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Abstract 
 

Current telecommunication systems have transitioned from analogical systems 
to digital ones. Such transformation has been enabled by the use of Software 
Defined Radios (SDR). Nowadays, such change is moving to the Remote 
Sensing applications. 
 
This Master thesis has been developed within the industrial framework of the 
company Microwave Sensors and Electronics Ltd, known by its trademark 
"Balamis". 
 
Balamis develops microwave sensors. In particular: L-band radiometers and 
multi-frequency radars. Following the telecommunication trend, the Company 
is currently implementing its new systems based on Software Defined Radios 
with the objective to provide remote sensing data. 
 
The use of Software Defined Radio technology on-board an L-band radiometer 
allows the detection of the interferences. Previous Balamis internal works 
partially funded by CDTI (part of the Ministry of Industry) showed how drone 
electronics create interferences that mask L-band radiometry measurements. 
Consequently, a contribution towards the detection of the interferences that 
affect the L-band radiometry measurements is the first objective of this Master 
Thesis: Designing and implementing a “FFT system in FPGA” using the most 
recent architecture of XILINX 7-series FPGA. Digilent’s Arty z7 evaluation 
board, its XILINX’s previously generated in-system peripherals, such as FFT, 
DMA, XADC Intellectual Property (IP) cores, and Zynq processing system are 
used for the development. In the software development, bare-metal C and 
PetaLinux embedded operating system are used. 
 
The second objective of this Master Thesis is the temperature stabilization with 
“Thermal control”. FPGA-based systems like SDRs tend to have a high power 
consumption which has to be dissipated. However, temperature stability is a 
requirement beyond the cooling need of the FPGAs. L-band radiometer 
accuracy depends on the thermal stability of the system itself. Consequently, a 
“thermal control system” has been developed as the second part of this thesis. 
The thermal control is developed using a microcontroller (STM32), ADC, H-
bridge driver for controlling Peltier cell. 
 
The report starts with technical characteristics, descriptions and configurations 
of in-system or physical components used for both implementations. Then 
followed by some explanation of software. Methodologies of designing the 
systems are described in the Chapter 3 with all the steps walked through for 
the system design. At the end, before the conclusion, the result of whole project 
is illustrated. 
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INTRODUCTION 
 
 
Microwave technology is very sensitive to Radio Frequency Interferences (RFI). 
Works previously done within this Master by Marc Jou [1] showed the 
impossibility to retrieve measurements using L-band radiometers on-board 
drones. After detecting such issue, Balamis first tried to solve it by hardware: a 
new antenna design and the extensive use of shielding on the drone were tried 
without success. 
 
Balamis started the development of its first digital radiometer based on the use 
of Software Defined Radio architecture on 2017, partially funded with the support 
of CDTI. The resulting minimum viable digital radiometer was ready by June 
2019, but it did not include any RFI mitigation capability. Developments done my 
Master student Ahmad Daoud [2] demonstrated the identification of RFI using 
Fast Fourier Transform (FFT) over RAW data but could not provide any efficient 
implementation of its mitigation on-board the L-band radiometer. 
 
The proposed solution is the implementation of the FFT and the RFI filters using 
Field Programmable Gate of Array (FPGA) for the input signals, and its 
concurrent performance. Filtering an analog signal by introducing in-system FFT 
of ZYNQ7000 FPGA is implemented in this project. 
 
Additionally, the power consumption of FPGA, and the need to dissipate it, forces 
the development of a temperature control system with cooling capabilities. It is 
done to improve the previous heating-only thermal control of Balamis radiometer. 
Such more advanced thermal control will be also used for the Interferometric 
Ground-based Synthetic Aperture Radar that Balamis is developing. 
 
Solving these two goals are therefore the purpose of this Master Thesis. 
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CHAPTER 1 THEORETICAL  BACKGROUND 
 

1.1 Digital signal processing 

 
Filtering, convolution, correlation, and Fourier transforms are examples of Digital 
Signal Processing (DSP) operations. These operations necessitate addition and 
multiplication, so the unit know as a multiply-accumulate (MAC) must be included 
in DSP processing system. DSP processors are used for running DSP 
applications. In the DSP processors, multiplying and summing are performed one 
after another. A DSP processing unit can only accomplish an only one 
summation-multiplication operation in a one cycle when digital filters are used 
in filtering. Consequently, the output of each filter is performed in a one cycle, but 
more iterations are needed to implement the filter specific requirements in a 
higher order filter. 
 
FPGAs’ parallel processing and multi-threading are well-known. The 
summing and multiplying processes run parallel in FPGAs. In contrast to DSP 
processing units, an FPGA can execute numerous such operations in a single 
cycle. FPGAs thus require fewer iterations than DSP processors. 
 
As application demand grows, so does algorithmic complexity. To implement 
these new algorithms, signal processing system with hight efficiency is 
necessitated. Traditional DSP processors with fixed hardware platforms could 
really keep up. As a result, as algorithmic intensity increases, so does the deficit 
[3]. The difference between a formal DSP processing unit implementation and an 
FPGA integration is visualized in Fig 1.1. 
 
 

 

Figure 1.1 Conventional DSP and FPGA 
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For a variety of reasons, FPGAs are well appropriate to filling this technology gap. 
These chips provide incredibly high signal processing capacity, thanks to their 
parallel processing.  
 

• Because of the flexible architecture, they ensure very low risk. 

• They allow for design transition in order to accommodate modifying norms. 

• Engineers can use FPGAs to create a unique and customized 
technical solution. 

• They are reasonably priced. 

• They have a low power to function ratio [4]. 
 

A DSP or FPGA manages computational models in accordance with the digital 
filter of a system. The filter which takes digital inputs and produces digital outputs 
is a digital filter. During filtering, a DSP unit or a FPGA retrieves a sampled analog 
signal from an analog to digital converter (ADC), completes computational 
operation based on the filtering form, and outputs to a digital to analog converter 
(DAC). 

1.2 Sampling Process  

 
Analog-to-digital conversion, also known as digitization of analog signals, 
consists of sampling which is time digitization and quantization which 
is digitization in magnitude. An analog signal is represented as a series of values 
by the sampling component. This procedure is carried out with the help of a 
"sample-and-hold" circuit, which keeps the sampled value of the signal until the 
next sample [5]. A fundamental DSP procedure is shown in Figure 1.2. 

 

Figure 1.2 Basic DSP operation 

 
The analog to digital conversion is performed in the following manner: the analog 
input signal is sampled by the ADC in uniformly pierced samples. In this way, an 
analog signal is transformed into a discrete time signal. 
 

𝑥[𝑛] = 𝑥(𝑛𝑇)              − ∞ < 𝑛 < ∞       (1.1) 

where 𝑇 is the sampling time and 𝑛 is a positive integer.  
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Every quantized 2𝑘 level belongs to one sample's magnitude, where 𝑘 is the 
number of bits of ADC. These samples are also binary encoded. An ADC is 
similar to a switch that is opened and closed in every T seconds. As a result, the 
sampling frequency is represented as follows: 

𝑓𝑠 =
1

𝑇
                           (1.2) 

where 𝑓𝑠  is in hertz. At discrete time nT, being n = 0,1,2,..., the discrete-time 
signal 𝑥(𝑛𝑇) can be represented by a positive integer [1]. This is depicted in 
Figure 1.3. 

 

 

Figure 1.3 Analog signal sampling 

 

To define precisely an analog signal 𝑥(𝑡) as a discrete-time signal 𝑥(𝑛𝑇), the 
sampling frequency 𝑓𝑠 must be at least twice as large as the frequency part of the 

analog signal 𝑓𝑀. It is written as follows: 

 

𝑓𝑠 ≥ 2𝑓𝑀                    (1.3) 

 

Where 𝑓𝑀 is usually referred to it as the "Nyquist frequency," and 2𝑓𝑀, that must 
be exceeded by the sampling frequency, is referred to as the "Nyquist rate" [2]. 

 

∆=
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2𝑏−1
                (1.4) 
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where 𝑥 represents the input signal and 𝑏 stands for the number of bits that reflect 

the signal.  ∆ recognizes the quantizer phase size specified by an ADC [3]. 

According to Equation 1.4, increasing the number of bits results in a significant 
improvement in signal resolution. An analog amplitude of 1V can represent this 
situation. There are only sixteen steps to indicate that 1V if a four-bit digital signal 
is utilized to depict it. Steps are fitted, however, if the analog signal is defined by 
a 24-bit digital signal. If the quantization is homogeneous, every step has such a 
fitted size, and one step equals: 

1𝑣

224−1
= 0.0596𝜇𝑉                (1.5) 

In case of digital signal with 4-bit is used, then every quantization is: 

1𝑣

24−1
= 125𝑚𝑉               (1.6) 

1.3 Digital Filtering  

Digital filtering is accomplished through the application of mathematical 
operations to sampled data (digitized data). Electronic circuits are used to 
perform filtering operations for analog filtering. Coefficients are used to perform 
digital filtering on sampled signals [6]. There are numerous filters, but in this 
thesis, one of the digital filters known as the FFT system in FPGA is used. 

1.4 FFT system in FPGA 

 
In the field of DSP, the "Fast Fourier Transform" (FFT) is a major method of 
measurement. It decomposes a signal into individual spectral information and 
provides frequency components of the signal as a result. FFTs are used in 
machine or system for specific purposes, such as fault analysis, quality control, 
and condition monitoring.  
 

