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Abstract 

Today’s production industry is faced with the challenge of maximising its resources 

and productivity. Tool condition monitoring (TCM) is an important diagnostic tool and 

if integrated in manufacturing, machining efficiency will increase as a result of 

reducing downtime resulting from tool failures by intensive wear.  

The research work presented in the study highlights the principles in tool condition 

monitoring and identifies acoustic emission (AE) as a reliable sensing technique for 

the detection of wear conditions. It reviews the importance of acoustic emission as 

an efficient technique and proposes a TCM model for the prediction of tool wear. The 

study presents a TCM framework to monitor an end-milling operation of H13 tool 

steel at different cutting speeds and feed rates. For this, three industrial acoustic 

sensors were positioned on the workpiece. The framework identifies a feature 

selection, extraction and conditioning process and classifies AE signals using an 

artificial neural network algorithm to create an autonomous system. It concludes by 

recognizing the mean and rms features as viable features in the identification of tool 

state and observes that chip coloration provides direct correlation to the temperature 

of machining as well as tool condition. 

This proposed model is aimed at creating a timing schedule for tool change in 

industries. This model ultimately links the rate of wear formation to characteristic AE 

features. 
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Chapter 1 Introduction 

1.1 Preface 

Due to the rapid growth in cutting edge technology the need for a healthy 

manufacturing sector is essential to meet the market demand. Machining is an 

important process to consider in large scale industrial production. Numerous cutting 

operations are employed in a machining environment. These operations are aimed 

at the removal of material by power-driven machine tools to mechanically cut the 

material or generate required geometry. Modern day machining is controlled by the 

use of computers. Computer Numerical Control (CNC) machine tools are driven by 

abstractly programmed commands which automate machining to facilitate the cutting 

process. 

The influence of the CNC machining on the automation of the manufacturing process 

is substantial but this innovation fails to monitor the quality of its operations. The 

challenge of wear formation on the edges of the tools, which causes defects on the 

workpiece, poses a threat to total automation. Thus, the introduction of an adequate 

tool condition monitoring system is vital. 

TCM as a modern diagnostic tool provides an opportunity to orthodox routine 

manufacturing systems to adequately and efficiently control their operations. It 

provides the building blocks for intelligent futuristic and autonomous manufacturing.  

This study creates and evaluates a TCM model with evolutionary techniques for 

improved productivity in manufacturing. 
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1.2 Tool condition monitoring in industry 

The industrial revolution of today’s manufacturing industries is anchored around 

various cutting operations. Such processes range from milling, cutting, drilling, 

turning and grinding operations. These operations which form a potent underlying 

factor in the production of engineering products are constrained by low efficiency and 

high cost. Due to these challenges an adequate monitoring system is essential to 

ensure optimal yield. 

Tool Condition monitoring is a modern monitoring approach used in the industrial 

sector for various processing operations including machining. This monitoring 

process oversees the state of the cutting tool during machining operations to help 

predict tool life and alert for tool replacement in time to avoid downtime condition. 

TCM in machining operations of today’s manufacturing is also paramount for high 

productivity. This system of monitoring of machining operation is used to determine 

the overall system effectiveness (OOE) of the production line [1].  

The OOE largely depends on the amount of downtimes caused by the machine 

breakdown as a result of tool failure. In monitoring on-line downtime conditions, two 

problem sources are identified. One problem is caused by the transfer of work piece 

between machines and the other by excessive wear and breakage generated on 

tools during machining [2]. The downtime generated from transfer of work pieces is 

unfortunately unavoidable during operation, but tool wear can be monitored and 

controlled successfully. 

TCM could be performed on various cutting operations to determine the wear rates. 

Operations such as cutting, grinding, milling and drilling are common industrial 
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machining operations that could be successfully monitored. Numerous research 

efforts have been conducted in this field. There has been significant interest in the 

monitoring and study of face-milling and turning operations. The reasons why these 

research efforts are delineated towards these conventional cutting operations is 

because of the ease of monitoring, low expenses involved and high quality of 

obtained signals. 

In this study, downtime conditions caused by wear on tool flank are monitored. The 

research also focuses on the widely researched milling operation, which is heavily 

used in industries. 

1.3 Study objectives 

This research aims at monitoring tool wear during a milling operation through 

acoustic signals captured by a multi-sensor data acquisition system. 

The research will monitor milling machining operation at different combinations of 

process parameters when cutting tool steel to link the rate of wear generated on the 

tools to the AE data. The developed monitoring technique will help to determine the 

necessary time interval between successive tool changes. The work is expected to 

produce a model that can describe the behaviour of cutting tools based on the 

characteristics of the AE signal. 

1.4 Study scope 

The scope of this research was identified accordingly: 
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 To carry out a feasibility study which highlights the principles of tool condition 

monitoring processes using AE sensing technologies 

 To monitor tool steel metals on milling machining operations at high speed 

utilising three industrial AE sensors at different positioning arrangements. 

 To analyse signal parameters obtained through an artificial intelligent network. 

 To create a model which links the rate of wear generated on the tool to the AE 

data for an optimal tool change timing sequence. 

1.5 Hypothesis 

The integration of a data acquisition system with a multi-sensing technology on 

machining operations during the real time usage may be realised to monitor wear 

formation on tool inserts, and produce efficient tool change timing schedule. 

For that we may use a simultaneous sampling multifunction data acquisition system, 

based on computer architecture and driven by a graphical programming language to 

develop an acquisition framework which harmonizes sensor acquisition, monitors 

and analyses signals. 

1.6 Delimitations 

This research is intended to provide a guided practice to the use of AE data to 

determine wear rate in machining operations. However, the scope of this research is 

limited to its implementation on the milling machining process and the use of the 

machine tools having rigidity and stiffness close to the one used in this experimental 

work. The factors considered for the estimation of the wear values are limited to the 

speed of rotation and feed. 
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In addition, the results could be generalised for cases where the cutting tool and 

workpiece are made from carbides and mould steels respectively. 

1.7 Significance of research 

The benefits gained from automating manufacturing process are challenged by the 

high cost and reduced efficiency incurred from sudden tool damages as a result of 

excessive tool wear. Tool wear monitoring technique based on an artificial 

intelligence structure addresses the challenges in tool condition monitoring.  

The importance of acoustic emission in machining as a sensing parameter is under-

emphasized. Acoustic emission as a sensing parameter is an adequate source of 

information on the real-time operations. Its continuous source generation aids to 

classify the system responses and information to create a monitoring impression of 

the machining process. 

Major manufacturing industries in South Africa, such as the automobile industries, 

concerned with massive machining operations could reduce their production costs 

and improve the yearly turn-out by the implementation of an optimal tool change 

timing sequence using this solution. 

This study would create a conceptual and fundamental model which could be 

extended to numerous cutting operations, workpiece material and adjusted to fit the 

manufacturing need in each industrial sector. 

1.8 Structure of thesis 

Chapter 2 of the thesis describes the relevant theoretical concepts, which underline 

TCM. It includes a progressive evolution and areas of study. Chapter 3 expands the 
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acoustic emission concept as a sensing technique and reviews signal processing 

and processing techniques employed in TCM. Chapter 4 provides a detailed 

description of the experimental setup and system process flow. It exposes the 

implementation methodology and equipment used. Chapter 5 presents the various 

results observed and discusses the observations. It also presents the correlation of 

AE features to tool wear and proposes a model for predicting wear formation.  
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Chapter 2 Literature Review- T.C.M 

Tool condition monitoring is a diagnostic process which overviews the state of the 

tool during machining operations to alert when tool is damaged. TCM in 

manufacturing is used as a feedback system to obtain information of the cutting 

process. It enhances manufacturing by creating a platform via which a closed loop 

control of industrial machines is conceivable. It also gives grounding for modern 

technological evolutionary techniques such as artificial intelligence.  

Advanced capabilities such as a quality control and machine tool diagnostic control 

are important features postulated in future machine tool designs. Therefore an 

adequate control of the machining process which reduces unnecessary costs, 

increasing productivity over time and optimizing process parameters is a desirable 

trait in manufacturing.  

The main disadvantages in TCM range from the costs of sensing for optimal results 

to the influence of noise from machining environment. The vast choice in sensor and 

parameter has made TCM ambiguous in application. Some cutting operations have 

been observed to only perform optimally with distinct TCM models since the 

manufacturing environment forms a factor for consideration in design. Focused 

research on specific sensing techniques is also based on costs or ease of data 

manipulation. 

TCM is employed in automotive, tool manufacturing, electrical and mechanical 

product manufacture and other industries. It is applied in drilling, milling, lathe 

turning, turning, grinding and other machining operations. 
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The design of TCM as a precautionary means in machining can be viewed as a 

categorization model. The classification of the evolving state of the tool is the main 

concept in TCM. The framework in Figure 2.1 shows the various phases employed, 

from the signal acquisition to the classifications of features.  

 

Figure 2.1 Framework of TCM 

2.1 Tool life 

Tool life is defined as the time elapsed to produce an acceptable workpiece before 

tool failure [3]. The time of usability of the tool is influenced by the rate of wear 

formation on its surface. This wear weakens the tool yielding to a catastrophic tool 

failure. The life of a cutting tool can thus be determined by the amount of wear that 

has occurred on the tool profile. This wear state reduces the efficiency of cutting tool 

to an intolerable level or until eventual tool failure occurs [4]. 
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Several definitions have been postulated for tool life. These definitions are founded 

on the time criterion of usability, output production of the tool or even wear rate 

standards. One of the most common tool life models are Taylors equations. 

Taylor’s equation 

   
  

   
  (2.1) 

Where TL is the tool life,   the cutting speed,    and    are constants [5]  

 

Extended Taylor’s equation 

                     
              (2.2) 

 

Where   is the feed,   the speed of cutting,   the depth of cut and VB is the flank 

wear width.           are extended Taylor’s equation coefficients. Taylor’s extended 

equation is based on the determination of tool life using all cutting parameters and 

the amount of wear formed whereas its predecessor emphases only on significant 

parameters i.e. the cutting speed. Although Taylor’s equation provides the simple 

relationship between tool life and certain cutting parameters, as well as possesses 

an easy implementation process, nonetheless it is limited only to information about 

tool life [6]. The use of empirical equations to calculate tool life based on cutting 

parameters such as the depth of cut, feed rate and speed of cutting has been greatly 

a common practice in many research works [5] [3]. Other empirical relations have 

related the tool life to tool temperature [5] and also modelled tool life as a stochastic 

process [7]. 
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2.2 Mechanisms of tool wear 

Wear formed on the tool could occur based on some certain modes of formation. 

The formation modes are termed as the mechanisms of wear. Some common wear 

mechanisms normally found in the machining environment are as follows: 

Abrasion wear: Abrasion occurs as a result of the interaction between the face of 

the tool and the workpiece. This is characterised by a loss of relief on the flank of the 

tool. Abrasive wear occurs due to the dissimilarity of the hardness of the two mating 

materials.  

Adhesive wear: Adhesion occurs in metal when the force elements of the material 

are not as strong as the interactive forces with the workpiece. This yields to the 

transference of material between the metals. Adhesive wear causes the build-up or 

welding of the machine chips on the tool cutting edge. 

Attrition wear: Attrition is a form of erosive wear effect occurring on cutting tools. It 

is caused by the impact of particles (liquid, gaseous, solid) on the metal surface 

which gradually erode fragments of the surface due to its momentum effect. 

Fatigue wear: The wear resulting from fatigue is described as the weakening of the 

material surface by the cyclic loading and unloading during machining. This is 

noticed in interrupted operations such as milling. Generally, cracks announce the 

presence of fatigue wear on the tool surface, which eventually leads to total fracture. 

Diffusion wear: Diffusion, also known as dissolution wear is an outcome of the 

gradual dissemination of solid element from one material to the other due to extreme 

heat and high friction conditions. It involves the decomposition of part the surface of 

one material and its integration into its opposing mating surface. This normally 
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occurs at a slow sliding velocity. Diffusion wear is greatly dependent on the material 

composition of the machined surface. The affinity of some elements in the material 

towards opposing elements could enhance the rate of diffusion wear experienced in 

machining. This wear mechanism is mostly experienced in the machining of ceramic 

materials with diamond tools. 

Corrosive wear: Corrosion resulting in chemical wear is brought about by chemical 

attack on the surface of the tool. Continuous friction on the tool depletes the 

protective oxidation films on that surface. This oxidation may accelerate the wear 

formation on the tool. The effect of high temperature and frictional forces over a long 

term would eventually alter material composition. 

Fracture wear: Severe fracture wear is commonly experienced in interrupted 

machining. Fracture wear occurs as the gradual chipping and cracking of solid 

surface due to the sudden loading and collision of both materials. 

These wear mechanisms could be encountered in various combinations during 

machining. Dominant wear mechanisms are influenced by various factors, such as 

the cutting parameters, geometry of the tool, temperature, and speed of cutting 

operations, and other controllable and uncontrollable conditions. 

2.3 Forms of wear on the tool edge 

Tool wear generally occurs as a result of a combination of wear modes. Dominant 

wear modes depend on cutting conditions and process specifications. These 

dominant features are mainly responsible for wear formation. Some common 

identified wear forms are [8]: 
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1
2
 

 flank wear 

 crater wear 

 chipping 

 breakage 

 nose wear 

 plastic deformation 

 cracking 

 notch wear 

Four of the above listed forms are generally more rampant in cutting operations. 

