4 research outputs found

    aZIBO Shape Descriptor for Monitoring Tool Wear in Milling

    Get PDF
    El objetivo de este trabajo es estimar eficientemente el desgaste del mecanizado de metales y mejorar las operaciones de sustitución de la herramienta. El procesamiento de imágenes y la clasificación se utilizan para automatizar la toma de decisiones sobre el tiempo adecuado para el reemplazo dela herramienta. Específicamente, el descriptor de forma aZIBO (momentos absolutos de Zernike con orientación de contorno invariable) se ha utilizado para caracterizar el desgaste de la plaquita y garantizar su uso óptimo. Se ha creado un conjunto de datos compuesto por 577 regiones con diferentes niveles de desgaste. Se han llevado a cabo dos procesos de clasificación diferentes: el primero con tres clases diferentes (desgaste bajo, medio y alto -L, M y H, respectivamente) y el segundo con sólo dos clases: Low (L) y High (H). La clasificación se llevó a cabo utilizando por un lado kNN con cinco distancias diferentes y cinco valores de k y, por otra parte, una máquina de vectores de soporte (SVM). El rendimiento de aZIBO se ha comparado con descriptores de forma clásicos como los momentos de Hu y Flusser. Los supera, obteniendo tasas de éxito de hasta el 91,33% para la clasificación L-H y 90,12% para la clasificación L-M-H

    Identification of feature set for effective tool condition monitoring - a case study in titanium machining

    No full text
    10.1109/COASE.2008.46264104th IEEE Conference on Automation Science and Engineering, CASE 2008273-27

    Tool wear monitoring in end milling of mould steel using acoustic emission

    Get PDF
    Today’s production industry is faced with the challenge of maximising its resources and productivity. Tool condition monitoring (TCM) is an important diagnostic tool and if integrated in manufacturing, machining efficiency will increase as a result of reducing downtime resulting from tool failures by intensive wear. The research work presented in the study highlights the principles in tool condition monitoring and identifies acoustic emission (AE) as a reliable sensing technique for the detection of wear conditions. It reviews the importance of acoustic emission as an efficient technique and proposes a TCM model for the prediction of tool wear. The study presents a TCM framework to monitor an end-milling operation of H13 tool steel at different cutting speeds and feed rates. For this, three industrial acoustic sensors were positioned on the workpiece. The framework identifies a feature selection, extraction and conditioning process and classifies AE signals using an artificial neural network algorithm to create an autonomous system. It concludes by recognizing the mean and rms features as viable features in the identification of tool state and observes that chip coloration provides direct correlation to the temperature of machining as well as tool condition. This proposed model is aimed at creating a timing schedule for tool change in industries. This model ultimately links the rate of wear formation to characteristic AE features

    Tool wear monitoring in end milling of mould steel using acoustic emission

    Get PDF
    Today’s production industry is faced with the challenge of maximising its resources and productivity. Tool condition monitoring (TCM) is an important diagnostic tool and if integrated in manufacturing, machining efficiency will increase as a result of reducing downtime resulting from tool failures by intensive wear. The research work presented in the study highlights the principles in tool condition monitoring and identifies acoustic emission (AE) as a reliable sensing technique for the detection of wear conditions. It reviews the importance of acoustic emission as an efficient technique and proposes a TCM model for the prediction of tool wear. The study presents a TCM framework to monitor an end-milling operation of H13 tool steel at different cutting speeds and feed rates. For this, three industrial acoustic sensors were positioned on the workpiece. The framework identifies a feature selection, extraction and conditioning process and classifies AE signals using an artificial neural network algorithm to create an autonomous system. It concludes by recognizing the mean and rms features as viable features in the identification of tool state and observes that chip coloration provides direct correlation to the temperature of machining as well as tool condition. This proposed model is aimed at creating a timing schedule for tool change in industries. This model ultimately links the rate of wear formation to characteristic AE features
    corecore