 

Figure 1.4 Signal components in the time and frequency domain [7] 

 
In its most basic form, The FFT itself is the popular algorithm for accomplishing 
the "Discrete Fourier Transformation" (DFT). Over time, a signal is processed and 
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sampled, and its frequency components are separated. These elements are 
single sine wave with distinct frequencies and amplitudes and phases. This 
transformation is depicted in the Figure 1.4 above. In the example, the signal 
contains three distinct dominant frequencies over the measured time period.  
 
These spikes in the figure are belonged to useful frequency components of the 
original signal whereas the smaller spikes are of noise. Based on this 
characteristic, unwanted noise elements of the signal can be eliminated by setting 
a threshold relative to the amplitude of frequency components. 

1.5 PID controller 

 

Figure 1.5 Block diagram of PID controller 

 
The controller determines the P, I, and D actions and multiplies each parameter 
by the error, or E, which is equal to 
 

𝐸 = 𝑆𝑉 − 𝑃𝑉         (1.6) 
 
Where, SV - Set Variable, PV – Process. The Control Variable (CV) is then 
created by adding the results of all parameter calculations. In Figure 1.5:  
 
P: The proportional gain, not a quantity but rather a "ratio", is the phrase 
"proportional" which is also called the "P" Constant. The parameter is also known 
as 𝐾𝑝, Gain. This parameter controls how quickly the system reacts. A higher 

setting for this tuning parameter may result in more sensitive, less stable loops 
for controllers which use the term "Gain." Conversely, lowering this tuning 
parameter has the same effect on the loop on controllers with proportional band 
units [8]. 
 
I: The integral term, sometimes known as the "I" Constant or "Reset," can also 
have varied measurements. 𝐾𝑖 is another name for this parameter. This variable 
controls how quickly the steady state error is eliminated [8]. 
 
"D" or derivative the usual constant units are seconds or minutes. Predicting 
change is the goal of the "Derivative" constant. The Process Variable's rate of 
change is acted upon by the Derivative action. How far into the future you want 
to estimate the pace of change is essentially indicated by the value of this 
parameter. This setting can aid in making the loop operate better and respond 
more quickly [8]. 
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CHAPTER 2 HARDWARE AND SOFTWARE PLATFORM 
 

2.1 Initial Consideration and Platform Selection 

2.1.1 Hardware selection of FFT system in FPGA 

 
In both situations, studying for or working with FPGAs, it is always critical to select 
correct chip or evaluation board for one’s desired implementation. FPGA itself 
allows number of possibilities to design “In-system design” for engineers and 
scientists because of its adaptive logic modules (ALMs) and logic elements (LEs) 
which are connected with each other through programmable interconnects.  
 
In our case, a system for implementing the Fast Fourier Transformation (FFT) 
based filtering in Digital Signal Processing (DSP) domain has to be developed. 
The system also must include an access for Direct Random Access Memory 
(DRAM) to be able to write and read the results. I choose an evaluation board of 
XILINX’s FPGA, “Arty Z7-20” with Zynq 7000 processor and external DDR3. The 
reasons why I choose Arty Z7 are follows. 
 

• The FPGA in Arty Z7 board is big enough for large projects 

• It features enough built-in peripherals, including FFT IP and XADC for 
signal processing, USB for a webcam and HDMI input and output. 

• Sufficient I/O headers and Peripheral Module Interface (PMOD) 

2.1.2 Hardware selection of Thermal Control 

 
To implement any system which controls devices (such as motors or Peltier cells, 
a thermal sensor, an ADC, a driver) and a control unit are needed. In our case, I 
have chosen a microcontroller STM32 by STMicrocontrollers as my control unit. 
There are many other options for the microcontroller, such as AVR series by 
Atmel, Nios series by Altera and MSC series by Intel so on.  

2.1.3 Software selection of FFT system in FPGA 

 
Since FPGA developed by XILINX is used in this project, it is easy and straight 
forward to select VIVADO as my FPGA development environment and XILINX 
SDK as a software development environment. In fact, according to the 
recommendation by XILINX where they suggest that Ubuntu Linux 16.04.5, 
16.04.6, 18.04.1, 18.04.2, 18.04.3, and 18.04.4 LTS (64-bit) versions are 
compatible with VIVADO tool [8]. I used VIVADO in Ubuntu 18.04 which is 5 years 
old open-source software and has less bugs to implement FPGA designs.  
 
The Logic Analyzer (a piece of tool that records and shows numerous signals 
from a given circuit or system) and High-Level Synthesis (HLS) (a piece of 
software that converts high-level C code into Verilog logic gates. It enables users 
to create hardware accelerators for sophisticated ML algorithms on FPGA even 
if they are not knowledgeable with logic design) features of VIVADO are now 
available for everyone to access for all WebPACK targets (a bunch of software 
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for a specific environment), including the Arty Z7, start from VIVADO 
2015.4 release [8]. The Logic Analyzer assistance in logic debugging, and a C 
code can be compiled directly into HDL by the HLS tool. Arty Z7 follows suitability 
for embedded Linux systems as any Zynq platform does. Digilent offers a 
PetaLinux OS (Embedded Linux operation system) platform to support users for 
use of Linux OS in their system directly [8]. 
 
As a specification of the project, the output of FFT must be stored in any kind of 
storages such as a SD card. By doing so, these outputs would be available for 
further signal processing, like filtering. To fulfil this specification, an embedded 
operation system PetaLinux is chosen because one can develop stand-alone 
applications for certain system and can use numerous libraries to compile or build 
these applications. Alongside the reason mentioned above, thanks to the drivers 
of XILINX’s IP block for PetaLinux, it makes engineers’ life easier to work with the 
IP blocks. 

2.1.4 Software selection of Thermal Control 

 
In the field of designing the PCBs, there are plenty of choices available as 
software including Altium, KiCAD, EasyEDA, Proteus and so on. Among them, I 
have chosen KiCAD software by Jean-Pierre Charras to design my PCB layout 
design of “Thermal Control” because it open source, used as professionally and 
its output is accepted by PCB manufacturers [9]. To write a program for 
controlling the whole system, Microsoft Visual Studio with PlatformIO IDE is used. 
 

2.2 Hardware Platform Description 

2.2.1 Hardware Platform Description of FFT system in FPGA 

 
As specification of the project, the FPGA technology has to be utilized in this 
project. There are plenty of supplier of FPGA, such as XILINX Inc, Altera 
Corporation, Lattice Semiconductor, Achronix, QuickLogic Corporation, 
Microchip Technology and Microsemi Corporation. The FPGA of XILINX Inc 
(XILINX) is chosen because this company provides plenty of supporting 
materials, like datasheets and instructions for each IP, to its users.  

2.2.1.1 XILINX’s Arty Z7 20 evaluation board 

 
The Arty Z7 is an evaluation platform that is ready to use and is based on Xilinx's 
Zynq-7000 All Programmable System-on-Chip (AP SoC). The Zynq-7000 
incudes XILINX's 7-series FPGA logic and a dual-core ARM Cortex-A9 
processing system which is running at 650 MHz. This combination enables one 
to cover a complex multifunctional processing system with a customized set of 
softly pre-designed peripherals and processing system for the desired application 
[10]. 
 
The toolsets, such as Vivado, Petalinux and SDSoC, offer a straightforward 
way between defining one’s custom peripheral set and bringing its functions and 
features are limited to the Linux OS or processor's bare-metal platform. For 
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designers who is looking for an engineering experience of a more classical logic 
gate design, the ARM processors can be ignored, and the Zynq's FPGA can be 
programmed in the same way just like any other Xilinx FPGA. Variety of 
documentations and datasheet of the Arty Z7 that really can be handy to play with 
the toolkit are provided by Digilent. 
 
The Arty Z7 is fully compatible with the Vivado Design Suite from Xilinx. This 
toolset integrates FPGA logic circuit design and integrated ARM processor 
programming into a simple, user-friendly design process. It is being used to 
implement solutions for any complex system, from an entire operating system 
running multiple applications at the same time to a simple bare-metal C 
code controlling some inputs or outputs. 
 
To those who don't want to use the ARM processor in their target system, FPGA 
part of Zynq, without the processor, can be used for standalone FPGA system.  
 

 

Figure 2.1 Arty z7 evaluation board (top) 

 
In figure 2.1, 1 – Zync 7000, 2 – External DDR, 3 – JP4 (Booting option), 4 – 
PMOD header, 5 – Arduino extension connector. 
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Figure 2.2 Arty z7 evaluation board (bottom) 

 
In Figure 2.2, 1- SD card holder. 
There are two main subsystems in the Zynq APSoC which are The Processing 
System (PS) and the Programmable Logic (PL). The overall picture of the Zynq 
APSoC architecture is illustrated in Figure 2.3 where the PS is highlighted in light 
green and the PL is highlighted in yellow [11]. 
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Figure 2.3 Block diagram of Zynq APSoC [11] 

 
The PL is remarkably similar to a Xilinx 7-series Artix FPGA, with the exception 
of a few specialized pins and buses connect PL to the PS. The PL lacks the same 
settings for the hardware which a typical 7-series FPGA includes, and one 
can configure them by using the ARM processor or with its JTAG port. 
 