These are flank wear, crater wear, nose wear and notch wear. Figure 2.2 and Figure 

2.3 show the various wear zones, region of wear and measurement parameters. 

 
Figure 2.2 Wear zones at cutting tool tip [4] 

(b) 

Figure 2.3 Regions of wear (side view); (b) 

measurement of flank [9]  

Notch wear 
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Flank Wear: Wear on the flank is dominated by abrasion. It arises due to both 

abrasive and adhesive wear mechanism from the intensive rubbing action of the two 

surfaces in contact i.e. the clearance face of the cutting tool and the newly formed 

surface of the workpiece. This action leads to increase in surface contact area and 

heat generation which in turns impair the surface quality. The rate of flank wear 

generated during machining operations varies along the cutting process [10].  

Nose Wear: Nose wear is found on the nose point of the cutting tool. It occurs 

predominantly due to abrasive effects on the edges of the tool yielding to an increase 

in the negative rake angle. At high cutting speed, the cutting tool edge deforms 

plastically and may result in the loss of the entire nose. Wear formed on the nose 

affects the quality of the surface finish [8]. 

Crater Wear: Wear on the crater surface arises due to the combination of wear 

mechanisms: adhesion, abrasion, diffusion, thermal softening and plastic 

deformation.  This form of wear is generally formed on the rake face some distance 

away from the tool edge as a crater. The crater wear is quantified by its depth and 

cross-sectional area of the crater for measurement. The most important factors 

influencing crater wear are temperature at the tool–chip interface and the chemical 

affinity between tool and workpiece materials [11]. 

Notch Wear: Abrasion and adhesion modes of wear are the main mechanisms 

involved in notch wear. Notch wear is formed at the boundary of the machined 

surface with no chip contact during cutting. This mode of wear also known as groove 

wear, is predominant in ceramic cutting tools with low toughness. [11] 

Amidst the groups, the flank wear is often selected as the tool life criterion because it 

determines the diametric accuracy of machining, its stability and reliability [12]. 
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2.4 Tool wear progression 

Research has shown that tool wear evolves at different rates in cutting operations. 

The rate of wear formation on the tool is largely dependent on the wear mechanisms 

occurring in the process. In flank wear, abrasion and adhesion cause a rapid rise in 

tool material loss at the initial stage followed by a relatively slow increase in wear 

rate and ends with another rapid formation of wear before fracture. This curve form is 

generally accepted by numerous researchers. Three basic stages of wear are 

identified from this curve: the initial stage, the regular stage and the fast stage. 

However, Ertunc [13] mentioned that tool wear progresses through five stages, 

shown in Figure 2.4.  

1. Initial wear; 

2. Slight wear (regular stage of wear); 

3. Moderate wear (micro breakage stage of wear); 

4. Severe wear (fast wear stage); and 

5. Worn-out (or tool breakage). 

 
Figure 2.4 Tool life progression curve [13]   
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2.5 Factors influencing tool life 

Tool wear formation is subjective to some machining parameters. The parameters, 

which affect the rate of tool wear, are 

 Cutting conditions (cutting speed  , feed  , depth of cut  ) 

 Cutting tool geometry (tool rake, cutting edge and clearance angles) 

 Properties of work and tool material. 

 Properties of lubricants or coolant 

 Rigidity of machine tool 

It is generally known that the life of a tool is directly related to its rate of wear. 

Therefore the parameters influencing tool wear would as well adversely affect its tool 

life. The Tool life of a cutting tool is not only dependent on the wear but can be 

influenced by numerous other factors relating to the microstructural properties of the 

material. 

The following factors affect the life of a cutting tool: 

 type of material being cut 

 microstructure of the material 

 hardness of the material 

 type of surface on the metal (smooth or scaly) 

 material of the cutting tool 

 profile of the cutting tool 

 type of machining operation being performed 

 speed, feed and depth of cut [8] 
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In their research, Dimla and Lister conclude that the cutting speed has the strongest 

influence amidst these. They postulate that ―regardless of the differences in the 

values and trends of the normal and shear stresses at the contact interfaces, 

minimum tool wear occurs and apparent friction coefficient reaches its lowest value 

at the optimum cutting speed‖. [14] 

2.6 Cutting tool materials 

There are various cutting tool materials employed in the machining process. Ranging 

from high-speed steel to ceramics many of these cutting tool materials are used in 

the manufacturing industry today. These materials are classified based on the 

following properties: 

 Resistance to heat 

 Resistance to abrasion (hardness) 

 Resistance to fracture (toughness) 

 
 

Figure 2.5 Cutting tool material chart  
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2.6.1 Tool steels 

Steels are created from the addition of a small percentage of carbon to iron-ore. The 

carbon percentage content present in steels is the fundamental factor in steel 

classification but at levels above 3%, steel undergoes a transformation to cast-iron. 

Table 2.1 below, shows the classification of steel and their various percentage 

composition. 

Table 2.1 Classification of steels 

Class of Steel Percentage 

Low carbon Steel 0.08% - 0.25 % 

Medium Carbon Steel 0.25% - 0.60 % 

High Carbon Steel 0.60% - 2.40 % 

 

2.6.2 High speed steels (HSS) 

High Speed Steels (HSS) form an important classification of cutting material. This 

class has been greatly utilised in most industrial manufacturing processes globally. 

Numerous types of tool steels have been formulated to vary the distinct properties of 

hardness, toughness wear resistance and hardness retention. These HSS are 

classified based on their chemical compositions. Various elements such as carbon, 

silicon, manganese chromium, molybdenum, nickel, vanadium, tungsten and cobalt 

are alloyed to produce tool steels with controlled properties.  

Table 2.2 displays the effect of alloying elements on the properties of tool steels. 
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Table 2.2 Effects of alloying elements 

 C Cr Mo V W Co 

Hardness Increase Increase Increase Increase Increase Greatly 

increases 

Toughness No Change No Change Increase No change No change Decrease 

Heat Resistance Increase Decrease Increase Increase Increase Greatly 

increases 

Abrasion 

Resistance 

Increase Increase Increase Greatly 

increases 

Increase Increase 

 

2.7 Tool monitoring techniques 

Various tool wear monitoring methods have been proposed. However, due to the 

complexity of machining process, monitoring methods always undergo new 

developments and modifications. An ideal model has not yet been found. Scheffer 

[15] classifies the various techniques based on the type of sensor used, the 

parameter monitored and the state of machine process. Based on sensing style, 

ranging from sound, temperature, force and current methods sensing parameters 

have been classified into direct and indirect sensing methods [16].  

Direct sensing: This method directly monitors actual quantity of wear variable 

during operation [17]. It is less utilised in the industrial sector due to its cost 

implication and intricacy of implementation. Direct sensing is greatly affected by 

environmental machining factors such as illumination, the use of cutting fluid, chips 

formation and material temperature. Some examples of sensing technologies 

employing this method are the optical sensing, radioactive, laser beams and 

electrical resistance. 
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Indirect sensing: Indirect sensing has been greatly utilised in the industry despite 

its lower accuracy due to its ease of implementation and cost-effectiveness [15]. 

Unlike direct sensing, this method monitors the process parameters correlated with 

tool wear. Indirect methods employ the heavy usage of statistical and analytical 

models on the tool wear correlations to draw conclusions.  Some of the sensing 

methods used in the indirect method are Acoustic Emission (AE), spindle motor 

current, cutting force, vibration, cutting temperature etc… 

The monitoring techniques could be employed based on real-time or off-line 

conditions. Continuous monitoring permits the instant recognition of wear formation 

and provides a corrective methodology of wear identification. Despite these 

advantages, on-line tool wear monitoring has been a challenging area of research 

and industrial implementation due to the various influences from the machining 

environment and technical set-up. 

AE technologies are one of the most effective sensing technologies in monitoring 

tool wear [16]. AE signals are very effective in indirect method due to its non-

intrusiveness, ease of operation and fast dynamic response [18]. 

This study evaluates AE as a sensing technique due to its ease of acquisition. Its 

high frequency and continuous waveform provides substantial information of the 

whole process while unaffected by environmental noise from machining.  

From Table 2.3 the importance of these advantages in AE sensing can be inferred 

by the amount of research.  



 

 

2
0
 

Table 2.3 Summary of sensing methods used for different machine technology  

 Drilling Forging Gear Grinding Milling Reaming Turning 

Acoustic Emission [19-21] [22] [23] [24-28] [18] [29-38] [39] [29] [40-52] 

Current [53]    [54]  [55] 

Cutting Force [19-20] 

[53] [56] 

[22]   [30-31] [33-37] [54] [57-64]  [44-45] [49] [52] [65-68] 

Gap Sensor     [30]   

Image Sensor       [69-70] 

Sound [56]      [69] 

Spindle Power    [26] [36]   

Vibration [56]    [30] [33] [35-36] [60] [71]  [29] [47-48] [55] [67] 
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2.8 Sensor fusion 

Other segregations of research are based on the sensing technology and analysis 

methodologies employed. Some sensors employed in today’s manufacturing industry 

are: 

 Sound sensor 

 Acoustic sensors 

 Ultrasonic sensors 

 Laser sensor 

 Force sensors 

 Eddy current sensor 

 Temperature sensor 

 Magnetic field sensors 

 Electro-optical sensors 

 Holographic sensors 

 Thermocouple sensors 

 Vibration sensors 

 Velocity sensors 

 Displacement sensors 

 and acceleration sensors 

Sensors are positioned at various stages of the machine process to: 

 ascertain the performance of the machines 

 observe the process evolution 

 evaluate the quality of the output 

 and supervise and control process parameters utilised 

Research proves that sensor positioning affects data quality [72]. Sensors are most 

often found placed on the machine, tool or the workpiece. 

Numerous articles enumerate various merits of Acoustic Emission based on 

monitoring methodology. These were based on its frequency range which prevents 

the intrusion of environmental noises, ease of placement of sensors, low cost 
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involvement and its sampling speed which does not interfere with the cutting 

operations. [32] [50] [73] [74] [75]. From the findings, AE is termed one of the most 

efficient TCM sensing methods which can be applied to machining processes [38]. 

The use of a sensor fusion approach was conducted in this study to further optimize 

AE as a viable technique. Three acoustic AE sensors were positioned at different 

ends of the workpiece. The influence of sensor positioning and averaging signal 

values postulates to further increase sensitivity of AE signals and this could be 

applied via a fusion process.   

Sensor fusion or multisensory fusion techniques are greatly used in TCM. Dimla [10] 

describes the utilisation of more than one sensor signal from different sources to 

detect the same parameter as sensor fusion. Noise from the process infiltrates 

signals and influences the correlation efficiencies of signals. Thus, signal to noise 

ratio forms a decisive parameter to estimate whether the measurement provides 

significant correlation to the anticipated quantity. In multisensory fusion techniques, 

signal features from different sensors determine the output state of the tool. This 

technique however, executes the fusion process at the decision level of the TCM 

framework. 

The integration of the many sensory correlated features with a single or different 

process parameters gives a more sensitive and reliable prediction than a single 

sensory feature [76] [77]. This led Sick [17] to conclude that only the technique of 

sensor fusion can provide sufficient information in a monitoring system. However, 

practice has shown that in some cases a multisensory fusion with neural networks 

may produce worse results than a single sensor approach. This situation scenario 

may occur due to over-generalisation of the output by an excessive pattern learning 
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[17].In general, most of research show conversely a higher efficiency when operating 

on multisensory fusion techniques [30] [36] [78]. 

2.9 Acoustic emission (AE) 

Acoustic emission originates from the strain energy released as the rubbing process 

of cutting takes place. This is caused by the considerable amount of plastic 

deformation which occurs in metal cutting. Acoustic emission signal refers to 

transient elastic waves due to the rapid energy release from a localised source within 

a material [79]. 

A Comprehensive survey on the use of acoustic emission in TCM was conducted by 

Li [16].In his survey Li reiterates the efficiency and reliability of acoustic emission as 

a viable TCM sensing technique. The impressive amount of research in the last 

decade also indicates the increased interest in using AE in machining monitoring [21] 

[32] [42-43] [51] [72] [79]. Li in his review [16] reiterates the basic sources of acoustic 

emission during tool monitoring as the following: 

 Plastic deformation during the cutting process in the work piece; 

 Plastic deformation in the chip; 

 Frictional contact between the tool flank face and the work piece which results 

in flank wear; 

 Frictional contact between the tool rack face and the chip which result in 

crater wear; 

 Collisions between chip and tool; 

 Chip breakage; 

 Tool fracture. 
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Figure 2.6 shows the various wear zones which are the AE sources, generated 

during the cutting operation and how they relate to the various faces of the tool. The 

interaction of these various AE sources is responsible for the noisy signal generation 

of AE waves. 

 

Figure 2.6 Zones of AE generation during metal cutting process [43] 

2.9.1 Types of AE signals 

There are numerous types of AE signals produced in the course of machining. These 

are continuous and burst type. Continuous AE signals are associated with plastic 

deformation in ductile materials [72]. This form of AE signal represents the gradual 

wear which is generated on the tool. Burst AE signals have been observed to 

determine tough collisions and fractures during metal working. These burst signal 

are generated owing to the engagement and disengagement of the tool with the 

workpiece [46]. It is generally acknowledged that AE signals are generated due to 

plastic deformation of crack growth in the material. Burst AE signals are more 
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efficient in identifying fractures while continuous AE signals are more successful in 

evaluating progressive machining operations.  

