware implementation of “Thermal
control”

Overall hardware schematic of the Thermal control is attached in Annex II.
Designing a layout of PCB for the electronic system is what every inventor does
after completing schematic design. This step plays an important role in the
electronic system design because this is when one can minimize the noises by
introducing interesting solutions, like placing the coupling capacitors correctly and
managing the planes (layers) or traces efficiently, for example, the coupling
capacitors must be place as near as possible to the dedicated pins, and ground
planes of analog and digital sources could minimize some noises as separately
generated in the other sides of the PCB. Another important aspect during phase
is to create a new footprint for certain, or for your custom elements such as a
heatsink.

50 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.19 Layout design of PCB

For this project, the PCB has been done with four layers, two for tracing, one for
the ground plane and one for the power plane. Some empty pins of STM32 have
been designed for possible development of the system.

Figure 3.20 The final electronic board of the “Thermal control”

SYSTEM DESIGN 51

Once the soldering is completed successfully, I moved to the software part of the
project before the last step which is testing the whole system.

3.2.1.2 Software implementation of “Thermal control”

In the software part, configuration of the other devices such as the ADC and H-
bridge is done in STM32 by using their SPI interfaces.

Figure 3.21 Algorithm of the software of “Thermal control”

The algorithm of the software is shown in Figure 3.21. What it does after
configuring the control registers of the other devices is to read output of ADC
which is the digitized value in 16 bits of the thermal resistor. Then the PID
controller designed in STM32 controls the value of PWM for Peltier cell.

The use of PID controller here is to keep the temperature of the other system
around the chosen reference temperature while minimizing the energy utilization
of the Peltier cells. Thanks to the mathematical model of PID controller and its
recursive operation, it reduces the fluctuation of the temperature to its minimum
level.

52 Contribution to the development of microwave remote sensing for UAV systems.

Figure 3.22 Testing of the “Thermal control”

In the figure 3.22, the 2 Peltier cells with fans are connected to Thermal control
board and attached to the box made of an isolation material. The thermal resistor
or thermistor (1 out of 4 possible headers dedicated to thermistor is used) is put
inside the box through a small hole.

As for the testing of the board, I completed an experiment where I wanted to know
how much time a PID controller which is designed in STM32 microcontroller took
to stabilize the temperature inside the box made of a thermal isolation material. I
put a cup with 0.2 litres water (25°𝐶) inside the box and recorded temperature

(through UART port of PC) value using the thermometer every seconds. In this
experiment, I wanted to examine if the tunning of PID controller is correct or not.

RESULTS 53

CHAPTER 4 RESULTS

4.1 Results of FFT system in FPGA

After the hardware and software implementation, it is time to show the results of
the FFT system in FPGA and to verify the result with mathematical computation.
The real analog signals are generated by a signal generator named FY6800 of
KMOON. Then these analog signals are directly connected to the dedicated
analog input port, V_p & V_n, of Arty Z7 board. To confirm the result, two
separated experiments are done with two different signals which are a sine
wave and a square wave.

Figure 4.1 Connection of the analog signal (sine wave)

In the Figure 4.1, physical connection of the analog signal and its configuration.
As displayed in the signal generator’s display, the signal type is the sine wave,
frequency is 15.625 KHz due to the bin size (976.5625 Hz). The amplitude of the
signal is 0.5V because in the hardware part we use the XADC IP in the bipolar
mode meaning input is between -0.5 and +0.5.

In the overall system, we have following value to compute FFT.

• Sampling rate: 𝑓𝑠 = 1𝑀𝑆𝑃𝑆 (according to the configuration of the XADC
IP in 3.1.1.3)

• FFT size: 𝑁𝑓𝑓𝑡 = 1024 (according to the configuration of the FFT IP in

3.1.2)

• Input signal: 𝑓𝑖𝑛 = 15.625 𝐾𝐻𝑧

From the known values above, the frequency resolution can be calculated as
follows:

54 Contribution to the development of microwave remote sensing for UAV systems.

∆𝑓 =
𝑓𝑠

𝑁𝑓𝑓𝑡
=

1𝑀𝑆𝑃𝑆

1024
= 976.5625 Hz (4.1)

Therefore, the frequency bin size for each bin of FFT IP is 976.5625 Hz. By
using this bin size, we can calculate the bin location which corresponds to the
input signal.