The PS is made up of several devices, such as the Application Processing Unit 
(APU) with two Cortex-A9 processors, the Advanced Microcontroller Bus 
Architecture (AMBA) Interconnect, the DDR3 Memory Controller, and numerous 
peripheral controlling units, (known as Multiplexed I/O, or MIO 54 pins). 
Peripheral controlling units with inputs and outputs that are not connected to MIO 
pins can route their I/O via the PL using the Extended-MIO (EMIO) interface [11]. 
 
The controllers of peripheral are slaves to the PS through the Interconnect IPs 
and include accessible control registers that can be found in the PL’s memory. 
The PL must be hooked up as a slave to the interconnect, and the designer can 
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use the FPGA fabric for implementing multiple cores, each with addressable 
control registers. In addition, interrupts can be sent by cores implemented in the 
PL to processors. This is how DMA completes the access to DDR3 memory. 
 
Both of the USB port, what we call JTAG and another kind of powering, such as 
an external battery or a power adapter, can power the Arty Z7. The power source 
is determined by jumper JP5 (located near the power switch). According to the 
specifications, a USB 2.0 port can power it at a maximum current of 0.5A. This 
can be sufficient for simpler designs or applications. Some applications, such as 
those that requires number of peripheral systems or other additional USB 
devices, may necessitate more powerful course than the one delivered by the 
USB port. Power consumption will rise in this case until limitation of the USB host. 
This limit varies significantly between chip makers and is determined by a number 
of factors. When the current limit is reached, or when the voltage rails drop below 
their nominal value, Power-on Reset signal forces Zynq to reset, and power 
consumption to inactive. Furthermore, in some systems, it is required 
operating without having connection of a USB port of a control PC. In these 
situations, an external power source can be used, such as a battery. 
 
APSoC devices, unlike Xilinx FPGA devices, are developed with a use of the PL, 
which serves as a master port to the PL fabric and to all those other types of on-
chip devices, such as DMA IP, FFT IP, ADC IP .. etc, in the FPGA. As a result, 
the boot process of  Zynq can be seen it as a microcontroller rather than an 
FPGA. The PL loads and executes a Zynq Boot (file) Image, which contains a 
First Stage Bootloader (FSBL), a configuration for the PL, known as a bitstream, 
and a custom application. There are three stages the booting process is divided: 
 
Stage 1: When the Arty Z7 is powered on or the Zynq is reset (such as through 
software or the reset button, SRST), one of its processor cores, such as CPU0, 
begins executing an inner part of read-only predesigned software known as the 
BootROM. If the Zynq is only recently turned on, the BootROM initially loads the 
states of mode pin in terms of the mode register. In eather case, the BootROM is 
being operated as a result of a reset event mode or the mode pins are still not 
asserted, and the previous state of the mode register is used. This implies that 
any change in the jumper (which changes programming mode) requires a power 
cycle to be registered by the Arty Z7. 
 
Stage 2: The FSBL first completes configuring the PS settings, like the control of 
DDR, during this stage. The bitstream is then read and used to configure the PL 
if it is present in the Zynq Boot Image. Finally, the Zynq Boot Image is used to 
load the user application into memory, and execution is passed to it. 
 
Vivado and the Xilinx Software Development Kit are used to create the Zynq Boot 
Image (Xilinx SDK). We will discuss little bit about this process in the following 
chapters.  The Arty Z7 supports three different boot modes: microSD, Quad SPI 
Flash, and JTAG. After powering on, the Mode jumper (JP4) is used to select the 
boot mode, that also modify the condition of the Zynq settings pins. 
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Stage 3: The accomplishment of the FSBL-loaded software application is the final 
stage. This could range from a "Hello World" application to a Second Stage Boot 
loader used for booting an OS, like Linux [5]. 
 

2.2.1.2 Zynq 7000 processor 

 
The digital revolution now allows inventors to sum up different system 
components into extremely small devices, furthermore into a single complex chip, 
introducing the new concept namely System-on-Chip (SoC) to the field of 
electronics. Because of usage of XILINX's FPGA in this project, Zynq-7000 is 
explained as an instance of a SoC. It incorporates number of on-chip devices, 
such as two hard PSs, PL, numerous peripherals like ADC block or FFT block 
into a single silicon chip. 
 
Prior to the discovery of the Zynq, PSs were accompanied with a FPGA, that had 
complicated interaction between the PL and the PS. The newer model of Xilix's 
all-programmable System-on-Chip (SoC) families, the Zynq architecture, merges 
a dual-core ARM Cortex-A9 processor with a traditional FPGA [10]. The 
Advanced eXtensible Interface (AXI) standard-based interface is responsible for 
communication be between the various elements, such as ADC, DAC, DMA IP, 
in Zynq-7000. This interface allows for high bandwidth and low latency 
connections. 
 
Users were previously utilizing a soft-core processor, like XILINX's Microblaze 
before developing the ARM processor inside the Zynq device. The flexibility of 
cpu cores instances inside a layout was and continues to be the primary benefit 
of Microblaze. In Zynq, however, the addition of a hard processor results in 
greater improvements in performance. Moreover, by minimizing the system to a 
single chip, the total cost and physical dimensions of the device are reduced. 
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Figure 2.4 Structure of the APU 

 
The APU has two ARM cortex-A9 processor units, each of them consists of a 
NEON unit, a floating-point unit (FPU), a memory management unit (MMU), and 
L1 caches. Snoop control and L2 caches are also included in the APU. Figure 
2.4 depicts the structure of the APU [10]. 
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Figure 2.5 Zync-700 device Application Processing Unit (APU) 

 

• NEON: This unit supports Single Instruction Multiple Data (SIMD), one that 
dramatically enhances DSP and media computational methods on the 
main ARM processor.  

• FPU: This unit gives floating point operation acceleration. 

• Level 1 cache: For storing instructions and data, each processor has its 
own instruction and data caches. 

• MMU: It translates data from virtual memory addresses to physical 
memory addresses. 

• Snoop Control Unit (SCU): One of the SCU's primary functions is to 
interface between processors, L1 and L2 caches. 

• L2 cache: This cache is shared by the processor cores and allows them to 
access the most current variable update. 

 
The Zynq SoC's programmable logic, like that of other FPGAs, is formed of 
configurable logic blocks (CLBs) with 2 slices. Four look-up tables (LUTs), eight 
flip-flops (FFs), and a switch matrix are included in each slice. There are also 
Block RAMs and DSP slices. The PL structure is depicted in Figure 2.6. 
 

• Slice: The resources used to build the combinatorial and sequential 
circuits are divided into individual slices. 

• Look-up Table (LUT): LUTs are used in RAM, ROM, or shift registers to 
implement a logical design with up to six inputs. 

• Flip-flop (FF): A 1-bit register with reset feature is implemented using this 
sequenced component. 

• Switch Matrix: It links the different components within and between the 
CLBs as well as other components of the PL. 



22                                                           Contribution to the development of microwave remote sensing for UAV systems. 

 

Figure 2.6 Structure of Programmable Logic [10] 

 
The Zynq designing method is equivalent to that of a classic FPGA. Specifying 
the needs and requirements for the system is the first step. During the system 
design phase, a process called task partitioning assigns the various tasks 
(functions) to be implemented in either a PL or PS. This stage is very important. 
Because of that, missions are delegated for implementation in the most 
appropriate technique: hardware or software, will determine the desired system's 
performance. 
 
Following that, testing, and evaluation of hardware in PL and software in PS must 
be completed. The task for the PL is to choose or decide the functional blocks 
needed to accomplish the design features, and perhaps to consolidate them as 
IPs and hook up them suitably. Likewise, the software activity entails writing lines 
of code that will be executed by the PS. As a consequence, both the wares are 
merged, and testing will be required to finish the design. Figure 2.7 depicts the 
Zynq SoC design flow. 

 

Figure 2.7 Zynq Design Flow 
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2.2.1.3 DMA IP of Zynq 7000 

 
In fact, the Zynq processing system contains its own DMA channels. But these 
DMA channels are only for memory-to-memory (M2M) transfers and not for 
stream-to-memory (S2MM) or memory-to-stream transfers (MM2S). Therefore, it 
is obvious that if one wants to perform the memory-to-memory transfers, 
the peripherals must already have a DMA capable interface as Zynq has DMA 
channels. 
 
The M2M transfers (read or write) data between memory locations. The S2MM 
transfers take a serial streaming data then sends it to a specific memory location. 
The MM2S transfers read data from memory and convert it to a serial format. The 
AXI DMA IP block enables any peripheral with an AXI stream interface, such as 
FFT IP, to access the system's main memory via S2MM or MM2S transfers. For 
FPGA developers, DMA IP is used more often for S2MM/MM2S transfers, so 
I'm using the AXI DMA IP for this project. 

2.2.1.4 FFT IP of Zynq 7000 

 
The most popular and efficient computational algorithm for computing the 
Discrete Fourier Transform (DFT) of a sequence is the Fast Fourier Transform 
(FFT). The FFT is a powerful tool for analysing and designing a signal in digital 
signal processing domain. The FFT is, in general, a widely used transform in a 
variety of digital signal processing applications. 
 