Due to the frequent nature of entry and exit of the cutting tool, AE sensing faces 

challenges in adequately monitoring intermittent machining process such as milling. 

These collisions during cutting generate confusing data values about the present tool 

state. Numerous research work also identify a link between the magnitudes of the 

high peak AE parameters with catastrophic tool failure detection [46].  

2.9.2 More on AE sensors 

AE signals are easily identified in machining due to their higher frequency compared 

to machine vibrations. The application of non-destructive sensors therefore plays a 

major role in the monitoring process. The basic advantages of using acoustic signals 

in determining tool wear originate from its high frequency and sensitivity as well as 

its ease of placement and affordability. These sensors are of different types and are 

sensitive to the property of the material involved [24]. AE sensors could be placed on 

the workpiece to provide uninterrupted elastic energy signal. In the positioning of the 

sensor, further research on the properties of the transducers confirms a dominant 

relationship between the choice of location and the quality of the observed signals 

[80].  Inasaki [72] in his experiment proved the effect of sensor positioning in 

machining. He affixed an AE sensor on the cutting fluid supply nozzle, using the fluid 

as a medium for the generated signals. This system was conceived to avoid 

fluctuation in signal magnitude caused by the variation of the distance connecting the 

spindle head and the cutting point. His research reaffirmed the need to enhance the 

reliability of a monitoring process by ensuring high sensitivity of AE sensing 

technology. 
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Piezoelectric devices are suitable in the measurement of AE stress waves on the 

workpiece. Piezoelectric devices convert mechanical stress waves into electrical AE 

signals. They are resilient in structure and operate at higher sensitivity to most other 

sensors i.e. capacitive sensors and sensors based on electrodynamics and laser 

optical processes [81]. Piezoelectric possess sensitivities as high as 1000 V/µm 

which makes them suitable for measuring noise. The AE transducer operates with a 

flexible range of 20kHz to 1Mhz [38] which can be used to detect most significant 

machining conditions, but most research works were conducted in the range of 

100kHz – 800kHz [21] [28] [82]. Many recent articles concerned with tool wear 

monitoring use piezoelectric sensors to establish the wear rate production on flank 

face of the tool [16] [38] [48] [83].  

AE sensing technology can be based on numerous principles for data acquisition. 

Capacitance based AE sensors possess a high accuracy and are used to calibrate 

other AE sensors. Unfortunately, capacitance type displacement sensors are very 

sensitive to sensor position and surface mounting and thus not suitable for 

machining process monitoring [80].  

Hao, Ramalingam and Klamecki say that the AE waveform is a material-

dependent quantity and suffers attenuation and dispersion in its propagation to the 

transducer. The specimen geometry is continuously changing during deformation. 

Material property and shape changes also affect the interference, rejection and 

mode conversion of AE waves [82]. Their research investigated the relation of AE 

signal to the complexity of the nature of work material. This was conducted on a 

systematic study and evaluation of AE signal on cup drawing experiments during 

plastic deformations stages. 
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2.10 AE signal parameters 

Some feature parameters and empirical models are used in AE analysis to 

determine tool state. Features such as skewness, kurtosis, ring-down count, rise 

time, event duration; frequency and RMS value are investigated. Jemielniak et al [46] 

in their article statistically analysed the AE signal from the sensor to determine the 

catastrophic tool failure. They considered skewness value to measure the symmetry 

of the distribution about its mean value but the kurtosis is a measure of the 

sharpness of its peak.  

Chapter 3 reviews AE signal processing and parameters. Table 2.4 displays a 

summary of AE signal parameters employed in statistical signal processing: 

Table 2.4 AE signal parameters [32] 

Symbols Definitions 

     The average value  

      The RMS value  

     The standard deviation  

     The maximum value above which was 5% of all values  

     The minimum value below which was 5% of all values  

     The range (max–min)  

        The maximum minus average  

        The minimum minus average  

     The absolute difference between subsequent signal values  
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Chapter 3 Signal Processing 

3.1 AE signal correction 

During machining processes, due to the external load pressure applied from the tool, 

mechanical stress waves of high frequency are generated on the material. This 

source of AE stress waves observed operates at high frequency ranges and serves 

in acquiring information about the machining process. The behaviour of the 

machined material is also subjective to other factors such as environmental 

conditions and temperature.  

The need to process AE signal is necessary to delimit the acquisition to needed 

values. AE signal correction can be implemented by the design certain processing 

blocks. Filtering, amplification and conversion are stages implemented during signal 

correction. AE couplers are stand-alone modules which could be integrated to 

perform these correctional stages. Despite their ease of integration, PC-based signal 

application presents a more efficient method for correctional signal processing. 

Figure 3.1 shows the AE process chain. 

 

Figure 3.1 The AE process chain [81]   
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Signal processing forms the core of TCM. It forms the stage intended for the in-depth 

analysis of the acquired data. Due to the non-stationary characteristics and erratic 

transient nature of AE signal, extensive processing of waveforms is required. In this 

section of TCM, signal features are discussed. This phase of the research seeks to 

identify a processing technique suitable for the analysis of AE signals. It also 

presents and appraises the use of an artificial evolutionary technique to classify the 

wear in distinct states. 

Signal features provide valuable information on the signal. The use for high 

computational and analytical know-how is desirable at this level [1]. Signal 

processing is also characterised with the variation of numerous model parameters in 

data evaluation. The selection of parameter values during computation have shown 

to have effect on processing time, efficiency as well as performance. The selection 

criteria for parameter choice is susceptible to the methodology employed. There are 

three basic stages identified in processing; they are: 

 feature extraction 

 feature selection  

 decision making 

3.2 Feature extraction 

AE signals are complex in nature. They consist of overlapping transients and are 

very sensitive to environmental noise. Due to the complexity of the signal 

composition, it is essential to decompose the signal into features which provide 

information which directly correlates to the important machining conditions. Features 

generated serve as parameters from statistical mock-ups for visual analyses of 
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trends as well as inputs to decision making models such as neural networks. Sick 

[17] categorized classes of methods of feature extraction into the following: 

 Time-domain feature extraction 

 Frequency domain 

 Time-frequency domain 

 Statistical Feature extraction 

 Other methods 

3.2.1 Statistical time series 

One of the most common tools in the analysis of AE data is the time series model 

[1]. Time series is a collection of numerical observations arranged in a natural order. 

Usually each observation is associated with a particular interval of time [84].Time 

series analysis encompasses approaches for analysing time series data to extract 

significant characteristics and information from the data. The most employed 

methodologies of this statistical tool are the Autoregressive (AR) and Autoregressive 

Moving-Average (ARMA) model.  

An important factor to consider when modelling the end milling process is that the 

process can be divided into two independent models: a deterministic model and a 

stochastic model. The deterministic model is based around known dynamic 

characteristics of the milling process such as radial depth of cut, axial depth of cut, 

spindle speed, number of cutting teeth and spindle position. The stochastic model 

consists of the random variations contained within the overall signal [1]. 

The model coefficient of AR, Moving-average (MA), and ARMA are utilised as 

features for signal processing. Models can differ from one another in order. Higher 
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order models split signal into more distinct bands and can analyse distinctively noise 

embedded. The order of a time series model therefore determines the number of 

features that can be obtained from that model. Ravindra et al [85] in their study 

evaluated AR parameters, power of the AE signal and AR residual signals as 

features for TCM and found them to be effective in tool condition monitoring. 

The AR model can be defined as  

 ̅                                  (3.1) 

Where  ̅    is the AR predicted value,                   is the time series 

(acoustic emission),    is the AR order,            are the AR parameters and the 

residual component is              ̅      [85] 

The MA model is defined as: 

 ̅                                  (3.2) 

Where  ̅    is the MA predicted value,                   is the time series 

(acoustic emission),   is the MA order,            are the MA parameters and the 

residual component is              ̅       

The ARMA       notation model represents time series with   autoregressive terms 

and   moving-average terms. This model contains the AR     and MA     models. 

      ∑   
 
            ∑           

       (3.3) 

 

Xaoli’s review [16] projects how experimental results have shown that the power of 

the AR residual signal in AE monitoring, increases with increase of the flank wear of 

tool cutter during turning operations. Pontuale et al [40] used the histograms of the 
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absolute value of time series amplitudes taken from measurements of new and worn 

tools. From this method, they identified some power law characteristics through the 

use of log-log histograms. 

3.2.2 Time domain 

Time domain involves the analysis of signal features, computational functions and 

economic data with respect to time. Time domain features are greatly used in TCM 

[85-86]. Jemielniak et al [86] in an attempt to find optimal features combination 

during an analysis of numerous signal features identified five time domain features 

from signals (Effective value, standard deviation, skewness, kurtosis, and crest 

factor) for examination. Explained below are some time domain signals features [36].  

The mean of amplitude values of raw data signal is found by 

    
 

 
∑   

 
     (3.4) 

The RMS for a collection of n values in the raw data is defined as 

    √
 

 
∑   

  
     (3.5) 

The variance for a collection of values in the raw data is defined as  

     
 

 

∑         
   

   
 (3.6) 

where   is the standard deviation. 

Skewness (Sk): The 3rd central moment is a measure of the ―peakness‖ of the 

asymmetry of the distribution of the signal raw data. It is expressed as 
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∑         
   

    (3.7) 

Kurtosis (Ku): Fourth central moment is a measure of the ―peakness‖ of the 

probability distribution of the signal raw data 

   
 

 

∑         
   

    (3.8) 

Power (P): Signal power is defined as the measured area under the rectified signal 

envelope. This is another measurement of the signal amplitude; however, it is 

sensitive to amplitude as well as duration, and it is less dependent on operating 

frequency. Power is defined as  

  
 

 
∑   

  
     (3.9) 

Peak-to-peak amplitude (pp) is found by determining the difference between the 

highest peak values minus the lowest peak value attained by a signal. This peak-to-

peak is expressed depending on the signal. For force it is expressed in Newton, for 

vibration and acoustics in microvolt, and for spindle power signal in kilowatts. 

Crest factor (CF): the crest factor of a waveform is equal to the peak amplitude of a 

waveform divided by the RMS value. The crest factor calculation is used to provide 

an idea of the degree of impacting in a waveform. It is defined by the following 

formula: 

    
    

   
  (3.10) 

The burst rate (Br): Sometimes called the pulse rate is the number of times the 

signal exceeds pre-set thresholds per second. This feature is only applied to 

vibration and AE signals. The pre-set threshold is usually set to 300µV [36]. 
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3.2.3 Frequency and time-frequency domain 

Frequency band acquired during frequency domain analysis differ in spectral energy 

distribution. Spectral energy provides ample information on the state of the 

machining process. It is obtained by computing the power spectral density (PSD) of 

the signal and increases or decreases based on wear level.  

Fourier transform is used to decompose an energy-signal into its Fourier transform 

components. Specifically, a hanning window is applied as windowing method to the 

raw data before Fast Fourier transforms (FFT) to prevent leakage. Then, the power 

spectral density is obtained where it is formed by a plot of the frequency components 

on the x-axis and attendant power in that frequency on the y-axis [36].  

Sum of total band power (STPB): The power spectrum does not directly give us the 

total power in the signal, only power in a particular spectral component. To obtain the 

total power in the signal or in a particular range, the integral of the PSD over the 

range of frequencies of interest must be obtained. The following formula defines 

STPB: 

     ∫       
  

  
 (3.11) 

Where     , represents the power at a specific frequency component and         is 

the frequency band. Some frequency domain features are shown in Table 3.1 below 

[87]. 
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Table 3.1 Some frequency domain features [87] 

Some Frequency domain features Description 

Mean of band power spectrum (MBP) 
    

 

 
∑     

 

   

 

Variance of band power spectrum (VBP)     
∑              

   

   
 

Skewness of band power spectrum (SkBP)      
 

 

∑              
   

   
 

 ⁄
 

Kurtosis of band power spectrum (KuBP)      
 

 

∑         
   

  
 

Relative spectral peak per band (RSPBP)       
 

 

∑         
   

  
 

Total harmonic band power (THBP)a 

Where m             where      is the power 
at the fundamental tooth frequency, body cutter, and 
their harmonics, and   is the largest integer for 
which   is the cut-off frequency for the sensor 

     ∑     

 

   

 

Frequency of maximum peak of band power (FPBP) Highest amplitude frequency 

Maximum (peak) of band power (PBP) 
The peak of power spectrum in a specific 

frequency band. Expressed by the energy 

level (W/Hz). 

a
 -This feature is only applied to the three-directional force signals [87] 

The cutter tooth frequency with THBP is calculated by using the equation: 

   
 

  
   (3.12) 

Where S=spindle RPM and n= the number of teeth on the cutter. The main 

frequency of the body can also be found from equation 3.13 [36]. 

   
 

  
  (3.13) 

Jemielniak et al [86] further identifies only 17 AE features from both the time and 

frequency domain as useful, after removing similar features. Only six features from 

AEraw and AERMS were identified. 
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3.2.4 Wavelet transform (WT) 

Wavelet analysis has attracted much attention in signal processing [41] [88], It has 

been successfully applied in many applications such as transient signal analysis, 

image analysis, communications systems, and other signal processing applications. 

Wavelets are mathematical functions that segments data into different frequency 

components, and observe each component with a resolution matched to its scale. 