𝑘𝑓 =
𝑓𝑖𝑛

∆𝑓
=

15.625 𝐾𝐻𝑧

976.5625 Hz
= 16 (4.2)

The meaning of the value above is where we must expect a peak in output of
the FFT IP.

Figure 4.2 Output of 1024 point FFT of the FFT IP (sine wave)

Figure 4.2 shows the output of 1024 point FFT computed by FFT IP in PL in case
of sine wave. In this experiment, I am not expecting several peaks in the graph
because the input signal is generated without any noises and sine wave signal
type has only one frequency component. The bin location of the highest peak is
16th bin of the FFT output as expected. The bin location of the frequency
component in the output of the FFT IP and mathematically computed bin location
are exactly the same. Therefore, the output of the FFT IP is satisfied in case of
the sine wave.

In the second experiment right below, I used a square wave as the input signal.

RESULTS 55

Figure 4.3 Connection of the analog signal (square wave)

In the Figure 4.1, physical connection of the analog signal and its configuration.
As displayed in the signal generator’s display, the signal type is the square wave,
Frequency is 15.625 KHz due to the bin size (976.5625 Hz). The amplitude of the
signal is 0.5V because in the hardware part we use the XADC IP in the bipolar
mode meaning that input is between -0.5 and +0.5.

The computation of bin location is the same as ones mentioned the first
experiment because the input signal (except the type of signal) and the hardware
configuration are the same.

56 Contribution to the development of microwave remote sensing for UAV systems.

Figure 4.4 Output of 1024 point FFT of the FFT IP (square wave)

In Figure 4.4, X axis is frequency in Hz, Y axis is absolute value of FFT output.
This graph shows the output of 1024 point FFT computed by FFT IP in PL, in
case of square wave. In this experiment, I am expecting several peaks in the
graph because the square wave signal type has several frequency components
due to its shape. The bin location of the highest peak is 16th as expected. There
are several smaller peaks (at bin 48 (45898.4375 Hz), at bin 80 (77148.4375 Hz),
at bin 240 (233398.438 Hz), at bin 272 (264648.438 Hz), at bin 304(295898.438
Hz) and at bin 498 (485351.563) … so on.) in the graph as expected as well. The
bin location of the main frequency component in the output of the FFT IP and
mathematically computed bin location which is 16th bin are exactly the same.
Therefore, the output of the FFT IP is satisfied in case of the square wave.

4.2 Results of Thermal control

As the result of the thermal control, I can present the temperature values which
is stabilized by the PID controller designed in STM32. This PID settings of PID
controller is important for thermal control because it controls PWM to the Peltier
Cell. By doing so, less energy is consumed while maintaining the reference
temperature.

0

5E+37

1E+38

1.5E+38

2E+38

2.5E+38

1
9

5
3

.1
2

5
32

2
26

.5
62

5
62

5
00

92
7

73
.4

37
5

12
3

04
6.

87
5

1
53

32
0.

31
25

18
3

59
3.

75
2

13
86

7.
18

75
24

4
14

0.
62

5
2

74
41

4.
06

25
3

0
4

6
8

7
.5

3
34

96
0.

93
75

36
5

23
4.

37
5

3
95

50
7.

81
25

42
5

78
1.

25
4

56
05

4.
68

75
48

6
32

8.
12

5
5

16
60

1.
56

25
54

6
87

5
5

77
14

8.
43

75
60

7
42

1.
87

5
6

37
69

5.
31

25
66

7
96

8.
75

6
98

24
2.

18
75

72
8

51
5.

62
5

7
58

78
9.