A hardware implementation of FFT can be difficult due to its complex algorithm. 
As a result, customizable FFT IP cores have been created by various FPGA 
vendors. These IPs can be introduced to a system design with a few clicks. 
However, before using such IP cores with confidence, the designer must first 
understand some relevant information about the FFT's hardware implementation 
in a system design. There are numerous FFT IP cores available by vendors such 
as Intel, Lattice Semiconductor, and Dillon Engineering. Since I am using 
XILINX's FPGA, it is obvious to take a look at Xilinx's FFT IP core in this projec. 

2.2.1.5 XADC IP of Zynq 7000 

 
A dual 12-bit ADC with 1 Mega sample per second (MSPS) and on-chip sensors, 
such as internal temperature are included in the Xilinx analog-to-digital converter 
(XADC). This ADC is designed for general-purpose, high-precision applications 
[12]. Figure 2.8 depicts the XADC block diagram. 
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Figure 2.8 XADC block diagram [12] 

 

2.2.1.5.1 Unipolar mode of XADC 

The analog signal's amplitude range in this mode is 0-1 V. When you apply 0 V 
to the XADC, it outputs "000h," and when you apply 1 V to the input, it outputs 
"FFFh" [12]. Figure 2.9 depicts the transfer function for unipolar mode, whereas 
Figure 2.10 depicts the unipolar input amplitude range. 

 

Figure 2.9 Transfer function for unipolar mode [12] 
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Figure 2.10  Unipolar input range [12]  

2.2.1.5.2 Bipolar mode of XADC 

 
The input amplitude range of the analog signal in this mode is between -0.5V and 
+0.5V. In fact, this mode may be helpful for learning more about the analog input 
signal while analyzing differential signal types. 0 V is the same as "000h." The 
value "800h" is assigned when the input voltage is -0.5 V. The input is identified 
as "7FFh" when 0.5 V is applied. As may be observed, the comparative Vn and 
Vp are shown using the complementary of two [12]. Figure 2.12 shows the bipolar 
transfer function, while Figure 2.13 shows the bipolar input amplitude range. 
 

 

Figure 2.11 Transfer function for bipolar mode [12]  
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Figure 2.12 Bipolar input range [12] 

 

2.2.1.6 Interconnect IP of Zynq 7000 processor 

One or more AXI memory-mapped Master devices and one or more memory-
mapped Slave devices are connected by this IP in general. The AXI interfaces 
are compatible with the AXI4-Lite control register connection subset of the ARM 
AMBA AXI version 4 specifications. AXI4-Stream transfers are not supported by 
the Interconnect IP; only memory-mapped transfers are intended. The AXI 
Interconnect IP can be utilized as a core from the Embedded Development 
ToolKit (EDK) or as a standalone IP from the CORE Generator TM IP catalog 
included in the Vivado IP catalogue [13]. 

2.2.2 Hardware Platform Description of Thermal Control 

2.2.2.1 Microcontroller 

 
A microcontroller (MCU) is a microchip that is embedded in the majority of 
electronic home appliances that people use every day. In an embedded system, 
it is a small integrated controller that handles a specific operation. A typical 
microcontroller is a single chip with a processor, memory, and I/O peripherals. A 
microchip contains timers, communication interfaces, digital and analog I/O pins, 
as well as timers and analog I/O pins. A processor is in charge of organizing 
instructions and arranging input/output. The manufacturer has defined the 
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inclusive input/output devices and hardware performance. The basic layout of a 
microcontroller is as follows. 
 

 

Figure 2.13 A microcontroller's basic layout 

 
As part of the master’s thesis, for the thermal control system, STM32 MIU has 
been chosen due to its characteristics and availability of developing the system 
in future work. 
 
ARM Cortex-M processor based STM32 MCUs are manufactured by 
STMicroelectronics. The 32-bit RISC ARM processor cores are intended for low-
cost, low-power microcontrollers. 
The RISC ARM (Reduced Instruction Set Computer) instruction set divides 
commands into simple and straightforward instructions designed to achieve 
specific goals. The STM32 family includes many devices that combine: 
 

• Complete integration 

• • The large environment and professional design tools, including free ones, 
make development easier. 

• For some families, extremely high performance is provided by the Arm 
Cortex-M core and the ST ART AcceleratorTM. 

• Capabilities in real time. 

• Processing of digital signals. 

• Low-voltage and low-power operation Connectivity. 

• Graphical elements [14]. 
 
Practically, STM32 microcontroller can used in many fields. Such as: 
 

• Control systems for industry 

• Human-machine interface devices 

• Metering in the cloud 

• Motor control 



28                                                           Contribution to the development of microwave remote sensing for UAV systems. 

• Medical equipment 

• Security and buildings (alarms, access control, etc.) 

• Consumer goods (PC peripherals, GPS, gaming, etc.) 

• The Internet of Things (IoT) [14] 

2.2.2.2 ADC 

 
An ADC converts a continuous analog signal into a digital signal with discrete 
time and amplitude. Because the conversion requires quantization of such input, 
some error or noise is introduced. Furthermore, an ADC performs the conversion 
on a regular basis, rather than repeatedly, by sampling and limiting the 
reasonable bandwidth of the input signal. 
 

 

Figure 2.14 ADC block diagram 

An ADC's signal-to-noise ratio (SNR) and bandwidth serve as general indicators 
of its performance. An ADC's sampling rate essentially determines its bandwidth. 
An ADC's SNR is affected by the resolution, linearity, accuracy (how closely the 
quantization levels match the actual analog signal), as well as aliasing and jitter. 
An ADC's effective number of bits (ENOB), or the number of bits it typically 
returns for each measurement that are not noise, is frequently used to describe 
its SNR. An ideal ADC's resolution and ENOB are essentially comparable. The 
needed bandwidth and SNR of the digitized signal are taken into account while 
choosing the ADCs. According to the Nyquist-Shannon sampling theorem, if an 
ADC runs at a sample rate larger than twice the signal bandwidth, complete 
reconstruction is feasible. Quantization error is a constraint on even the SNR of 
a perfect ADC. The effects of the ADC can be disregarded, resulting in a nearly 
flawless digital reproduction of the analog signal, though, if the SNR of the ADC 
is higher than that of the input signal. 

2.2.2.3 Bridge driver 

 
What engineers use for DC motors to move forward or backward is, generally, a 
type of electronic circuit named H-bridge, also known as a bridge driver. In our 
thermal control circuit, changing the polarity of a voltage applied to a load by using 
H-bridge decides which side of the Peltier cell cools down or warms up.  
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Figure 2.15 Schematics of H-Bridge driver 

 
The polarity of the power of the device (in our case, peltier sell) can be changed 
by properly arranging the switches. For example, transistors Q1 and Q4 are open 
in the left circuit of the Figure 2.15 while Q2 and Q3 are open in the right circuit 
of the Figure 2.15. As illustrated in both images, therefore, the direction of electric 
current can be changed, and the polarity of a load can be swapped. There are 
"short" cases that can cause the power source and switches to short connect 
when switching. As a result, not every combination of switching conditions is safe. 
The short cases can occur when certain combinations (Q1&Q2 and Q3&Q4) of 
the transistors are opened.  

2.2.2.4 Peltier cell 

 
A Peltier cell is an electrothermal device that can generate cold or hot 
temperature when it is connected to an electrical current source. This functions 
as a solid-state heat pump, allowing heat to be transferred from a cold focus to a 
hot one, generating an opposition to the temperature gradient. When a Peltier 
cell is activated, one side begins to heat up while the other side cools. There are 
much more efficient heat generation systems, which is why it is typically used for 
cooling. Developing a cooling system with a Peltier cell for FPGA based system 
of drones is simple because the Peltier cell itself is easy to control, and is efficient 
in terms of weight. 
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Figure 2.16 Peltier cell 

 
 
Its operation for thermoelectric cooling is straightforward. It is essentially a 
sandwich of two metal plates filled with two semiconductors. Typically, these two 
semiconductors are: 
 

• P-doped semiconductors: Boron, indium, and gallium are some 
examples. 

• N-doped semiconductors: Phosphorus, arsenic, and antimony are 
examples [15]. 
 

One of the ceramic plates cools when a current is passed between them. All the 
heat lost by one of the ceramic plates is collected by the second, which heats up. 
Because the heat of the Peltier cell is not affected by the ambient temperature, 
we can have a liquid that is colder than the ambient temperature. 
Thermodynamics prevents any air sinks or liquid cooling from lowering the 
temperature below the ambient temperature. This system enables us to achieve 
better cooling of our components. 
 
Despite its benefits, its application in the hardware world is quite limited. Because 
it necessitates high currents, this device is far less efficient than liquid cooling, 
and forget about air-cooled heatsinks. It is important to remember that the heat 
produced by the heater must also be drained away. To reduce excessive heat 
generation, we must install a heatsink. 
 
It is important to remember that the temperature difference of the two sides of the 
Peltier cell is normally around 70℃. The cell becomes inefficient at this point, and 
the cold face begins to heat up. Furthermore, both faces are very close, and heat 
starts to rise, affecting the cold plate of the cell [15]. 
 