Like Fourier analysis, wavelet analysis deals with expansion of functions in terms of 

a set of basic functions. It expands functions not in terms of trigonometric 

polynomials but in terms of wavelets, which are generated in the form of translations 

and dilations of a fixed function called the mother wavelet. The wavelets obtained in 

this way have special scaling properties. They are localized in time and frequency, 

permitting a closer connection between the function being represented and their 

coefficients. Therefore wavelet analysis does provide superior signal assessment 

and greater numerical stability in reconstruction, and manipulation is ensured [89]. 

To clearly identify the differences in the time and frequency domain a plot of time 

and frequency coverage with respect to time is helpful. Figure 3.2 shows a pictorial 

view of basic function time windows and coverage of the time-frequency plane [41].  
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Figure 3.2 Wavelet signal division [41] 

 

Wavelet algorithms process data at different scales and resolutions. The scale factor 

is proportional to the dimension of the wavelet and inversely proportional to its 

frequency content. A compressed wavelet is characterized by a smaller scale factor 

and a high frequency while a stretched wavelet with a larger scaling factor and 

houses low frequency contents. Based on these distinctions, Chen [41] concluded 

that wavelet analysis is an appropriate tool for analysing AE data to determine the 

rate of wear form. They also stated that compared to the wavelet resolution 

coefficient modulus maxima, wavelet resolution coefficient norm was more stable 

and useful than other AE character parameters for providing information of cutting in 

tool condition monitoring. 

It is shown that wavelet is competitive to other signal analysis approaches because 

of its multi resolution ability, sparsity, and localization properties. Zhu [88] stated that 

WT was effective in analysing non-stationary machining sensor signals. Based on 

the benefits of WT discussed, applications of wavelet in TCM are reviewed in time–
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frequency analysis, denoising, feature extraction, singularity analysis, and density 

estimation. It has achieved a lot of success in TCM over the years [19] [41] [88]. 

3.3 Feature selection 

Based on the high number of features which can be generated in the various 

domains during extration, features seletion is employed to optimally reduce feature 

set. Bensaied et al [36] identifies 138 featues from five sensor signals for wear 

identification. Jemelniak et al [86] identified 582 signal features from three sensor 

values. In their research they indicated 133 to be useful in the decision making 

process and they reduced this number to 40 basic features after removing similar 

features. Features are selected based on their correlation value to the desired 

output. 

Correlation determines how similar two signals are to each other. Correlation 

generates a single number known as the correlation coefficient which shows the 

positive or negative proportionality of one signal to the other. The coefficient 

correlation approach estimates the dependency of the signal with a specific value. It 

could be employed in two ways: 

 The correlation level of individual features to the predicted output category 

 The inter-correlation level amidst the features. 

Equation 3.14 gives the correlation of signal features to the desired outputs. This 

approach indicates the non-linear relationship between these values. 

   
      ∑              

       √∑         √∑          
   (3.14) 
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Where   and   are the mean of   and  , respectively;    are features extracted from 

signals;    are tool wear values,   is the correlation coefficient. When |  | is 

approaching the value of one, the relation between   and   is approaching linear, 

and when   is close to zero   is independent of  . 

Nine distinct features have been selected in this research based on their correlation 

efficiencies to the target output. From these features two are from the operating 

parameters of the end milling machining process. These are used to identify their 

effects in the wear formation. Table 3.2 shows AE parameters utilised. Further 

review on the selection process is found in chapter five. 

Table 3.2 AE paramters used in the framework 

Symbols Definitions 

       The mean value  

      The RMS value  

     The D1 wavelet coefficient 

     The D2 wavelet coefficient 

     The D3 wavelet coefficient 

      The wavelet total energy  

          The sum of wavelet coefficient  

 

3.4 Decision making 

TCM adapts artificial evolutionary techiniques in making its decisions. Some of these 

techiques range from neural networks using multi layer perceptron to the use of 

fuzzy logic classifiers. Other methods employed are the use of statistical analysis of 

features.  
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Data fusion of mutli-sensor TCM is also mostly practiced at this level. After signal 

pre-processing, feature extraction, selection and signal conditioning algorithm have 

been applied, data sets present less challenges in a sensor fusion approach. The 

choice of decision making process is influenced by complexity of implementation 

based on the number of parameter to be set, form of desired output and efficiency 

level. 

3.4.1 Artificial neural network (ANN) 

An Aritificial neural network (ANN) technology is derived from the emulation of the 

brain’s process in solution solving. It is a mathematical model make-up of neural 

activities. Neural Networks (NN) use real and processed data to build ideal systems 

for decision, classification and forecasts. Knowledge is acquired by the ANN through 

a learning process. Learning is a process by which matching patterns in data are 

identified and adequately classified and new data patterns are predicted from the 

update of free parameters (i.e. synaptic weights and bias levels).  

There are two types of neural networks, supervised and unsupervised. The type of 

neural network is differentiated by the mode of parameter change. This may be 

classified as follows: 

 Supervised learning: This mode of learning projects towards a known 

ground-defined set of training data. It is a form of learning with assitance, 

where the NN has known target output. e.g. backpropagation 

 Unsupervised learning: In unsupervised learning, the learning process 

identifies without assistance based on similar pattern of a set of outputs for 

the network. 
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The backpropagation algorithm has emerged as the workhorse for the design of a 

special class of feedforward networks known as multilayered peceptrons (MLP) [90].  

Backpropagation networks (BPNN) are hierarchical feedforward networks with highly 

interconnected neurons, organized in a layered structure as shown in Figure 3.3. 

Most NN problems are solved using three distinct layers: the input layer for 

receptions, the hidden layer which captures the non-linearities of the input/output 

relationship and the output layer. Each layer is interconnected to the other via a set 

of associated weight. The sum of the weight inputs through an activation function 

produces the neurons output. With one or two hidden layers, MLP’s can virtually 

approximate any input-output map. They have been shown to approximate the 

performance of optimal statistical classifiers in difficult problems [91]. 

 

Figure 3.3 Back propagation neural network 

BPNN is a popular articial neural network that has been used successfully in most 

research and in many industrial applications, especially in control applications.This 

technology is greatly adapted for decision making, diagnosis, prediction and control. 
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This research employed a feed forward BPNN with one hidden layer based on tests 

results. A lower mean square error was obtained using this network architecture. 

BPNN may not need further optimization algorithms such as genetic algorithm and 

particle swarm optimization due to the reverse process of computation and makes it 

quick and easy to apply.  

ANN presents some advantages over coexisting classification techniques. Some of 

these advantages can be observed from their ability to classifify data without prioir 

knowledge. Fuzzy logic models do not posses huge learning capabilities, and draw 

back in their generalisation. The combination of these models in the neuro-fuzzy 

approach is challenged with the number of learning parameters employed in the 

classification. Though there are other techniques such as statisitical and bayesian 

models.  ANN’s ability to learn in noisy environments is instrumental in machining. 
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Chapter 4 Experimental Design 

This chapter presents the experimental design setup. The design encompasses the 

machining process utilised, the choice of equipment and the process parameters 

chosen for monitoring the tool wear.  

4.1 Research equipment 

4.1.1 Machine tool 

The research project tests were implemented on an industrial five axis Deckel Maho 

DMU 40CNC machine. (Figure 4.1) The DMU 40 CNC machine belongs to the set of 

innovative monoBLOCK series of CNC machining centres produced by Deckel 

Maho. This machine set presents improved performance in terms of dynamics, high 

precision, higher machined surface, enjoys quality and lower space requirements. 

The DMU 40 possesses a motor spindle with a speed up to 12000 rpm. Its extensive 

large range of expansion options, advanced CNC control and numerous software 

features makes this machine ideal for conducting machining tests. 
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Figure 4.1 CNC 5-axis Deckel Maho Milling machine 

4.1.2 Cutting tool 

End milling cutting experiments were performed in this study. The cutting tests were 

conducted on using a 25 mm diameter indexable end-mill with two cutting edges. 

Figure 4.2 shows a sample picture of the tool from Kennametal (Table 4.1). KC520M 

Inserts utilised are composed of carbide grade with a TiAIN coating.  

 
Figure 4.2 Tool from Kennametal 

Table 4.1 Kennametal tool manufacturer designation 

Tool End Mills —Weldon Shank from Kennametal 

25mm diameter 25A02R039B25SSP10G Tool manufacturers designation 
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4.1.3 Workpiece 

The workpiece, W302 also known as H13 tool steel is a commonly used for hot and 

cold tooling uses. H13 is an air hardening chromium die steel, utilised for a range of 

applications. This alloy possesses a hot hardness which preserves the metal during 

cyclic heating and cooling cycles in hot work application in combination with an 

excellent resistance to thermal shock. It is composed of chromium, vanadium for 

increased resistance to heat and molybdenum. They also act as strengthening 

agents. It is commonly used in hot die work, die casting and extrusion dies. In the 

experiment the workpiece was machined in its unhardened state. The decomposition 

of the H13 steel is shown in Table 4.2. 

4.1.3.1 Microscopic properties 

The H-13 grade tool steel was chosen for this research because of its common use 

in industries for die casting. H13 tool steel can withstand high temperature 

fluctuations during machining and possesses very good toughness properties. These 

qualities made it an ideal choice in experimental trials on high speed milling without 

coolant. Its commercial value also supported its selection. The machinability of H13 

is medium to good. 

Table 4.2 Chemical composition of W302 (H13) tool steel 

 C Si Mn Cr Mo V 

COMPOSITION % 0.39 1.10 0.40 5.20 1.40 0.95 
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4.1.4 Optical microscope with image analyser 

The ZEISS stereo Microscope version 20 provides observation with a magnification 

as high as 150X. It possesses three focal lenses with motorised zoom expansion 

and resolution adjustment. The panel combines buttons, joystick and touch screen in 

a compact design, allowing intelligent control of all microscope functions with real 

time display of main microscope parameters. In order to determine the inserts wear 

state, the optical microscope and analysis software Figure 4.3 was utilised. 

 

Figure 4.3 ZEISS light microscope with image analyser 

4.1.5 Acoustic emission sensing system 

The continuous and burst type AE signals are acquired by Kistler 8152B AE-

piezotron sensors (Figure 4.4a). The coupler (Figure 4.4b) is used for signal pre-

processing and conditioning. Figure 4.6 shows the experimental workflow of the 

research. An AE sensor basically consists of a sensor case, a piezoelectric 

measuring element and an integral impedance converter. In AE sensors, the 

diameter of the piezoelectric element is the main factor which defines the properties 
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of that sensor. This piezoelectric measuring element is mounted onto a thin film steel 

diaphragm which is sensitive to elastic stress waves emitted during machining. It is 

however isolated from the metal case and other AE interference by design. Kistler 

AE sensors have a high sensitivity to surface and longitudinal waves over a wide 

frequency range. The type 8152B (Figure 4.4 a) covers the range of 50 KHz to 900 

KHz and outputs a low impedance voltage. 

(a)   

   

Figure 4.4 (a) AE Sensor (Kistler 8125B)   (b) AE coupler (Kistler 5125B) 

The acquired signals from the sensors are then relayed for pre-processing to a 

Kistler piezotron coupler type 5125B for amplification, filtration and RMS conversion. 

Kistler coupler is equipped with a jumper connection for adjustment of the gain from 

X10 to X100 indicating a 20dB or 40dB amplification factor. A high pass filter with 

frequency range from 50 kHz to 700 kHz and low pass filter of frequency range from 

100 kHz to 1 MHZ are configurable to remove noise embedded within the signal. The 

output signal of the filter can then be digitized via an inbuilt RMS compartment over a 

range of 0.12ms to 120ms time-constant. Figure 4.5 displays the operation workflow 

of the coupler. The signals are then relayed to a data acquisition card via a NI BNC 

connection block and custom cable design. 

Senor Coupler 
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(b) 

Figure 4.5 AE coupler circuit framework 

 

 
Figure 4.6 Experimental process workflow 

4.2 Tool wear measurement and chip analysis 

There are numerous methods which could be used to measure the wear formed on a 

cutting tool. Some of these methods are listed below: 

 Microscopic evaluation 

 Weight change identification 

NI Data 

Acquisition 

AE Coupler 

Signal Pre-

processing 

Microscopic 

Evaluation 

Tool State 

Determination  

NI BNC 

Connection 
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Tool wear measurements and chip form identification are further explained below. 

For the purpose of this research microscopic evaluation of the inserts was employed. 

4.2.1 Tool wear measurements 

The inspection of the tool was conducted on the ZEISS stereo Microscope to identify 

the wear progression. Magnified tool inserts images were recorded intermittently 

between the different machining time phases to monitor the progression of the flank 

wear observed on the tool. Measurements were obtained from the captured pictures 

using the image analyser the microscope was equipped with. This process was 

conducted until significant wear damage was formed on the tool.  

Figure 4.7 shows some images of flank wear observed on the tool flank during the 

beginning of a machining test.  

 
Figure 4.7 Examples of tool wear formed on the tool flank 

4.2.2 Microchips characterization 

Chips obtained during the cutting process differ in size, shape, and colour based on 

the parameters chosen for machining. These chips size and geometry formation are 

influenced by the speed, feed and depth of cut. The chips difference in colour is the 

result of heat generated due to the friction between the chip and tool face. Therefore, 

chip colour identification gives an idea of the extent of machining temperatures. 
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4.3 Experimental setup 

Machining tests were conducted in dry machining conditions on the Deckel Maho 5-

axis CNC machine. The acoustic sensors were connected at different positions on 

the workpiece via the use of the magnetic clamp. Figure 4.8 depicts experimental 

setup used to perform cutting tests on Tool steel H13 and the sensor positions. 