06
25

7
8

9
0

6
2

.5
8

19
33

5.
93

75
84

9
60

9.
37

5
8

79
88

2.
81

25
91

0
15

6.
25

9
40

42
9.

68
75

97
0

70
3.

12
5

RESULTS 57

Figure 4.5 The records of measurements during the experiment

In the Figure 4.5, the measured temperature inside the box has been recorded in
two experiments (red and blue). Both experiments are started from around 25°𝐶
and the PID controller must stabilize the temperature at 15°𝐶. In the Figure 3.19:

Y axis is temperature in °𝐶 , X axis is number of samples (sampling time is 0.2
second). The curve in blue is the temperature values when the PID has tunning
of 𝐾𝑝 = 50, 𝐾𝑖 = 1, 𝐾𝑑 = 0.1. The curve in red is the temperature values when the

PID has tunning of 𝐾𝑝 = 22.6994, 𝐾𝑖 = 766.2856, 𝐾𝑑 = 191.5714.

As seen in the graph above, the first experiment in blue has better values than
the other one. This is because there is an over-shoot in the graph which reaches
13.7 °𝐶. After that the fluctuation of the blue graph is getting closer to the

reference temperature over time while the other has not any over-shoot and
keeps fluctuating in almost same size. The whole system uses less energy to
control the Peltier Cell when the fluctuation gets smaller and the temperate gets
more stable. Thanks to the estimation by the PID controller, value of PWM is set
properly and the system uses less current.

58 Contribution to the development of microwave remote sensing for UAV systems.

CONCLUSIONS

Thanks to FPGAs’ parallel operation, a FPGA based signal processing is the
efficient way in terms of processing speed. In other word, FPGAs can process
signals from number of channels once. For example, the FFT IP of XIILINX’s
Zynq 7000 has 12 channels, and these channels can be used parallelly. One can
use this IP as much as he or she wants. The number of inputs or outputs can be
limited by the number of physical pins. The number of IPs can be limited by the
number of logic cells inside the PL (in case of Zynq 7000, there are 6.6M logic
cells). Then one can design a new system with unlimited number of IPs but with
limited number of logical cells.

The combination of a theoretical background and a hardware configuration of
certain IP in Vivado HLS can lead us the correct way to implement any system in
XILINX’s FPGA with a support of a software implementation in XILINX SDK. The
theoretical aspect mentioned in the Chapter 1 & 2, the configurations of IPs
mentioned in Chapter 3 are finally meet in the last chapter where we get the
results of FFT system in FPGA. With correct configurations of every IPs in the
system, the “FFT system in FPGA” performs correct FFT outs which are validated
with mathematical computations. To use the “FFT system in FPGA” as a filter, an
interference of the given signal can be eliminated by omitting the frequency
component corresponding to the interference signal from the FFT output and
input that remaining bunch of data to Inverse Fourier Transform (IFFT). In fact,
the FFT IP itself has a mode to compute IFFT.

For the embedded systems, like the “Thermal control”, the choice of electronic
components is important because they can play critical roles in the performance
of the system. For example, the sensitivity level of a sensor depends on the ADC
and the H-bridge driver’s maximum current may limit the consumption of the
Peltier cell in the “Thermal control”. To keep the power consumption of the Peltier
cell in its minimum level while it is cooling down or heating up the certain object,
such as the FPGA based signal processing unit, the PID controller which is
developed in STM32 is utilized. Thanks to the recursive operation of the PID
controller, it is possible to stabilize the temperature of the object around the
reference temperature and to keep the current which the Peltier cell uses in the
minimum level while cooling or heating.