A small 40x40cm plate can generate 60W of heat, which must be cooled, adding 
to the difficulties of requiring heat dissipation systems like heat pipes, heat sinks 
and fans.
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CHAPTER 3 SYSTEM DESIGN 
 

3.1 Overall design flow of FFT implementation 

 
Despite having some experiences regarding embedded systems, FPGA itself is 
completely new for me. Therefore, I decided to develop my project step by step 
while familiarizing and studying FPGA. Completing small tutorials and looking at 
results of them or how the IPs work are my first approaches alongside the reading 
and understanding whole picture of FPGA. To understand the key features and 
workflow of all the IPs which I used for my project, I started with testing and 
configuring them. By doing so, I was able to realize what configuration I must do 
for each IP and what result or output I would expect from peripherals. 
 
Initial steps I walked through this project are splitting up the whole project in 
several minor parts which are: 
 

• FFT implementation and verification using FFT IP 

• Stream to Memory Mapping transfer implementation and verification using 
DMA IP 

• Real input (analog signal) sampling implementation and verification using 
XADC IP 

• Booting Zynq processor using PetaLinux operation system and installing 
costume application on PetaLinux. 

 
Finally, once all the steps mentioned above of the project are succussed, all the 
verified parts of the project’s schematics, such as the XADC IP part, the FFT IP 
part and the DMA IP part, are merged. Because there were verifications for each 
previous part, the final result of the project was expected to be correct. 
 
Those who want to implement any design must implement a hardware part where 
internal IPs are chosen, connected and configured, and a software part where an 
operation system platform and individual software of the system are developed. 
In the following figure, overall design flow of any system (in our case, every step 
I walked through including lab works and final FFT system in FPGA) is illustrated. 
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Figure 3.1 Design flow of FFT implementation 

 
In the first 2 steps, one has to decide which kind of hardware or software solutions 
are needed for the certain design. After that, system designing has to be done. 
In this phase, if you use any FPGA for the implementation hardware and software 
parts are assumed separately. In our case, since XILINX’s FPGA has been 
chosen, the hardware part where all the IPs are connected each other properly 
and configured is done in VIVADO tool, and the software development of the 
project has been done by using XILINX SDK (System Development Kit). Finally, 
in the system integration and testing step, the hardware and the software are 
joined together for whole system and tested together. 

3.1.1 Functionality testing and configuration verification of used IPs 

3.1.1.1 Understanding and testing DMA IP 

 
As mentioned in 3.1, the first step is to test and verify DMA IP. Direct Memory 
Access, or DMA as it is more commonly known, is a crucial component of the 
design of embedded systems because it enables the main memory (DDR) of such 
systems to be accessed without the CPU being connected, allowing the CPU to 
carry out other tasks during the read/write cycle to memory. DMA enables the 
processor to start a transfer to read from or write to the primary internal or external 
memory. Once the transfer is complete, the CPU generates an interrupt. Until the 
interrupt skips its corresponding service procedure, this allows the CPU to work 
on other tasks. 
 
Although the idea behind DMA is straightforward, it can be challenging to picture 
how to apply it to an FPGA with an embedded processor, such as the ARM-core 
processor in the Xilinx Zynq SoC. It only becomes worse when you add the extra 
complication of connecting it from the user space of an operating system like 
Linux. 
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The idea to test DMA and verify its function is to examine if the transferred data 
from DDR by passing DMA (Memory Mapped to Stream) is sent back and 
received correctly by passing the same DMA (Stream to Memory Mapped). In 
other words, it was the test to compare what has been sent by Memory Mapped 
to Stream and what has been received by Stream to Memory Mapped as seen in 
the figure below. 
 

 

Figure 3.2 Block design of DMA IP verification lab work 

 
This (what I call lab work) has been done initially with bare metal software which 
is coded in C language. Then as a specification of the project, the bare metal C 
code has been transferred to an application which is compatible with and 
installable in PetaLinux. 
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Figure 3.3 Hardware schematics of DMA IP. 

 
Figure 3.3 shows the hardware schematics of DMA IP testing lab. What we have 
in the schematic alongside the ZYNQ processing system and the DMA are AXI 
Interconnect IP, AXI Smart Connect IP and Processor System Reset. These IPs 
are generated and connect automatically after executing “Run connection 
automation” when you add a DMA IP in your system. “Run connection 
automation” automatically connects every clock signal, reset signal and most of 
the necessary connections properly. For example, in Figure 3.3, all the 
connections except the red one are done by the command. Of course, one can 
choose the clock or reset source before executing it. 
 

 

Figure 3.4 Hardware configuration of DMA IP. 
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The configuration of DMA IP is illustrated in Figure 3.4. In our case, Scatter 
Gather Engine is disabled. Therefore, the control register of DMA IP is configured 
every transaction via its AXI Lite interface from PS. All the data widths of stream 
and memory map data are 64 bits because data transferred from PS to PL and 
from PL to PS are 64 bits float complex data type. Slave AXIS S2MM port and 
Master AXIS MM2S are connected that you can see in Figure 3.3. So, the dataset 
sent from PS through DMA IP’s MM2S goes directly to DMA IP’s S2MM port then 
passed to PS via AXI Smart Connect IP. 
 
In this lab, thanks to the direct connection in red (in Figure 3.3), bunch of float 
complex type data was transferred from PS to DMA IP (MM2S transfer) and that 
data received to PS from DMA IP (S2MM transfer). As a result of this lab, data 
sent from PS via MM2S and data sent from PL via S2MM were exactly the same. 
Therefore, both S2MM and MM2S are verified, and configuration of the IP is 
confirmed.  

3.1.1.2 Understanding and testing FFT IP 

 
It is crucial to make sure the configuration and performance of IPs are correct. 
Second and the most important part is testing and verifying FFT IP of XILINX’s 
FPGA. To do so, an artificially generated signal is used as input of FFT IP and 
output of FFT IP must be compared with calculated output of FFT in bare-metal 
C (in my FFT IP testing lab, 8 points FFT is used). The block diagram of this lab 
work looks like: 
 

 

Figure 3.5 Block design of FFT IP verification lab work 

 
As mentioned in previous chapter, the connection between DMA and FFT is 
steam interface while the connection between processing system and DMA is 
memory mapped interface. The idea here is to transfer the artificially generated 
signal to FFT as its input through MM2S by using DMA and FFT solution as its 
output received to the processing system via S2MM by passing DMA. 
 



36                                                           Contribution to the development of microwave remote sensing for UAV systems. 

 

Figure 3.6 Hardware schematics of FFT with input of locally generated 
signal using DMA IP.  

 
As shown in Figure 3.6, the input of FFT IP (S_AXIS_DATA port) is connected 
MM2S interface of DMA IP while the output of FFT IP (M_AXIS_DATA port) is 
connected S2MM interface of DMA IP. Thank to this connection in red, memory 
mapped complex signal which is generated in PS is turned into stream signal and 
input the FFT IP. The 8-point FFT of this stream signal is calculated in the FFT 
IP. Then the output of FFT IP which is stream data transferred to the PS via the 
DMA IP’s S2MM interface. The goal of this lab work is to compare both results 
computed in the PS and the PL. The result of this lab work is shown in Figure 3.8. 
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Figure 3.7 Hardware configuration of FFT with input of locally generated 
signal using DMA IP. 

 
Figure 3.7 shows us the configuration of FFT IP where number of channels is 1, 
transfer length is 8 (this is because 8-point FFT is computed in the PS), 
architecture is in auto mode (the proper architecture is chosen automatically), 
data format is floating point (as the complex signal is transferred in data type of 
float complex), scaling option is scaled (scaling scheme register has to be set, in 
3.6, Constant IP whose value is 0b1111111 in 7 bits is connected to 
s_axis_config_tdata port of the FFT IP) and rounding mode is truncation.  
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Figure 3.8 Output of the FFT IP and computed FFT 

 
Since my code inside the processing system is able to calculate a correct FFT 
manually which is correct (in Figure 3.8, values defined as PS output), I was 
expecting the same result (there could be negligible difference) from the output 
of FFT IP as output of the software (in Figure 3.8, values defined as PL output). 
The code of this lab work is also transferred to the Linux application. Since both 
outputs of the PS FFT and PL FFT compared and functionality of the FFT IP is 
verified as the difference of both FFT output is less than 0.001, I can say this lab 
work has been done successfully. Therefore, I am sure that my configuration of 
the FFT is correct, and I expect correct FFT outputs in my FFT system in FPGA. 
 

3.1.1.3 Understanding and testing XADC IP 

 
The use of XADC in this project is simply as sampling a real signal. But to be 
sure, again, with its performance, verification of its output compared to its input 
is needed. Before input an analog signal, the output of ADC is verified by using 
DC voltage (0-1V) as the input. Arty Z7’s dedicated analogy input (in Figure 3.10, 
Vp_Vn and in ArtyZ7 evaluation board, V_n & V_p connector) for XADC is used.  
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Figure 3.9 Block design of XADC IP verification lab work 

 
As seen in the block diagram in Figure 3.9, either of the DMA IP or the XADC IP 
are configured via their Lite Interfaces. There are 2 different configuration 
interfaces in XADC IP (AXI4Lite & DRP). The AXI4Lite is used in this lab but the 
other one (DRP) is used in another version of the hardware schematic in Figure 
3.10 which is bootable in PetaLinux OS. 
 