 

Figure 4.8 Machining setup of H13 tool steel and sensor positions 

4.4 Experimental procedure 

A usual technique was employed for the acquisition of the data during the different 

machining phases.  Listed below are the steps employed to retain consistency of 

data. 

 For clear results and consistent tests, the workpiece face was first cleaned 

and squared before conducting the primary tests with rough cutting inserts.  

 Before machining tests at each layer depth, a shoulder of at least 25 mm in 

radial direction was cut to allow the whole tool to be within the workpiece 
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before experiments commenced in order to prevent the acquisition of high 

amplitude data from collision entry. 

 Machining tests were conducted with vertical and radial depth of 2mm. 

 Each experiment was represented with specific cutting inserts which were 

stopped every certain number of passes to examine the wear progression on 

the microscope. 

 Each machining test cutting pass were conducted along the length of the 

workpiece and the AE data of each pass was recorded. 

 Prior to every cutting phase, the tool wear formed was observed in the 

laboratory with the microscope. 

 Each cutting phase consists of various cutting passes based on the observed 

wear progression observed from the microscope.  

 AE raw data only was recorded over a time frame of 30 seconds over each 

cutting pass. 

 Chips sample were collected for each phase of experiments. 

 

4.5 Machining parameters 

A record sheet of the machining parameters used and the experimental report sheet 

of test parameters are shown in Table 4.3 and Table 4.4, respectively.  

Table 4.3 Machining parameters used in experiment 

Parameters 1 2 3 

Speed (m/min) 170 200 230 

Feed (mm/min) 200 250 300 

DOC (mm) 2 2 2 

 



52 
 

4.5.1 Experiments data sheet 

Numerous mathematical models and equation are employed in the analysis of 

features. Time series and frequency models are heavily employed in the TCM.  

The realisation of tool wear monitoring in metal cutting requires precise classification 

and definitions of parameters under study. Metal cutting operations either operate as 

single-point or multiple cutting point operations. Some correlations exist between the 

number of cutting points and the wear rate, however the effect of the number of 

cutting points on the tool wear is still an area under study.  

 

Table 4.4 Experimental report sheet 

Description Experiments 

1 2 3 4 5 6 7 8 9 

Machine DECKEL MAHO DMG-40 

Holder HSK - 63 

Insert KC 520 M 

D. O. C. radial (mm) 2  

D. O. C. axial (mm) 2  

Speed (rpm) 2546  2928 2164 

Speed (m/min) 200  230  170  

Feed Rate 
(mm/min) 

200 250 300 300 250 200 300 250 200 

Workpiece H13 tool steel 

Passes 119 134 125 123 106 72 132 135 113 

Total time (min) 23.8 26.8 25 24.6 21.2 14.4 26.4 27 22.6 

Total Length (m) 23.8 26.8 25 24.6 21.2 14.4 26.4 27 22.6 

Diameter (mm) 25 mm end-mill indexable tool  

Pass Length (mm) 200 
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4.6 AE signal processing software 

The signals relayed are further processed using NI LabVIEW® software and Matlab® 

for additional processing. Labview® is a development platform for a visual 

programming language. It is used for the systematic processing and measurement of 

laboratory data. Figure 4.9 displays the LabVIEW® instruments developed for the 

acquisition of the AE data. 

 

Figure 4.9 LabVIEW® data acquisition instrument for acoustic emission 

measurement  
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Chapter 5 Results and discussion 

5.1 Introduction 

Tool wear classification was categorized into three different levels. Based on the 

experimental runs and observed wear from the machining parameters selection, a 

range from 0.01 to 0.3 mm was adapted. A maximum wear of 0.3 was reached in 

some experiments, but most tools were not machined to reach extreme levels to 

prevent an avalanche broken tool state. Severely worn tool state was an adequate 

level for result processing. Table 5.1 indicates the various wear classes. 

Table 5.1 Tool wear classification 

Class Flank Wear (  ) Tool state 

0    < 0.1 New tool 

1 0.1 <    < 0.2 Moderately Worn 

2         > 0.2 Worn tool 

 

Based on the cutting parameters shown on Table 4.3, the cutting tool performed 

several passes along the length of the workpiece. 

In this chapter, review of results and observations obtained during the research are 

discussed. Figure 5.1 gives a pictorial representation of the machining experiments 

and process definitions.  
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Figure 5.1 Machining process definitions 

5.1.1 Segmentation of data 

The theoretical frequency of the process indicates the number of tool entry into the 

workpiece per second. This information helps in the selection of a time segment 

frame for signal processing. The theoretical cutting frequency of the milling operation 

was obtained from the equation below: 

     
  ⁄  

         

       
  (5.1) 

 

Where   is the theoretical cutting frequency,   the number of teeth on the tool,   the 

rotational speed of the cutter in rpm,    (m/min) and    (mm) are the corresponding 

cutting speed and cutting tool diameter. 

In this experiment, the theoretical cutting frequencies of the process were 72.13 Hz, 

84.86 Hz and 97.6 Hz. Table 5.2 shows the segmentation of data values and the 
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number of tool entry per segments. Based on the 2 MS/s choice of sampling rate, 

segmentation of the data for processing was implemented. The sampling occurred 

over a time frame of 30 seconds, yielding to an acquisition throughput of 60 million 

samples per pass.   

The feature extraction process involved the creation of data segments of 64ms over 

the 30 second acquisition frame. Five distinct segments of the frame were created 

but only one segment set is necessary for signal processing and feature extraction. 

This number of segments is to assess the average characteristic of the whole 

acquisition frame and ensure appropriate segment selection. Each data segment 

consisted of sets of 128,000 samples.  

Table 5.2 Segmentation of data 

Parameters values 

Rotational speed (rpm) 2164 2546 2928 

Sampling rate (S/s) 2,000,000 

Theoretical cutting frequency (Hz) 72.13 84.86 97.6 

Acquisition time frame (s) 30 

Total acquired data  60,000,000 

Number of segments 5 

No. of segments selected for  extraction 1 

Segment time frame (ms) 64 

Number of samples per segment 128,000 

 

At a feed of 200, 250 and 300 mm/min, machining passes ran for 60, 48 and 40 

seconds, respectively. The signal acquired was digitally filtered using an FIR 

equiripple filter of cut-off frequency of 96 kHz. 



57 
 

5.2 Signal analysis  

In relation to the process monitoring approach, numerous signal processing 

techniques have been described in Chapter Three. Techniques such as time series, 

Fourier transforms are universally used in tool condition monitoring. 

As earlier mentioned, AE signal waves are elastic stress waves emitted during 

machining on the surface of the work piece [79]. These waves are characterised by 

continuous or transient nature form. A vivid correlation can be observed from the 

magnitude of the amplified voltage value to the machining state but further 

processing is necessary based on its non-linear characteristics to the process flow.  

An appropriate method is required in TCM to provide information on the non-

stationary and stationary signals. Short time Fourier transform (STFT) methods are 

employed to provide such information but this technique is limited to an appropriate 

window length size which is used to describe transient response in the applied static 

time gap. However, wavelet transforms were employed to handle the resolution 

challenge in STFT. Wavelet transform adapted the time frame to a frequency band of 

interest to have an entire coverage of the signal.  

The analysis of this research was carried out using MATLAB® software for the time 

and frequency domain feature extraction process. Discrete wavelet transform was 

performed to decompose the signal into five distinct levels. This section of the results 

highlights feature characteristics and trends for the successive correlation process. 

Spectral charts and time charts are used to review these traits. 
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5.2.1 Result observation set  

An observation set is used to display acquired data values utilised in the study. 

Amidst the overall data set, Table 5.3 presents some sample experimental data 

collected against few parameters of interest. One exemplary line of the extraction 

process from each machining experimental test can be identified. Each of these lines 

portrays characteristic response in time and time-frequency domain and the 

corresponding wear output.  These values constitute a portion of the data used to 

train the network and design the model. The table below only display an example of 

data set analysed. Parameters for the experiments can be seen from table 4.4.  

Table 5.3 Result observation set 

Exp.    
(m/min) 

f 
(mm/min) 

AE 
mean 

AE 
rms 

D2 Wavelet 
energy 

wear (x 
in mm) 

Distance 
covered 

(m) 
 

Wear 
stage 

1 200 200 0.9320 0.8284 0.3353 0.1154 0.2<x<0.3 23.8 Severe 
2 200 250 0.6142 0.6057 0.2226 0.0421 0.2<x<0.3 26.8 Severe 
3 200 300 0.0708 0.0715 0.0266 0.0005 x<0.1 0.4 New 
4 200 300 0.3452 0.2607 0.0603 0.0075 x<0.1 1 New 
5 230 250 0.7480 0.6192 0.2321 0.0804 0.1<x<0.2 8 Moderate 
6 230 200 0.6150 0.5450 0.1914 0.0519 0.1<x<0.2 11.6 Moderate 
7 170 300 0.5005 0.5604 0.2024 0.0354 0.1<x<0.2 17.4 Moderate 
8 170 250 0.5621 0.5447 0.1686 0.0259 0.1<x<0.2 19 Moderate 
9 170 200 0.5389 0.4028 0.1049 0.0564 0.2<x<0.3 22.6 Severe 

 

5.2.2 Spectral analysis observations 

AE signals were collected at each stages of the study. Some results are shown and 

the respective       , power spectral density and signal wave are displayed in 

Figure 5.2, Figure 5.3 and Figure 5.4. These figures clearly demonstrate the 

combined effect of the cutting speed and feed have on generated AE values. All 

processing calculations were done with MATLAB®. 
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AE wave figures showcase the five distinct acquisition segments described in Table 

5.2, which identify the tool entry and distinctive transient response at different stages 

during a tool pass. Similarity in amplitude from these five segments connotes 

identical conditions in the waveform within a tool pass and notifies of no incumbent 

acquisition fault within that acquisition section.  

Figure 5.2 a, b, and c demonstrate the acquisition of experiment number 1 for cutting 

parameters of   = 200m/min and   = 200mm/min. This figure is used to describe the 

preliminary stages of each experiment at initial wear conditions of tool life. From 

Figure 5.2 a, the five distinct tool entries which correlates to a 200 mm/min feed are 

shown. The tool entries are of low amplitude and noticeably separate from one 

another due to the new nature of the tool. The transient of each of the two distinct 

tool entries differ due to the rate of formation of wear at each tooth edge. 

 

(a) 
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(b) 

 
(c) 

Figure 5.2. AE signal wave,       and PSD diagram of at initial level of tool life (  

= 200m/min and   = 200mm/min). 
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The       (Figure 5.2 b) shows the averaged waveform with similar low amplitudes 

of 0.7 V. Rms values provide an average of the signal over at 1.2 ms time constant, 

and give a clearer identification of the signal amplitude response with time in the 

course of this study. From the PSD diagram (Figure 5.2 c) high energy components 

are mostly concentrated at frequencies of 150 kHz.  

Observations identified from Figure 5.3 a, b, and c, for cutting parameters of   = 

200m/min and   = 300mm/min demonstrate characterisitic traits of the moderate level 

of tool life. The figures indicate an increase in the AE wave and       amplitude 

(Figure 5.3 a,b). These waveforms are characterised with double or multiple high 

peaks which resulted due to cracks and chipping. Wider tool entries also points to 

the inception of built-up edge (BUE) formation at this moderate wear level in tool life.  

(a) 
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(b) 

 
(c) 

Figure 5.3 AE signal wave,       and PSD diagram at moderate level of tool life 

(  = 200m/min and   = 300mm/min). 
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The PSD evaluation examplified for moderate stages (Figure 5.3 c), show an 

expansion in frequencies of high energy from 150 kHz to 220 kHz. This increase with 

corresponding  increase in energy density, comforms to the wear formation increase 

found on the tool. 

Observations identified from Figure 5.4 a, b, and c, for cutting parameters of   = 

230m/min and   = 250mm/min demonstrate characterisitic traits of the worn level of 

wear stage. Significant increase in the amplitudes of AE wave and        indicate a 

sharp rise in the wear on the tool face. Peaks from chipping and cracks are frequent 

within the waveform. A widespread of energy density within higher frequency band 

with a corresponding increase in amplitude highlights the fast deteriorating tool state 

from the PSD diagram (Figure 5.4 c). The widespread change in power from the 5 

PSD diagrams in Figure 5.2 c,5.3 c and 5.4 c is proposed to be due to the different 

acquisition positions within a tool pass. 

(a) 
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(b) 

 

(c) 

Figure 5.4 AE signal wave,       and PSD diagram at worn level of tool life (  = 

230m/min and   = 250mm/min). 
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Observable increase in trends from AE wave diagrams (Figure 5.2 a, Figure 5.3 a, 

Figure 5.4 a) amplitude from peak values of 0.7, 4.2 to 9.8 V with the changing 

parameter values are observed. This trend was also identified from       values 

from amplitude values of 0.28, 0.9 and 3.2 V. The AE signals amplitude showed 

progressive increase during machining conditions as wear formation increased.  