The future development of this project could start from the studying the FFT IP
with the rounding mode of “Truncation”. According to the datasheet of the FFT
IP, it allows the IP to truncate the smaller peaks of FFT output. This mode has to
be studied carefully with real analog signals because it may reduce processing
time. In other word, If we could truncate the frequency components of the
interferences, we would introduce the output of the FFT to the input of IFFP. It
may open the door to implement “FFT system in FPGA” without interaction of PS
(software),

ACRONYMS 59

ACRONYMS

ADC Analog to digital converter
AMBA Advanced Microcontroller Bus Architecture
APU Application Processing Unit
AXI Advanced eXtensible Interface
CLB Configurable logic blocks
CPU Central Processing Unit
DAC Analog converter
DC Direct Current
DFT Discrete Fourier Transformation
DMA Direct Memory Access
DRAM Direct Random Access Memory
DSP Digital signal processing
EMIO Extended-MIO
FF Flip-Flops
FFT Fast Fourier Transform
FPGA Programmable Gate of Array
FSBL First Stage Bootloader
HDF Hardware Description File
HLS High-Level Synthesis
IP Intellectual Property
I/O Input/Output
LUT Look-up Table
M2M Memory-to-Memory
MM2S Memory-to-Stream
MSPS Mega sample per second
OS Operation system
PCB Printed Circuit Board
PL Programmable logic
PMOD Peripheral Module Interface
PS Processing system
PWM Phase Wide Modulation
RAM Random Access Memory
ROM Read-only Memory
S2MM Stream-to-Memory
SDK System Development Kit
SNR Signal-to-Noise Ratio
SoC System on Chip
SPI Serial Peripheral Interface
SRST System Reset
UART Universal Asynchronous Receiver/Transmitter
UAV Unmanned Air Vehicle

60 Contribution to the development of microwave remote sensing for UAV systems.

REFERENCES

[1] M. Jou Barrancos, “Development and testing of processing software for
an airborne soil moisture mapper,” Barcelona, Spain, 2018.

[2] A. Jamal Rashed Daoud, “Implementation of interference mitigation
techniques for L-band radiometers on-board Unmanned Aerial Systems,”
Barcelona, 2020.

[3] J. G. M. D. G. Proakis, Digital Signal Processing: Principles, Algorithms
and Applications. (Fourth Edition), New Jersey, 2007.

[4] D. D. f. O. R. H. P. D. U. V.-4. FPGAs, 2005. [Online]. Available:
https://www.xilinx.com/publications/archives/books/dsp.pdf.

[5] S. M. L. B. H. T. W. Kuo, Real Time Digital Signal Processing (Second
Edition), West Sussex, 2006.

[6] R. M. J. L. G. Y. Y. Woods, FPGA-based Implementation of Signal
Processing Systems (Second Edition), United Kingdom, 2017.

[7] “www.nti-audio.com,” [Online]. Available: https://www.nti-
audio.com/es/servicio/conocimientos/transformacion-rapida-de-fourier-fft.
[Accessed 01 07 2022].

[8] realpars, “www.realpars.com,” [Online]. Available:
https://realpars.com/pid-
tuning/#:~:text=In%20the%20most%20simplistic%20terms,direct%20actin
g%2C%20as%20discussed%20previously..

[9] XILINX, “Vivado Design Suite User Guide,” 202.

[10] K. D. Team, “www.kicad.org,” 2021. [Online]. Available:
https://www.kicad.org/about/kicad/.

[11] XILINX, “Zynq-7000 SoC Data Sheet,” XILINX, 2018.

[12] Digilent, “Digilent,” Digilent, [Online]. Available:
https://digilent.com/reference/programmable-logic/arty-z7/reference-
manual.

[13] XILINX, LogiCORE IP AXI XADC v1.00a Product Guide, 2012.

[14] XILINX, “AXI Interconnect (v1.06.a),” XILINX, 2012.

[15] ST, “STM32F103x8 datasheet,” ST, 2022.

[16] R. Sole, “hardwaresfera.com,” 11 July 2020. [Online]. Available:
https://hardwaresfera.com/en/articulos/que-es-celula-peltier/.

[17] XILINX, “Fast Fourier Transform v9.1 LogiCORE IP Product Guide,” 4
May 2022. [Online]. Available: https://docs.xilinx.com/viewer/book-
attachment/jKn_d6EeSeSm4b25FBbCOA/KtJ2q9rEZvP4hqj3BbbU_Q.