 

Figure 3.10 Hardware schematics of XADC IP 

 
In the schematic in Figure 3.10, since we are using the DMA IP to steam signal 
to memory map data, most of the IPs, such as AXI Interconnect IP and System 
Reset IP, are connected automatically. What is to be careful about is, in this 
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scheme, AXI4 stream output of XADC Wizard (XADC) does not include TLAST 
signal which is high only at the end of data frame. To transfer streaming output 
of the XADC Wizard IP to DMA IP, therefore, we must connect it with the AXI4-
sream Subset Converter which generates TLAST. 
 
As highlighted in red in Figure 3.10, the real analog signal comes through XADC 
IP’s dedicated analog input Vp_Vn. In other word, real signal from outside world 
(a sine signal generated by signal generator or constant voltage) is connected to 
the connectors named V_p and V_n (ground) whose maximum amplitude is 1V 
of Arty Z7 board. And the real signal is directly connected to the XADC IP where 
the signal is sampled, then it is connected to the DMA IP by passing by the AXI4-
sream Subset Converter where the TLAST signal is added. Then the streaming 
sampled values are transferred as memory map data to PS. Finally, in the bare-
metal C application, one can read digitalized value of real signal. By doing so, it 
is possible to verify the output of the XADC by comparing it with mathematically 
computed sampled value.  
 

 

Figure 3.11 Schematic used in the testing of XADC 

 
To be sure with the output of the XADC, its input is initially tested with direct 
current (DC). In this experiment, a 10K Ohm potentiometer is used as a voltage 
divider and powered with 1V DC as shown in Figure 3.11. The output of this circuit 
is directly connected to V_p and V_n headers of Arty Z7. The purpose of this 
experiment is to measure voltage value at the output of the scheme using a 
mustimeter and compare it with the values at the output of the XADC IP. By doing 
so, it is possible to validate the performance of the XADC. For example, the 
output must be 0x000 when the input is DC 0V, and the output must be 0xFFF 
when the input is DC 1V. Once this verification has been done, one can be sure 
that the configuration of the XADC is correct, and the functionality is verified. 
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Figure 3.12 Hardware configuration of XADC IP 
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Figure 3.13 Hardware configuration of XADC IP 

 
In the group of screen shots in Figure 3.12 and Figure 3.13, all the configuration, 
needed for the XADC in case of a real-world input signal, is shown. Architecture 
is AXI4Lite (configuration by AXI4Lite interface), Channel selection is Channel 
sequencer (with this option, one can input 16 different inputs). Sequencer mode 
is continuous (XADC IP samples and streams the input continuously). All the 
alarms are disabled (in fact, there is an interrupt for every alarm). In the Channel 
Sequencer part, only VP_VN (the dedicated analog input) is chosen and set as 
bipolar. So that, the input of the XADC is set as Vp_Vn and amplitude between -
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0.5V and +0.5V due to its bipolar type. For the timing option of the XADC, clock 
frequency is chosen as 104 MHz meaning its sampling rate is 1 MSPS. To supply 
104 MHz, the Clocking Wizard IP is used as shown in Figure 3.10. Once the 
output of XADC is satisfied, we can directly use its configuration for a real signal 
input of FFT system in FPGA. 
 

3.1.1.4 Booting Zynq processor using PetaLinux operation system and 
installing costume application on PetaLinux. 

 
The Yocto Linux distribution is built upon by a collection of high-level commands 
known as PetaLinux. Embedded Linux solutions and Linux images for Xilinx 
processing systems can be modified, created, and deployed using PetaLinux 
tools. It is designed to increase design productivity, and it integrates with Xilinx 
hardware design tools (like Vivado) to make it simpler to construct Linux systems 
for Zynq-7000 SoCs, and MicroBlazeTM. Two steps of the PetaLinux design flow 
are mentioned below. 
 
Step 1: Creation of the hardware platform 
The procedures to follow when using Vivado 2019 to design unique hardware for 
your board are covered in this step. A Hardware Description File (HDF) must be 
produced from Vivado. The HDF file is generated automatically after the bit 
stream file generated from Vivado project. The PetaLinux tools must be aware of 
the board's underlying hardware system in order to create a specific PetaLinux 
project for it. Your board's hardware architecture is described in the HDF file. It is 
necessary if you are going to create a PetaLinux project so that the finished image 
can appropriately setup the board when it is powered on. 
 
Detailed instructions for installing PetaLinux Tool Chain can be found in the 
following link location: https://aerotenna.readme.io/docs/using-petalinux-os 
 
Step 2: Creation of the Petalinux project 
 
Using the HDF file generated in the previous phase, in this step we will establish 
a fundamental PetaLinux project. On a system running Linux OS, several 
procedures are carried out. You should use a virtual machine with Linux OS and 
PetaLinux 2018.3 installed if your primary computer is Windows. PetaLinux 
projects can be created from two sources: Board Support Packages (BSP) and 
template projects. 
 
Finally, one can copy the bootable image file and root system files to a SD card. 
Then, if you have a custom application for your system, you can cross-compile it 
with your Linux OS and Petalinux OS. By doing so, the custom application can 
be bootable from the embedded OS. 
 
 
 
 

https://aerotenna.readme.io/docs/using-petalinux-os
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3.1.2 Implementation of FFT system in FPGA 

 

3.1.2.1 Hardware implementation of FFT system in FPGA 

 

 

Figure 3.14 Overall hardware schematic of FFT system in FPGA 

 
The complete hardware schematic of FFT system in FPGA is illustrated in Figure 
3.14 (more visible version of the schematic is attached in Annex I). Once the 
functionality testing and configuration verification of the main peripherals, such 
as the FFT IP, the DMA IP, and the XADC IP, are succeed in the previous lab 
works mentioned in 3.1.1, the implementation of FFT system in FPGA is straight 
forward. Obviously, there must be some differences in the configuration of the 
FFT IP due to different input signal source. In other word, we use locally 
generated complex signal in 3.1.1.2 as input of the FFT IP while the real analog 
signal is the input in this final schematic (shown in Figure 3.12) of FFT system in 
FPGA. 
 
As usual, the main trace of the signal flow is marked as red in the Figure 3.12. 
The real analog signal comes through XADC IP’s dedicated analog input Vp_Vn. 
Then this signal directly connects to the input of the XADC IP of which 
configuration is the same with that of the one shown in Figure 3.11. The XADC 
IP itself is a 12-bit ADC. The output of XADC is with width of 16 bits and its higher 
4 bits are zeros. When this stream passes throughout the AXI4-sream Subset 
Converter, the TLAST signal is added to the signal. Now, it is the time to input 
the FFT IP with the sampled stream value of the real analog signal. According to 
the datasheet and configuration mentioned below, in case of real input signal, 
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imaginary part of the input signal must be zeros. For this purpose, I used the 
Concat IP which merges several inputs into a single output. The 16 bits of the 
first input of this Concat IP is connected to the output of the AXI4-sream Subset 
Converter and considered as the real part of the input signal of the FFT IP. The 
16 bits of the second input of this Concat IP is connected to the Constant IP 
whose constant value is 0x00 and considered as the imaginary part of the input 
signal of the FFT IP. 
 
Finally, the 1024-bit FFT is computed by the FFT IP and its AXIStream output is 
connected to the DMA IP to be converted into the memory map data. Then this 
memory map data is written to the memory. 
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Figure 3.15 Hardware configuration of FFT IP with the real analog signal 

As shown in Figure 3.15, configuration of the FFT IP is: Number of channel 1, 
transform length is 1024, architecture choice is Pipelined (continuous stream data 
processing), Streaming I/O, Data format is Fixed point (sampled real signal), 
scaling option is scaled, Rounding Mode is Convergent Rounding, Input data 
width is 16 bits (16 bits for real part and 16 bits for imaginary (16 bits of zeros) 
part of the input signal), and Output ordering is Natural order. 
 
Three bits from input can be added to output in case of Radix-4 butterfly 
algorithm, that is why the bit growth needs to be considered to prevent the data 
overflow. The same effect happens in Pipelined Streaming I/O designs of FFT. 
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The highest amount of bit expansion in the stage determines how many output 
data bits must be shifted to the right after it is complete. Data is only shifted in 
conditional block scaling if bit growth happens. The entire block of data is moved 
to the right and the block exponent is changed if one or more outputs increase. 
 
That is why SCALE_SCH register of the FFT IP must be configured. In the 
Pipelined Streaming I/O architecture, overflows are totally avoided by the 
conservative schedule SCALE_SCH = [10 10 10 10 11]. The last group only has 
one stage when the point size is not a power of four, and the higher bit growth for 
the last group is one bit. Consequently, the scaling schedule's two MSBs can only 
be 00 or 01 [16]. 
 

 

Figure 3.16 Scaling schedule of 1024-bit FFT with Pipelined  

Streaming I/O architecture 

 
The scaling schedule mentioned above can be done by writing conservative 
schedule to the SCALE_SCH register. To do so, we must write SCALE_SCH = 
[10 10 10 10 11] by writing constant values to the s_axis_config_tdata port of the 
FFT IP as shown in Figure 3.16. 
 