Furthermore, Essential information about the process was obtained from the PSD 

analysis. The PSD analysis showed information on the concentration of the AE 

energy within specific frequency bands. This AE spectrum calculated from the 

Fourier transform based approach resulted in an increased level of activity, within 

frequencies of 125 kHz to 250 kHz progressively (Figure 5.2 c, Figure 5.3 c, Figure 

5.4 c).  The energy density at various frequency bands is further studied using more 

distinct methodlogies such as wavelet and energy analysis charts in the next section.  

 

5.2.3 Wavelet analysis observations 

The most commonly identified wavelet family is the Daubechies wavelet discovered 

by Ingrid Daubechies. This family of wavelet is categorized into order which defines 

its degrees of smoothness. Daubechies wavelets have orthogonal and biorthorgonal 

geometry but yet possess a variable analytic form. The lower order daubechies 

wavelets are not differentiable every-where and comprise of a sharp edge 

geometrical appearance, whereas the higher order Daubechies wavelets are 

relatively smooth in form. Figure 5.5 show typical Daubechies wavelet waveform of 

the third order with five levels. 
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Figure 5.5 Daubechies wavelet waveform of the third order (db3) 

 
The objective of wavelet analysis is to decompose a signal to several frequency 

bands [92]. The appropriate selection of a waveform and the decomposition level is 

very important in WT. Wavelet decomposition level is selected based on the 

dominant frequency components present in the signal. A frequency band which 

correlates best with the frequencies necessary for classification of the signal are 

retained in the wavelet coefficient [92]. 

Each coefficient level is decomposed into a frequency bandwidth of [ 
  

 ⁄    ] with 

the equation shown below. 

   
  

    ⁄   (5.2) 

Where,    is the sampling frequency and   is the decomposition level. The obtained 

decomposition levels of the wavelet in this study are shown in Table 5.4. 
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Table 5.4 Wavelets decomposition levels frequency band 

Decomposed signals Frequency band (Hz) 

D1 500kHz-1MHz 

D2 250kHz-500 kHz 

D3 125 kHz-250 kHz 

D4 62.5 kHz-125 kHz 

D5 31.25 kHz-62.5 kHz 

A5 0-31.25 kHz 

 

Taking a sample AE signal, a general representation of wavelet traits is shown in 

Figure 5.6. Figure 5.6 highlights the decomposition level of AE signal by wavelet 

analysis. AE occurrences were found at higher amplitudes in level D3, with 

frequency of 125 – 250 kHz. The signal voltage amplitude in D2 and D4 were the 

subsequent highest amplitude levels observed. Successive random tests within 

experimental runs produced comparable results. Therefore, the decomposition of the 

signal wave via wavelet method identified D3 and D4 as prominent frequency band 

with high energy consolidation. 

 
Figure 5.6 Decomposition level of AE signal by wavelet analysis 
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This section of the analysis study is presented to recognize frequency band of 

interest. A Daubechies wavelet with an order of 3 ―db3‖ was selected for this 

research to slightly improve the smoothness of waveform geometry. Energy tests 

were also used to certify the consistency of these results. 

5.2.4 Energy analysis observations 

The spectrogram is an efficient method in analysing the energy distribution of source 

event as a function time. From Figure 5.7, 5.8 and 5.9, sample experimental run at 

initial, middle and final stages of wear display progressive frequency energy 

intensity. At the initial stage (Figure 5.7), concise energy signatures occur as a result 

of distinct entry of the tool. At this preliminary section, all experiments showed 

prevalence of energy density within the lower ranges of 62 kHz – 250 KHz. This is 

greatly reflected in features D2 and D3 of the wavelet analysis but the results 

extended to substantial D2 values within the moderate wear regions (Figure 5.8).  
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Figure 5.7  Spectrogram of AE signal at initial level of tool life (  = 200m/min and   

= 200mm/min). 

 

Figure 5.8  Spectrogram of AE signal at moderate level of tool life (  = 200m/min 

and   = 300mm/min). 
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From the figure above (Figure 5.8), an extension in the height of high density region 

showed the move of energy concentration in higher frequency zones (D2). This was 

a characteristic trait of the moderately worn cutting inserts. 

AE waves from rubbing action of the tool and formation of BUE (Figure 5.10) can be 

seen from the increase of the width of energy density.  

 (c) 

Figure 5.9 Spectrogram of AE signal at worn level of tool life (  = 230m/min and   

= 250mm/min). 
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Figure 5.10 Built-up edge formed on the tool flank face 

The change in width of energy may also indicate a state of moderate wear or 

substantial increase of wear formation on the tool. In worn tools, sharp high energy 

frequency peaks from Figure 5.9 are also utilised to infer wear from cracks and 

chipping on the tool. 

An in-depth analysis of the AE signals via these methods provides clearer 

connotations for linking features to wear values. 

  

5.3 Modelling and Analysis of tool wear 

5.3.1 Data set for ANN  

A data set of 160 test samples was selected from the experimental runs for the 

execution of the neural network. This data set consists of 120 samples which were 

used for the training of the network and 40 samples were used to test its efficiency. It 

can be noted that most of the tests samples reflected new and moderately worn tools 

but a percentage of about ten per cent only reflect severely worn tools.  
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5.3.2 Evaluation of feature extraction 

Features in various domains have been utilised in this research. Time domain and 

time-frequency domain features were extracted and processed from the digitised 

data obtained from the coupler. Table below displays various features extracted in 

the course of the research. 

Table 5.5 Extracted time and time-frequency features of AE signal 

Time domain Time-Frequency domain 

Features Definitions Features Definitions 

       The average value            Wavelet sum 

      The RMS value       D1 

     The standard deviation       D2 

      The variance      D3 

     The maximum value       D4 

      The minimum value      D5 

     The range (max–min)        Total energy of wavelets 

     The skewness    

     The kurtosis   

 

A total of 16 signal features have been used. From these sixteen features; nine time 

domain and seven time-frequency domain features. The Time-frequency domain 

features in Table 5.5 were obtained from the decomposition of the signal via wavelet 

transform. 

5.3.3 Evaluation of feature selection  

During selection, some features from the experimental runs on the CNC machine 

were identified for training. From the total of 16 features extracted, a careful selection 

process which reviewed the correlation of each of these features to the desired 

target output was applied through the correlation function (Equation 3.14).  
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Table 5.6 shows the results of the correlation of each feature to the targeted output 

wear. The Table indicates higher correlation in time-frequency analysis. Time-

frequency features show an average correlation efficiency of 64 % over time domain 

features with only 48%. The selection is however based on choices of feature from 

both domains. The strength of the mean and rms signals amidst these features 

indicates their importance in classification.  

As identified from the wavelet graph decomposition in section 5.23, higher energy 

density band; D3 and D2 obtained sufficiently high correlations. It could be assumed 

to be due to its time and frequency domain characteristics. These time-frequency 

features outmatched others in correlation efficiencies. D1 also showed the 

transference of high energy signals during worn states to higher frequencies. 

Table 5.6 Correlation results of AE features to target output 

S/N Feature Correlation type correlation coefficient 

1 speed max correlation coefficient:  0.3225 

2 feed min correlation coefficient:  -0.3218 

3 rms max correlation coefficient:  0.7374 

4 mean max correlation coefficient:  0.7579 

5 standard deviation max correlation coefficient:  0.5736 

6 variance max correlation coefficient:  0.5353 

7 maximum value max correlation coefficient:  0.5768 

8 minimum value max correlation coefficient:  0.3087 

9 range max correlation coefficient:  0.5768 

10 skewness max correlation coefficient:  0.3215 

11 kurtosis min correlation coefficient:  -0.2933 

12 wavelet sum max correlation coefficient:  0.6829 

13 d1 max correlation coefficient:  0.7753 

14 d2 max correlation coefficient:  0.7725 

15 d3 max correlation coefficient:  0.7145 

16 d4 max correlation coefficient:  0.4152 

17 d5 max correlation coefficient:  0.4816 

18 wavelet total energy max correlation coefficient:  0.6231 
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5.3.4 Feature classification 

This section of the study replicates the biological neural system using computational 

representation to classify wear output. It addresses the usability of evolutionary 

computing as an adequate tool in machine tool monitoring. 

Data set with the selected key features were used to run a neural network. A feed 

forward BPNN was utilised for classification. Table 5.7 shows the various parameters 

employed in network training. A learning rate of 0.3 on a gradient descent training 

function with a momentum of 0.7 was used. An adaptive learning rate method aided 

in quick generalisation of the error and reduced training time. The training was run 

for a thousand epochs with no validation queries. The weights of the network were 

selected at random from a range of -1 to 1. No optimization algorithms were 

implemented on the BPNN due to its reverse operation mode which provides an 

adequate optimization structure for the system. 

Table 5.7 Neural network parameter section 

Parameters of multilayer neural network Values 

Epochs 1,000 

Performance function Mean square error 

Number of layers 3 

Transfer Function at layer 1 Log-sigmoid 

Transfer Function at layer 2  Log-sigmoid 

Transfer Function at layer 3  Log-sigmoid 

Layer 1 size 9 

Layer 2 size 20 

Layer 3 size 3 

Learning rate 0.3 

Momentum 0.7 

Weights Random from [-1 1] 

Training Function Gradient Descent with adaptive learning rate 

and momentum 
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5.3.5 Network methodology 

The system is developed on a MATLAB programming platform. This platform offers 

easy programming interface. The neural network process is characterised by the 

adjustment of weights and biases to achieve a desired output response for every 

input selection introduced into the network. Training of the network mathematically 

connotes the minimisation of the error in its classification. As earlier mentioned, there 

are two ways of training; supervised and unsupervised. Back propagation is a 

supervised training methodology in which the target output is supplied for the 

network classification. An activation function is used in networks to estimate the error 

of classification.  

In the study, the sigmoid activation function was utilised to determine the net firing 

output from the artificial neuron. The sigmoid function takes known sample inputs 

from the data set and classifies them within a range of 0 to 1.  

  ∑        
    

       (5.3) 

Where   is the error,    the target output,    actual output, with input sample    

       . 

This activation function (equation 5.3) was used due to the non-linear relationship of 

the AE sample data and target wear output.  

5.3.6 Objective of the neural network 

The network was trained to recognise each sample line from the data and output a 

binary number corresponding to a target wear value. Table 5.8 shows the binary 

representation of wear values corresponding to target output for the neural network. 
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Table 5.8 Binary representation of wear values for neural network training 

Wear ranges 0.01<x<0.1 0.1<x<0.2 0.2<x<0.3 

Binary representation  0 0 1 0 1 0 1 0 0 

 

Momentum, dynamic learning rate and network architecture were used to test 

training performances and optimal parameter choices were made in this study. 

Comparison of performances of network architectures is further explained in the next 

section. 

5.3.7 Network architecture 

The network architecture was chosen based on the experimental test procedure. 

Individual networks were tested over the data set to obtain a least mean square error 

(MSE). Table 5.9 displays the results of the findings. 

Table 5.9 Neural Network architectural evaluation 

Hidden Layer Node RMS error hidden layer Nodes RMS error 

1 4 0.0579 2 4-4 0.0539 

 8 0.0176  8-8 0.0194 

 12 0.00972  12-12 0.0110 

 16 0.0142  16-16 0.0136 

 20 0.00523  20-20 0.0164 

 

From the Table 5.9, two series of tests were performed on both single and double 

hidden layer architecture. A trend was identified with an increase with higher nodes 

in the hidden layer before a decrease in efficiency. However, a single hidden layer 

structure with 20 nodes produced the least MSE for a run of a thousand epochs. 

Generally, both layer structures produced acceptable results but much lower MSE 

was observed for single hidden layer system. Chen et al [58] identified an rms error 

below 0.05 as acceptable in network classification. A much lower error performance 
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of 0.005 was achieved in the study. The network architecture (Figure 5.11) with the 

best performance was therefore selected for classification. 

 
Figure 5.11 Neural network architecture 

5.3.8 ANN process evaluation  

The process evaluation of the neural network discusses the network performance 

and performs simulations tests to portray its classification capabilities. Network 

performance can be seen from the training curves (Figure 5.12). This shows the 

gradient descent of the sum of squared error versus number of training cycles. 

 
Figure 5.12 Performance function of neural network 
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A very efficient network with a very low training error state evaluated in mean square 

value gave a performance of 0.00523. This performance ratio indicates a capability 

of above 95% classification accuracy for this network. 

5.3.9 Network testing 

Simulation tests were conducted on the network to assess its efficiency in the wear 

classification. Sample transposed solutions for experimental run of varying 

parameters of speed and feed at the initial stage of the study is simulated with the 

network. The binary output of 0 0 1 as indicated in Table 5.8, which symbolises an 

initial wear state should be generated. Figure 5.13 displays a bar chart of the actual 

output. It shows high and low digits for solution classification. 

Digital devises have a range where high or low digits are registered, this account for 

any noise that may exist. Despite the vivid correct classification, residual noise can 

be found at minimal levels on alternate digit bit indicating correlation to successive 

classification groups. It is necessary for all output digits to stay in its correct range; 

this is challenged by errors made by the neural network approximations and noise of 

the physical system.  

  
  = 200m/min and   = 200mm/min   = 200m/min and   = 250mm/min 

(a) (b) 
Figure 5.13 Testing chart of the neural network at the initial stage of wear   
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Data tests at the moderate stage (Figure 5.14) in wear progression also were 

adequately classified. Binary output of 0 1 0, which symbolises a moderate wear 

state was generated. Some residual noise components were observed as well in 

alternate digits. 