ANNEX I. OVERALL HARDWARE SCHEMATIC OF FFT SYSTEM IN FPGA 61

ANNEX I. OVERALL HARDWARE SCHEMATIC OF FFT
SYSTEM IN FPGA

Figure I.1 Overall hardware schematic of FFT system in FPGA (More
Visible)

62 Contribution to the development of microwave remote sensing for UAV systems.

ANNEX II. OVERALL HARDWARE SCHEMATIC OF
THERMAL CONTROL

Figure I.2 Overall hardware schematic of Thermal control (Part 1

ANNEX II. OVERALL HARDWARE SCHEMATIC OF THERMAL CONTROL 63

Figure I.3 Overall hardware schematic of Thermal control (Part 2)

64 Contribution to the development of microwave remote sensing for UAV systems.

Figure I.4 Overall hardware schematic of Thermal control (Part 3)

	INTRODUCTION
	CHAPTER 1 THEORETICAL BACKGROUND
	1.1 Digital signal processing
	1.2 Sampling Process
	1.3 Digital Filtering
	1.4 FFT system in FPGA
	1.5 PID controller

	CHAPTER 2 HARDWARE AND SOFTWARE PLATFORM
	2.1 Initial Consideration and Platform Selection
	2.1.1 Hardware selection of FFT system in FPGA
	2.1.2 Hardware selection of Thermal Control
	2.1.3 Software selection of FFT system in FPGA
	2.1.4 Software selection of Thermal Control

	2.2 Hardware Platform Description
	2.2.1 Hardware Platform Description of FFT system in FPGA
	2.2.1.1 XILINX’s Arty Z7 20 evaluation board
	2.2.1.2 Zynq 7000 processor
	2.2.1.3 DMA IP of Zynq 7000
	2.2.1.4 FFT IP of Zynq 7000
	2.2.1.5 XADC IP of Zynq 7000
	2.2.1.5.1 Unipolar mode of XADC
	2.2.1.5.2 Bipolar mode of XADC

	2.2.1.6 Interconnect IP of Zynq 7000 processor
	One or more AXI memory-mapped Master devices and one or more memory-mapped Slave devices are connected by this IP in general. The AXI interfaces are compatible with the AXI4-Lite control register connection subset of the ARM AMBA AXI version 4 specifi...

	2.2.2 Hardware Platform Description of Thermal Control
	2.2.2.1 Microcontroller
	2.2.2.2 ADC
	An ADC's signal-to-noise ratio (SNR) and bandwidth serve as general indicators of its performance. An ADC's sampling rate essentially determines its bandwidth. An ADC's SNR is affected by the resolution, linearity, accuracy (how closely the quantizati...
	2.2.2.3 Bridge driver
	2.2.2.4 Peltier cell

	CHAPTER 3 SYSTEM DESIGN
	3.1 Overall design flow of FFT implementation
	3.1.1 Functionality testing and configuration verification of used IPs
	3.1.1.1 Understanding and testing DMA IP
	3.1.1.2 Understanding and testing FFT IP
	3.1.1.3 Understanding and testing XADC IP
	3.1.1.4 Booting Zynq processor using PetaLinux operation system and installing costume application on PetaLinux.

	3.1.2 Implementation of FFT system in FPGA
	3.1.2.1 Hardware implementation of FFT system in FPGA
	3.1.2.2 Software implementation of FFT system in FPGA

	3.2 Overall design flow of “Thermal control” implementation
	3.2.1 Implementation of “Thermal control”
	3.2.1.1 Hardware implementation of “Thermal control”
	3.2.1.2 Software implementation of “Thermal control”

	CHAPTER 4 RESULTS
	4.1 Results of FFT system in FPGA
	4.2 Results of Thermal control

	CONCLUSIONS
	ACRONYMS
	REFERENCES
	ANNEX I. OVERALL HARDWARE SCHEMATIC OF FFT SYSTEM IN FPGA
	ANNEX II. OVERALL HARDWARE SCHEMATIC OF THERMAL CONTROL