 
 

3.1.2.2 Software implementation of FFT system in FPGA 

 
In the software part, configuring the XADC IP and FFT IP by using their AXILite 
interfaces. Once these configurations are done, all we have to do is wait for the 
receiving data which is the output of the FFT IP in the single precision data type. 
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Figure 3.17 Algorithm of the software of FFT system in FPGA 

 
The algorithm of the software is shown in Figure 3.17. Since most of the 
configuration of IPs are completed in the hardware part, some minor 
configurations of the IPs, such as a transfer word length for the DMA IP and 
resetting the IPs, are done in the bare-metal application. Then once the IPs are 
configured successfully in both hardware and software, the only thing to do in the 
software is to wait for the 1024-point FFT output of FFT IP. Finally, one can use 
the FFT output for filtering a signal by using its frequency components. For 
example, we can get rid of an interference by omitting the frequency component 
corresponds to the interference signal from the FFT output and input that 
remaining bunch of data to Inverse Fourier Transform (IFFT). In fact, the FFT IP 
itself has a mode to compute IFFT. 
 

3.2 Overall design flow of “Thermal control” implementation 

 
Implementation of the thermal control is straight forward as of any other 
embedded systems. Deciding a solution, completing scheme design, drawing 
layout of PCB, soldering and testing are the all the steps which I walked through 
its implementation.  

3.2.1 Implementation of “Thermal control” 

3.2.1.1 Hardware implementation of “Thermal control” 

 
From choosing electronic components to designing a schematic, all the steps are 
explained in this section. Choice of the components, these days, are highly 
depending on its availability in stocks of the vendors rather than inventors’ 
decisions due to a shortage of such component in the market under COVID 
situation. As most of the engineers are experiencing, some components I had 
chosen for the thermal control system had not been available in the market. 
Therefore, during the first phase of this project, it costed me spending several 
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days to choose the components, check the technical characteristic and 
availabilities because once one of the components is changed, the whole 
schematics may be changed. Thanks to the variety of the vendors in the market, 
satisfied elements of the schematic has been chosen. 
 
After decided every single component of the thermal control, the schema 
designing task is carried out. In this step, the software used was KiCAD which is 
free and can be used for professional purposes. Designing the schematic for 
thermal control is straight forward as the purpose of the system is to control a 
Peltier cell, which must be fixed in the box to balances the temperature inside, 
based on surrounding temperature. As seen in the Figure 3.18, a microcontroller 
takes control of whole system, for example it gets digitized values of temperature 
from the ADC through its SPI interface and controls Peltier cell through the H-
bridge by using a software PID which controls values of PWM.  An analogy digital 
converter (ADC) converts an analog signal to digital signal. Alongside those 
electronic components, what we need for overall system are thermal sensors to 
sense the temperature and the Perltier sell to cool or heat inside of the box. 
 

 

Figure 3.18 Block diagram of the hardware implementation of “Thermal 
control” 

 
Overall hardware schematic of the Thermal control is attached in Annex II. 
Designing a layout of PCB for the electronic system is what every inventor does 
after completing schematic design. This step plays an important role in the 
electronic system design because this is when one can minimize the noises by 
introducing interesting solutions, like placing the coupling capacitors correctly and 
managing the planes (layers) or traces efficiently, for example, the coupling 
capacitors must be place as near as possible to the dedicated pins, and ground 
planes of analog and digital sources could minimize some noises as separately 
generated in the other sides of the PCB. Another important aspect during phase 
is to create a new footprint for certain, or for your custom elements such as a 
heatsink.  
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Figure 3.19 Layout design of PCB 

 
For this project, the PCB has been done with four layers, two for tracing, one for 
the ground plane and one for the power plane. Some empty pins of STM32 have 
been designed for possible development of the system. 
   

 

Figure 3.20 The final electronic board of the “Thermal control” 
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Once the soldering is completed successfully, I moved to the software part of the 
project before the last step which is testing the whole system. 
 

3.2.1.2 Software implementation of “Thermal control” 

 
In the software part, configuration of the other devices such as the ADC and H-
bridge is done in STM32 by using their SPI interfaces.  

 

Figure 3.21 Algorithm of the software of “Thermal control” 

 
The algorithm of the software is shown in Figure 3.21. What it does after 
configuring the control registers of the other devices is to read output of ADC 
which is the digitized value in 16 bits of the thermal resistor. Then the PID 
controller designed in STM32 controls the value of PWM for Peltier cell. 
 
The use of PID controller here is to keep the temperature of the other system 
around the chosen reference temperature while minimizing the energy utilization 
of the Peltier cells. Thanks to the mathematical model of PID controller and its 
recursive operation, it reduces the fluctuation of the temperature to its minimum 
level. 
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Figure 3.22 Testing of the “Thermal control” 

 
In the figure 3.22, the 2 Peltier cells with fans are connected to Thermal control 
board and attached to the box made of an isolation material. The thermal resistor 
or thermistor (1 out of 4 possible headers dedicated to thermistor is used) is put 
inside the box through a small hole. 
 
As for the testing of the board, I completed an experiment where I wanted to know 
how much time a PID controller which is designed in STM32 microcontroller took 
to stabilize the temperature inside the box made of a thermal isolation material. I 
put a cup with 0.2 litres water (25°𝐶) inside the box and recorded temperature 

(through UART port of PC) value using the thermometer every seconds. In this 
experiment, I wanted to examine if the tunning of PID controller is correct or not. 

 

 
 
 
 
 
 
 
 
 



RESULTS  53 

CHAPTER 4 RESULTS 
 

4.1 Results of FFT system in FPGA 

 
After the hardware and software implementation, it is time to show the results of 
the FFT system in FPGA and to verify the result with mathematical computation. 
The real analog signals are generated by a signal generator named FY6800 of 
KMOON. Then these analog signals are directly connected to the dedicated 
analog input port, V_p & V_n, of Arty Z7 board. To confirm the result, two 
separated experiments are done with two different signals which are a sine 
wave and a square wave. 
 
 

 

Figure 4.1 Connection of the analog signal (sine wave) 

In the Figure 4.1, physical connection of the analog signal and its configuration. 
As displayed in the signal generator’s display, the signal type is the sine wave, 
frequency is 15.625 KHz due to the bin size (976.5625 Hz). The amplitude of the 
signal is 0.5V because in the hardware part we use the XADC IP in the bipolar 
mode meaning input is between -0.5 and +0.5. 
 
In the overall system, we have following value to compute FFT. 
 

• Sampling rate: 𝑓𝑠 = 1𝑀𝑆𝑃𝑆 (according to the configuration of the XADC 
IP in 3.1.1.3) 

• FFT size: 𝑁𝑓𝑓𝑡 = 1024 (according to the configuration of the FFT IP in 

3.1.2) 

• Input signal: 𝑓𝑖𝑛 = 15.625 𝐾𝐻𝑧 
 
From the known values above, the frequency resolution can be calculated as 
follows: 
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∆𝑓 =
𝑓𝑠

𝑁𝑓𝑓𝑡
=

1𝑀𝑆𝑃𝑆

1024
= 976.5625 Hz         (4.1) 

 
Therefore, the frequency bin size for each bin of FFT IP is 976.5625 Hz. By 
using this bin size, we can calculate the bin location which corresponds to the 
input signal. 
 

𝑘𝑓 =
𝑓𝑖𝑛

∆𝑓
=

15.625 𝐾𝐻𝑧

976.5625 Hz
= 16                      (4.2) 

 
The meaning of the value above is where we must expect a peak in output of 
the FFT IP. 

 

Figure 4.2 Output of 1024 point FFT of the FFT IP (sine wave) 

 
Figure 4.2 shows the output of 1024 point FFT computed by FFT IP in PL in case 
of sine wave. In this experiment, I am not expecting several peaks in the graph 
because the input signal is generated without any noises and sine wave signal 
type has only one frequency component. The bin location of the highest peak is 
16th bin of the FFT output as expected. The bin location of the frequency 
component in the output of the FFT IP and mathematically computed bin location 
are exactly the same. Therefore, the output of the FFT IP is satisfied in case of 
the sine wave. 
 
In the second experiment right below, I used a square wave as the input signal. 
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Figure 4.3 Connection of the analog signal (square wave) 

In the Figure 4.1, physical connection of the analog signal and its configuration. 
As displayed in the signal generator’s display, the signal type is the square wave, 
Frequency is 15.625 KHz due to the bin size (976.5625 Hz). The amplitude of the 
signal is 0.5V because in the hardware part we use the XADC IP in the bipolar 
mode meaning that input is between -0.5 and +0.5. 
 
The computation of bin location is the same as ones mentioned the first 
experiment because the input signal (except the type of signal) and the hardware 
configuration are the same. 
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Figure 4.4 Output of 1024 point FFT of the FFT IP (square wave) 

 
In Figure 4.4, X axis is frequency in Hz, Y axis is absolute value of FFT output. 
This graph shows the output of 1024 point FFT computed by FFT IP in PL, in 
case of square wave. In this experiment, I am expecting several peaks in the 
graph because the square wave signal type has several frequency components 
due to its shape. The bin location of the highest peak is 16th as expected. There 
are several smaller peaks (at bin 48 (45898.4375 Hz), at bin 80 (77148.4375 Hz), 
at bin 240 (233398.438 Hz), at bin 272 (264648.438 Hz), at bin 304(295898.438 
Hz) and at bin 498 (485351.563) … so on.) in the graph as expected as well. The 
bin location of the main frequency component in the output of the FFT IP and 
mathematically computed bin location which is 16th bin are exactly the same. 
Therefore, the output of the FFT IP is satisfied in case of the square wave. 
 