  
  = 170m/min and   = 250mm/min   = 200m/min and   = 300mm/min 

(a) (b) 

Figure 5.14 Testing chart of the neural network at moderate wear stage 

 

  
  = 230m/min and   = 300mm/min   = 170m/min and   = 200mm/min 

(a) (b) 

Figure 5.15 Testing bchart of the neural network at worn wear stage  

Some experimental test samples for worn states were simulated with the network. A 

binary output of 1 0 0, which symbolises a worn tool state was generated. A clear 

classification can be seen from Figure 5.15a, but Figure 5.15b shows some 
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misclassification anomalies. This occurs due to the generalisation error of the 

network or inadequacy of sample data size for classification. The network identifies 

high correlation to both moderate and worn tool states. This may be utilised to 

represent transitionary characteristics between stages in sample data and classified 

based on its tendency towards worn tooling. 

5.4 Experimental correlations results 

Investigative studies of chipping property have been conducted in this thesis. AE 

features used in this study showed ample response for specified events during 

machining. The most correlated features are the rms, mean, wavelet sum, energy 

and some wavelet coefficients. Notable time domain and time-frequency domain 

features which consistently correlated to tool events are the mean, rms and wavelet 

sum.  

Figure 5.19 shows the correlation for experiment 1. In this figure, two events were 

observed within the entire machining of the tool. At a distance of 13.2 m, huge notch 

wear occurred on the tool (Figure 5.16). This event was characterised by rising 

peaks in rms, mean and wave features of the AE signal. Progressive peaks occurred 

at a distance of 20 m of machining length, where heavy chipping of the tool flank 

(Figure 5.17) face was observed. Strong correlation of the mean, rms, variance, 

standard deviation and some wavelet coefficient were noticed at this stage. The 

chips coloration between these events changed from a light purple to a bluish violet 

colour due to the amount of heat generated from the rubbing action of the tool on the 

workpiece.  
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Figure 5.16 Notch wear and edge chipping on the tool flank face 

 

Figure 5.17 Progressive chipping of tool flank face 
 

Experiment 2 (Figure 5.20) was assessed at a distance of approximately 7 m and 18 

m of machining length. At 7 m, observable uniform flank wear rose to 0.05 mm due 

to the abrasive effect at the flank face of the tool. This was captured by the wavelet 

sum, d3 and d4 wavelet coefficient with a mild peak in the signal amplitude. More AE 

features were noticed as a result of grooves propagation after 18 m of machining. 

Time domain and time-frequency domain features responded at various proportions 

to this wear formation. A progression from a golden brown chip to a purple chip 

indicated the rise in temperature which led to wear intensification a on the tool.  

Figure 5.18 shows some of the various chip colours obtained during the machining of 

H13 tool steel. A gradual change from golden brown to blue is shown. 
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Figure 5.18 Chip coloration progression 

At the preliminary stage in experiment number 3 (Figure 5.21), the formation of 

micro-grooves on the tool flank edge after a machining distance of only 2 m resulted 

in a major peak rise in skewness. A notch groove of 0.07 mm which formed at the 

flank face deepened on a worn flank face of length of 1.71 mm. Major expansion by 

chipping formation was observed within 9 m of machining of the tool. Wear caused 

by abrasive mechanism can be observed from Figure 5.21. Chips at 1 m of 

machining were of a combined colour of yellowish brown and light purple. This 

indicates the gradual rise in heat during cutting. An eventual darker colour which 

took place at the moderate wear was noticed. A good correlation from all selected 

AE features were observed but the rms, mean and d4 wavelet coefficient showed a 

stronger correlation. However the skewness showed a negative correlation with a 

down peak. This shows that the data distribution is skewed left which is due to long 

lasting consistent wear value observed on that tool during machining phases.  
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Figure 5.19 Experiment 1 features correlated to wear 
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Figure 5.20 Experiment 2 features correlated to wear 
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Figure 5.21 Experiment 3 features correlated to wear 
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Experiment number 4 shows (Figure 5.22) a flank wear progression at a distance of 

13 m of machining. Continuous wear formation is observed on the tool flank face and 

is characterised with dark purple chip coloration. Progressive machining at distances 

above 21 m shows a generation of deep violet blue chips. High wear formation can 

be observed at this stage with built-up edge (BUE) formation and a huge groove at 

the nose of the tool. The wear values at the later stage are above 0.2 mm at the 

nose. The rms, mean, wavelet sum are still predominant correlated features in this 

evaluation. 

Evaluation of chipping from experiment number 5 (Figure 5.23), shows similar chip 

colour progression. A colour change from golden brown which is mostly identified 

within machining distances below 5 m is seen. The AE mean correlated with a sharp 

peak rise to the minor wear formation at the early machining stage. Gradual 

metamorphose to purple chip is identified with BUE formation and extended nose 

wear at a distance of 8 m. Correlation from all displayed AE features can be 

observed from this experiment as well.  

Experiment six evaluates a region of machining and identifies the distinct 

progressive change in coloration of chips. The flank wear increased to a state with 

high BUE formation. The chip colour gradually progressed from a brownish purple to 

a deep purple colour. Abrasive and adhesive wear mechanisms which enhanced the 

rubbing action of the tool on the workpiece could be the reason for this chip 

coloration change. An exponential increase in wear due to increase in temperature 

causes the tool to suddenly reach a worn state after 14.4 m of machining. High 

correlation of energy, rms, mean, standard deviation, wavelet coefficient sum and d3 

coefficient can be observed at individual stages within machining.  
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Figure 5.22 Experiment 4 features correlated to wear 
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 Figure 5.23 Experiment 5 features correlated to wear 
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 Figure 5.24 Experiment 6 features correlated to wear 
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In experiment 7, within 5 m of machining (Figure 5.25), a higher correlation from 

time-frequency features characterised with a golden-brown chip colouration is 

observed. The high correlation in rms and wavelet sum with a protruding peak rise 

indicates an increase in wear to a value of 0.07 with a BUE formation on the flank. 

This stage of machining produced brownish purple chip indicating that the 

temperatures obtained at this level were not too high.  

In experiment number 8 (Figure 5.26) identification of wear did not produce 

proportional increase in time domain features. At a distance of 13 m, the rms 

correlated with large grooves formation and a flank wear value of 0.08 mm whereas, 

the mean reflected a progressive increase in the nose wear at a later distance of 17 

m of machining. A deep purple chip colour indicated high temperatures and rising 

wear formation on the tool. 

Experiment number 9 was characterised by the formation of early grooves due to its 

low feed rate which resulted in strong impacts of the tool edge against the workpiece 

during tool entries. Distinct chip colours in the experiment at the three identifiable 

stages of wear were observed. Chips progressed from yellow to reddish brown and 

deep purple blue. Early cracks were detected adequately from most AE features. At 

a distance of 13 and 22 m subsequent sudden jump in wear values were observed. 

These jumps were identified by most of the AE features adequately.  
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 Figure 5.25 Experiment 7 features correlated to wear 
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 Figure 5.26 Experiment 8 features correlated to wear 
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 Figure 5.27 Experiment 9 features correlated to wear 
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AE rms, mean, wavelet sum, energy and some wavelet coefficient provided 

adequate information about machining conditions. This could be accrued from their 

correlation throughput to minor and major jumps in wear values during machining. 

Chip colour change investigated in this study showed three major variations of chip 

coloration. Table 5.10 shows the experimental run and the various chip colours 

observed during this experiment. These chip colours were seen to progressively 

change to metamorphose during experimentation. Some experiment trials 

possessed transitionary variations of two distinctive types of colours. This 

progressive information possessed correlative reference to tool wear. 

From observations, during the preliminary stages of the research, chip formed had a 

golden-brown colour. This phase of chip colouration was observed throughout the 

main stages of the experimental runs. From this observation, an indication of the low 

machining temperatures could be inferred. This phase was succeeded with a 

brown/pink/purple colour of chips. Each experimental runs observed these traits at 

distinct stages. This phase was briefly overtaken with deep purple/blue chipping at 

the worn state of the tool. 
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Table 5.10 Chip colour identification and progression with tool wear 

   Number of passes per experiments (from pass 1 to 15)  
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2 G G G/P G/P G/P G/P G/P G/P P P P P P/V P/V V 

3 G G G G G G/P G/P G/P G/P P P P P P/V P/V 

4 G G G G G G G/P P P P P P P/V P/V P/V 
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6 G G G G G G P P P P P/V P/V V V V 

7 G G G G G G G G/P G/P P P P P P P 

8 G G G G G G G G G G/P P P P P P/V 
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The chip coloration could be linked to the machining temperatures produced during 

cutting operation. Temperature rise during average wear stages was due to the 

rubbing action of the roughened edge of the tool against the workpiece. The degree 

of tool degradation as a result of wear had tremendous effects on temperature and 

therefore chips coloration. Worn tooling which possessed grooves and deeper wear 

formation produced consistent purple chip coloration. Threaded chips were also 

formed during these stages from the formation of BUE on the tool face. 

5.5 Tool wear progression 

Similar progression from the tool life diagram can be seen (Figure 2.4). Figure 5.28 

presents graphs of wear progression over machined distance for the nine 

experiments. Experiments with higher speeds attained high level of wear rate faster 

at the initial stage and final stage of the chart. The lower feed values have resulted in 

intensive wear rates. Based on the fact that the number of collisions per machined 

distance is the same, it could be suggested to be due to smaller area of collisions 

impact of the tool entry, causing a higher force per area leading to faster tool edge 

chipping and deep groove formation. An example of this was observed in experiment 

9 with a rapid increase in the moderate stage. 
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Figure 5.28 Tool wear progression chart 

5.6 Proposed wear model 

Based on the findings, a higher correlation can be observed from the specific AE 

features. These features can therefore be utilised in the prediction of the tool state. 

The rms, mean, wavelet sum, energy and some wavelet coefficient of interest 

provide adequate information on the machining process. 

An artificial neural network model is proposed for the prediction of wear state for 

machining H13 tool steel at the operating parameters proposed. Figure 5.29 shows 

the proposed model aimed at adequately identifying of tool state. The number of 

hidden layers in the ANN model is related to the size of data set and 

experimentation, but between one or two hidden layers is believed to achieve 

acceptable results. 
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Figure 5.29 Artificial network model 

 

From the study a tool wear coefficient model is also proposed.  

  
   ∑  

  
 

  
    

 
      

             (5.4) 

Where    is the tool wear coefficient,   the number of wavelet coefficient of interest, 

  is the wavelet coefficient,   is the cutting speed in m/min and    is the feed rate 

The coefficient approach model is based on the correlation assessment during 

experimentation (Table 5.6). The effect of operating parameters and extracted 

features of interest is considered within the model. From this model a tool wear 

coefficient value above 0.7 indicates a moderately worn tool state, while a coefficient 

above 1.2 indicates a worn tool state.   
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Conclusions 

A fundamental challenge in TCM is the identification of an ideal model for 

investigating tool wear. In this regard, this research was aimed at analysing AE as a 

viable means for tool wear identification. The study was performed on H13 tool steel 

material being machined by end-milling process. To achieve this, a series of 

experimental trials and signal processing techniques were employed. 

In the course of this thesis a comprehensive feasibility study of using the principles 

of AE sensing technique for TCM was done. A monitoring process framework was 

used to monitor the end milling operation at different machining parameters utilising 

three industrial AE sensors. . This thesis proposed a signal processing framework 

which identifies a feature selection, extraction and conditioning process, and thereby 

creates a model linking them to wear formation. 

Within the processing framework, results certified the importance of both time 

domain and frequency domain information in wear estimation. AE Sensing provides 

viable information on wear formation but not all features appropriately describe 

machining state. The use of a model which uses both time and frequency domain is 

essential. 

A direct link was identified between some AE features and the rate of wear 

generated on the tool. A model using AERMS, AEMEAN, AEWAV-SUM, and high energy 

wavelet coefficient features is adequate to predict deplorable tool state wear. The 

model identifies the high correlation and influence of these features to tool life.  
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This study exposed some important results of AE sensing technique in the field of 

TCM. These include: 

 From operating parameters employed, the study confirms that cutting speed 

more adversely influences wear states than other parameters such as the 

feed of operation.  

 From the results, a negative correlation of the feed rate to the wear was 

observed. At low feeds sudden chipping took place because of the tool edge 

impact over the workpiece during tool entry. Results show that low machining 

feed rates are hazardous to machine tool. 

 From result observation, AErms and AEMEAN are viable time domain AE 

features in the identification of tool state.  

 From the milling of H13 tool steel, colour identification of the chips provides 

direct correlations to the temperature of machining and tool condition. 

Recommendations 

Some recommendations have been observed during the time of this study. These 

include: 

 An extension of the process to exploit monitoring of the machine operation is 

needed. 

 The use of wider time-windows in signal processing would further enhance 

efficiency of the process but requires huge data manipulation. 

 Additional AE features from different extraction techniques could be tested on 

the framework to update the model. 
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Future works should seek to exploit the proposed model using various machining 

operation, workpiece selection, operating parameters and processing techniques. 

More precise wear estimation could be attained from this model. 
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Abstract—This research work highlights the effects of 

acoustic emission (AE) signals emitted during the 

milling of H13 tool steel as an important parameter in 

the identification of tool wear. These generated AE 

signals provide information on the chip formation, 

wear, fracture and general deformation. Furthermore, 

it is aimed at implementing an online monitoring system 

for machine tools, using a sensor fusion approach to 

adequately determine process parameters necessary for 

creating an adequate tool change timing schedule for 

machining operations. 