4.2 Results of Thermal control 

 
As the result of the thermal control, I can present the temperature values which 
is stabilized by the PID controller designed in STM32. This PID settings of PID 
controller is important for thermal control because it controls PWM to the Peltier 
Cell. By doing so, less energy is consumed while maintaining the reference 
temperature. 
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Figure 4.5 The records of measurements during the experiment 

In the Figure 4.5, the measured temperature inside the box has been recorded in 
two experiments (red and blue). Both experiments are started from around 25°𝐶 
and the PID controller must stabilize the temperature at 15°𝐶. In the Figure 3.19: 

Y axis is temperature in °𝐶 , X axis is number of samples (sampling time is 0.2 
second). The curve in blue is the temperature values when the PID has tunning 
of 𝐾𝑝 = 50, 𝐾𝑖 = 1, 𝐾𝑑 = 0.1. The curve in red is the temperature values when the 

PID has tunning of 𝐾𝑝 = 22.6994, 𝐾𝑖 = 766.2856, 𝐾𝑑 = 191.5714. 

 
As seen in the graph above, the first experiment in blue has better values than 
the other one. This is because there is an over-shoot in the graph which reaches 
13.7 °𝐶. After that the fluctuation of the blue graph is getting closer to the 

reference temperature over time while the other has not any over-shoot and 
keeps fluctuating in almost same size. The whole system uses less energy to 
control the Peltier Cell when the fluctuation gets smaller and the temperate gets 
more stable. Thanks to the estimation by the PID controller, value of PWM is set 
properly and the system uses less current.  
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CONCLUSIONS 
 
 
Thanks to FPGAs’ parallel operation, a FPGA based signal processing is the 
efficient way in terms of processing speed. In other word, FPGAs can process 
signals from number of channels once. For example, the FFT IP of XIILINX’s 
Zynq 7000 has 12 channels, and these channels can be used parallelly. One can 
use this IP as much as he or she wants. The number of inputs or outputs can be 
limited by the number of physical pins. The number of IPs can be limited by the 
number of logic cells inside the PL (in case of Zynq 7000, there are 6.6M logic 
cells). Then one can design a new system with unlimited number of IPs but with 
limited number of logical cells. 
  
The combination of a theoretical background and a hardware configuration of 
certain IP in Vivado HLS can lead us the correct way to implement any system in 
XILINX’s FPGA with a support of a software implementation in XILINX SDK. The 
theoretical aspect mentioned in the Chapter 1 & 2, the configurations of IPs 
mentioned in Chapter 3 are finally meet in the last chapter where we get the 
results of FFT system in FPGA. With correct configurations of every IPs in the 
system, the “FFT system in FPGA” performs correct FFT outs which are validated 
with mathematical computations. To use the “FFT system in FPGA” as a filter, an 
interference of the given signal can be eliminated by omitting the frequency 
component corresponding to the interference signal from the FFT output and 
input that remaining bunch of data to Inverse Fourier Transform (IFFT). In fact, 
the FFT IP itself has a mode to compute IFFT. 
 
For the embedded systems, like the “Thermal control”, the choice of electronic 
components is important because they can play critical roles in the performance 
of the system. For example, the sensitivity level of a sensor depends on the ADC 
and the H-bridge driver’s maximum current may limit the consumption of the 
Peltier cell in the “Thermal control”. To keep the power consumption of the Peltier 
cell in its minimum level while it is cooling down or heating up the certain object, 
such as the FPGA based signal processing unit, the PID controller which is 
developed in STM32 is utilized. Thanks to the recursive operation of the PID 
controller, it is possible to stabilize the temperature of the object around the 
reference temperature and to keep the current which the Peltier cell uses in the 
minimum level while cooling or heating.  
 
The future development of this project could start from the studying the FFT IP 
with the rounding mode of “Truncation”. According to the datasheet of the FFT 
IP, it allows the IP to truncate the smaller peaks of FFT output. This mode has to 
be studied carefully with real analog signals because it may reduce processing 
time. In other word, If we could truncate the frequency components of the 
interferences, we would introduce the output of the FFT to the input of IFFP. It 
may open the door to implement “FFT system in FPGA” without interaction of PS 
(software), 
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ACRONYMS 

 
ADC  Analog to digital converter  
AMBA  Advanced Microcontroller Bus Architecture  
APU  Application Processing Unit  
AXI   Advanced eXtensible Interface  
CLB   Configurable logic blocks  
CPU   Central Processing Unit  
DAC   Analog converter  
DC   Direct Current  
DFT   Discrete Fourier Transformation  
DMA  Direct Memory Access  
DRAM  Direct Random Access Memory  
DSP   Digital signal processing  
EMIO  Extended-MIO  
FF   Flip-Flops  
FFT  Fast Fourier Transform  
FPGA  Programmable Gate of Array  
FSBL  First Stage Bootloader  
HDF  Hardware Description File  
HLS  High-Level Synthesis  
IP  Intellectual Property  
I/O  Input/Output  
LUT  Look-up Table  
M2M  Memory-to-Memory  
MM2S  Memory-to-Stream  
MSPS  Mega sample per second  
OS  Operation system  
PCB  Printed Circuit Board  
PL  Programmable logic  
PMOD Peripheral Module Interface  
PS  Processing system  
PWM  Phase Wide Modulation  
RAM  Random Access Memory  
ROM  Read-only Memory  
S2MM  Stream-to-Memory  
SDK  System Development Kit  
SNR  Signal-to-Noise Ratio  
SoC  System on Chip  
SPI  Serial Peripheral Interface  
SRST  System Reset  
UART  Universal Asynchronous Receiver/Transmitter  
UAV  Unmanned Air Vehicle  



60                                                           Contribution to the development of microwave remote sensing for UAV systems. 

REFERENCES 
 

[1]  M. Jou Barrancos, “Development and testing of processing software for 
an airborne soil moisture mapper,” Barcelona, Spain, 2018. 

[2]  A. Jamal Rashed Daoud, “Implementation of interference mitigation 
techniques for L-band radiometers on-board Unmanned Aerial Systems,” 
Barcelona, 2020. 

[3]  J. G. M. D. G. Proakis, Digital Signal Processing: Principles, Algorithms 
and Applications. (Fourth Edition), New Jersey, 2007.  

[4]  D. D. f. O. R. H. P. D. U. V.-4. FPGAs, 2005. [Online]. Available: 
https://www.xilinx.com/publications/archives/books/dsp.pdf. 

[5]  S. M. L. B. H. T. W. Kuo, Real Time Digital Signal Processing (Second 
Edition), West Sussex, 2006.  

[6]  R. M. J. L. G. Y. Y. Woods, FPGA-based Implementation of Signal 
Processing Systems (Second Edition), United Kingdom, 2017.  

[7]  “www.nti-audio.com,” [Online]. Available: https://www.nti-
audio.com/es/servicio/conocimientos/transformacion-rapida-de-fourier-fft. 
[Accessed 01 07 2022]. 

[8]  realpars, “www.realpars.com,” [Online]. Available: 
https://realpars.com/pid-
tuning/#:~:text=In%20the%20most%20simplistic%20terms,direct%20actin
g%2C%20as%20discussed%20previously.. 

[9]  XILINX, “Vivado Design Suite User Guide,” 202. 

[10]  K. D. Team, “www.kicad.org,” 2021. [Online]. Available: 
https://www.kicad.org/about/kicad/. 

[11]  XILINX, “Zynq-7000 SoC Data Sheet,” XILINX, 2018. 

[12]  Digilent, “Digilent,” Digilent, [Online]. Available: 
https://digilent.com/reference/programmable-logic/arty-z7/reference-
manual. 

[13]  XILINX, LogiCORE IP AXI XADC v1.00a Product Guide, 2012.  

[14]  XILINX, “AXI Interconnect (v1.06.a),” XILINX, 2012. 

[15]  ST, “STM32F103x8 datasheet,” ST, 2022. 

[16]  R. Sole, “hardwaresfera.com,” 11 July 2020. [Online]. Available: 
https://hardwaresfera.com/en/articulos/que-es-celula-peltier/. 

[17]  XILINX, “Fast Fourier Transform v9.1 LogiCORE IP Product Guide,” 4 
May 2022. [Online]. Available: https://docs.xilinx.com/viewer/book-
attachment/jKn_d6EeSeSm4b25FBbCOA/KtJ2q9rEZvP4hqj3BbbU_Q. 

 
 



ANNEX I. OVERALL HARDWARE SCHEMATIC OF FFT SYSTEM IN FPGA  61 

ANNEX I. OVERALL HARDWARE SCHEMATIC OF FFT 
SYSTEM IN FPGA 

 

Figure I.1 Overall hardware schematic of FFT system in FPGA (More 
Visible) 
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ANNEX II. OVERALL HARDWARE SCHEMATIC OF 
THERMAL CONTROL 

 

Figure I.2 Overall hardware schematic of Thermal control (Part 1 
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Figure I.3 Overall hardware schematic of Thermal control (Part 2) 
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Figure I.4 Overall hardware schematic of Thermal control (Part 3) 
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