Keywords-Tool Wear Monitoring, acoustic emission, 

milling 

I. INTRODUCTION 

Due to the rapid growth in cutting edge technology 
the need for a sustainable manufacturing sector is 
essential to meet the market demand. Machining is an 
important process to consider in large scale industrial 
production. Numerous cutting operations are 
employed in a machining environment. These 
operations are aimed at the removal of material by 
power-driven machine tools to mechanically cut the 
material to generate required geometry. Modern day 
machining is controlled by the use of computers. 
Computer Numerical Control (CNC) machines are 
driven by abstractly programmed commands which 
automate machining to facilitate the cutting process. 

The influence of CNC machining on the 
automation of the manufacturing process is substantial 
but this innovation fails to monitor the quality of its 
operations. The challenge of wear formation on the 
edges of the tools, which causes defects on the 
workpiece, poses a threat to total automation. Thus, 
the introduction of an adequate tool condition 
monitoring system is vital. 

The research is conducted on a Deckel Maho 
DMU 40 CNC machine. The 5 axis CNC machine is 
used for machining simple or complex workpieces 

used for medical technology, aerospace, automobile as 
well as tool and mould making. 

II. TOOL CONDITION MONITORING 

A. Tool Condition Monitoring in 

industries 

The industrial revolution of today’s manufacturing 
industry is anchored around various cutting 
operations. Such processes range from milling, 
cutting, drilling, turning and grinding operations. 
These operations which form a potent underlying 
factor in the production of engineering products are 
constrained by low efficiency and high cost. Due to 
these challenges an adequate monitoring system is 
essential to ensure optimal yield. 

Tool Condition Monitoring (TCM) is a modern 
monitoring approach used in the industrial sector for 
machining operations. This monitoring process 
oversees the state of the workpiece during cutting 
operations to pre-empt deplorable machining state. 

TCM in machining operations of today’s 
manufacturing is also paramount for high 
productivity. This system of monitoring machining 
operation is used to determine the Overall System 
Effectiveness (OOE) of the production line. Prickett 
[1] defines OOE as a factor determined by the system 
availability rate, performance rate and quality rate. 
The performance rate relates the on-time and 
downtime ratios. 

In monitoring on-line downtime conditions, two 
problem sources are identified. One problem is caused 
by the transfer of work piece between machines and 
the other by excessive wear and breakage generated 
on tools during machining [2]. The downtime 
generated from transfer of work pieces is 
unfortunately unavoidable during operation, but tool 
wear can be monitored and controlled. 

TCM is performed on various cutting operations to 
determine the wear rates. Operations such as cutting, 

mailto:oluwole.olufayo@nmmu.ac.za
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grinding, milling and drilling are common industrial 
machining operations being monitored today. 
Numerous research efforts have been conducted in 
this field but there has been significant interest in the 
monitoring and study of face-milling and turning 
operations. The specifics why these researches are 
delineated towards these conventional cutting 
operations are based on the ease of monitoring, 
expenses involved and quality of obtained signals. 

Other segregations of research are based on the 
sensing technology and analysis methodologies 
employed. Sensors such as sound, acoustic, force and 
vibration sensors are utilized. 

Sensors are positioned at various stages of the 
machine process to: 

• Ascertain the performance of the 
machines 

• Observe the process evolution 
• Evaluate the quality of the output 
• Supervise and control process parameters 

utilized. 
 

Research proves that sensor positioning affects 
data quality [3]. Sensors are most often found placed 
on the machine, tool or the workpiece. 

Numerous articles enumerate various merits of 
Acoustic Emission (AE) based monitoring 
methodology. These were based on its frequency 
range which prevents the intrusion of environmental 
noises, ease of placement of sensors, low cost 
involvement and its sampling speed which does not 
interfere with the cutting operations. [4]. From the 
literature, AE is termed one of the most efficient TCM 
sensing methods which can be applied to machining 
processes [5]. 

III. Review` of TCM 

The design of TCM as a precautionary tool in 
machining can be viewed as a categorization model. 
The classification of states of the tool forms its 
objective. The TCM framework in figure 1 shows the 
various stages employed in the acquisition and 
classifications of features from the machine tool. 

 
Figure 1. Framework of TCM 

B. Sensor Fusion Process 

Sensor fusion or multisensory fusion techniques 
are greatly used in TCM. Dimla [6] describes the 
utilization of more than one sensor signal from 
different sources to detect the same parameter as 

sensor fusion. Noise from the process infiltrates 
signals and influences the correlation efficiencies of 
signals. Thus, signal to noise ratio forms a decisive 
parameter to estimate whether the measurement 
provides significant correlation to the anticipated 
quantity. In multisensory fusion techniques, signal 
features from different sensors determine the output 
state of the tool. This technique however, executes the 
fusion process at the decision level of the TCM 
framework. 

The integration of the many sensory correlated 
features with a single or different process parameters 
gives a more sensitive and reliable prediction than a 
single sensory feature. This led Sick [7] to conclude 
that only a sensor fusion approach provides sufficient 
information in a monitoring system. However practice 
has shown that in some cases a multisensory fusion 
with neural networks may produce worse results than 
a single sensor approach. This scenario may occur due 
to over-generalization of the output by an excessive 
pattern learning [7].In general, research conversely 
shows a higher efficiency from multisensory fusion 
techniques. 

C. Tool life 

Tool life is defined as the time elapsed to produce 
acceptable workpiece before tool failure [8]. The time 
of usability of the tool is influenced by the rate of 
wear formation on its surface. This wear weakens the 
tool yielding to an eventual tool failure. The life of a 
cutting tool can thus be determined by the amount of 
wear that has occurred on the tool profile. This state 
which reduces the efficiency of cutting until an 
intolerable level or eventual tool failure occurs. 

Several definitions have been postulated for tool 
life. These definitions are founded on the time 
criterion of usability, output production of the tool or 
even wear rate standards. Tool life model have been 
designed to determine the rate of wear formation on 
the tool. One of the most common tool life models are 
Taylor’s equation. 

Equation 1Taylor’s equation 

  
  

   

   

 

Where T is tool life, V is cutting speed; and At,and bt 

are 

constants. 
Equation 2 Extended Taylor’s equation 

                     
            

 (2) 

Where TL is the tool life, f is the feed, v the speed of 

cutting, a the depth of cut and VB is the flank wear 

width. G, a, b, c, d are extended Taylor’s equation 

coefficients. Taylor’s extended equation is based on 

the determination of tool life using all cutting 

parameters and the amount of wear formed whereas 
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its predecessor emphasises only on significant 

parameters i.e. the cutting speed. Although Taylor’s 

equation provides information on the relationship of 

tool life with the cutting parameters, it also possesses 

an easy implementation process; it is limited only to 

the information about tool life. The use of empirical 

equations to calculate tool life based on cutting 

parameters such as the depth of cut, feed rate and 

speed of cutting has been greatly common in research 

works [8]. Other empirical relations have related the 

tool life to tool temperature and also modelled tool life 

as a stochastic process. 

D. Mechanism of Wear 

Wear formed on the tool edge could occur based 
on some certain mechanisms. Some common wear 
mechanisms normally found in the machining 
environment are as follows: 

Abrasion wear: Abrasive wear occurs as a result 
of the interaction between the face of the tool and the 
workpiece. This is characterized by a loss of relief on 
the flank of the tool. Abrasive wear occurs due to the 
dissimilarity of the hardness of the two mating 
materials.  

Adhesive wear: Adhesive wear occurs in metal 
when the force elements of the material are not as 
strong as the interactive forces with the workpiece. 
This yields to the transference of material between the 
metals. 

Attrition wear: Attrition is a form of erosive wear 
effect, occurring on cutting tools. It is caused by the 
impact of particles (liquid, gaseous, solid) on metal 
surface. This effect gradually erodes fragments of the 
surface due to its momentum effect. 

Fatigue wear: Fatigue wear is the weakening of 
the material surface by the cyclic loading and 
unloading during machining. Generally, cracks 
announce the presence of fatigue wear on the tool 
surface, which eventually leads to total fracture. 

Diffusion wear: Diffusion wear, also known as 
dissolution wear is an outcome of the gradual 
dissemination of solid element from one material to 
the other due to extreme heat and machining 
conditions. It involves the decomposition of part of 
the surface of one material and its integration into its 
opposing mating surface. This normally occurs at a 
slow sliding velocity. Diffusion wear is greatly 
dependent on the material composition of the 
machined surface. The affinity of some elements in 
the material, towards opposing elements could 
enhance the rate of diffusion wear experienced in 
machining. This wear mechanism is mostly 
experienced in the machining of ceramic materials 
with diamond tools. 

Corrosive wear: Corrosive wear also known as 
chemical wear is brought about as a result of chemical 

attack on the surface of the tool. Continuous friction 
on the tool depletes the protective oxidation films on 
that surface. This oxidation may accelerate the wear 
formation on the tool. The effect of high temperature 
and frictional forces over a long term would 
eventually alter material composition. 

Fracture wear: Fracture wear is commonly 
experienced in machining. Fracture wear occurs as the 
gradual chipping and cracking of solid surface due to 
the sudden loading and collision of both materials. 
These operations are evident during run time 
operations. 

These wear mechanisms could be found in various 
combinations during machining. Dominant wear 
mechanisms found in wear modes are influenced by 
various factors, such as the cutting parameters, the 
geometry of the tool, the temperature, and the speed of 
cutting operations. 

E. Forms of Wear on Tool Edge 

Tool wear generally occurs in a combination of 
wear modes. Dominant wear modes depend on cutting 
conditions and process specifications. These dominant 
features are mainly responsible for wear formation. 
Some common identified wear modes are: 

• Flank wear 

• Crater wear 

• Chipping 

• Breakage 

• Nose wear 

• Plastic deformation 

• Cracking 

• Notch wear. 

Wear modes are also dependent on a dominant 
wear mechanism [9]. Four of the above listed modes 
are generally more rampant in cutting operations. 
These are flank wear, crater wear, nose wear and 
notch wear. Figures 2 and 3 show the various wear 
zones, region of wear and measurement parameters. 

 

Figure 2. Cutting tool part with wear zones [9] 

 

Flank Wear: Flank wear is dominated by 
abrasion. It arises due to both abrasive and adhesive 
wear mechanism from the intensive rubbing action of 
the two surfaces in contact i.e. the clearance face of 
the cutting tool and the newly formed surface of the 
workpiece. This action leads to increase in surface 
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contact area and heat generation which in turns impair 
the surface quality. The rate of flank wear generated 
during machining operations varies along the cutting 
process [6].  

Nose Wear: Nose wear is found on the nose point 
of the cutting tool. It occurs predominantly due to 
abrasive effects on the edges of the tool yielding to an 
increase in the negative rake angle. At high cutting 
speed, the wear deforms plastically and may result in 
the loss of the entire nose. Wear formed on the nose 
affects the quality of the surface finish [10]. 

Crater Wear: Crater wear arises due to the 
combination of wear mechanisms: adhesion, abrasion, 
diffusion, thermal softening and plastic deformation.  
This mode of wear is generally formed on the rake 
face some distance away from the tool edge as a 
crater. The crater wear is quantified by depth and 
cross-sectional area of the crater for measurement. 
The most important factors influencing crater wear are 
temperature at the tool–chip interface and the 
chemical affinity between tool and work piece 
materials [11]. 

Notch Wear: Abrasion and adhesion are the main 
mechanisms involved in notch wear. Notch wear is 
formed at the boundary of the machined surface with 
no chip contact during cutting. This mode of wear also 
known as groove wear, is predominant in ceramic 
cutting tools with low toughness value. [11] 

Amidst the group, flank wear is often selected as 
the tool life criterion because it determines the 
diametric accuracy of machining, its stability and 
reliability [12]. 

IV. TOOL WEAR EVOLUTION 

Research has shown that tool wear evolves at 
different rates in cutting operations. The rate of wear 
formation on the tool is largely dependent on the wear 
mechanisms occurring in the process. In flank wear, 
abrasion and adhesion cause a rapid rise on the tool 
flank face at the initial stage followed by a relatively 
slowly increase wear rate and ends with another rapid 
formation of wear before fracture. This curve form is 
generally accepted by numerous researches as the 
categorical identification of the three basic stages of 
wear: the initial stage, the regular stage and the fast 
stage. Ertunc [13] classifies wear into five major 
stages from the tool life progression curve shown in 
figure 3. These stages of wear are: 

1. Initial wear; 
2. Slight wear (regular stage of wear); 
3. Moderate wear (micro breakage stage of 

wear); 
4. Severe wear (fast wear stage); and 
5. Worn-out (or tool breakage). 

 

Figure 3. Tool life progression curve [13] 

 
A. Factors influencing tool life 

Tool wear formation is subjective to some 
machining parameters. The parameters, which affect 
the rate of tool wear, are 

• Cutting conditions (cutting speed, feed , 
depth of cut) 

• Cutting tool geometry (tool orthogonal 
rake angle) 

• Properties of work and tool material. 

It is generally known that the tool life is directly 
related to its rate of wear. Therefore the parameters 
influencing tool wear would as well adversely affect 
its tool life. The tool life of a cutting tool is not only 
dependent on the wear but can be influenced by 
numerous other factors relating to the microstructural 
properties of the material. 

The following factors affect the life of a cutting 
tool: 

• type of material being cut 
• microstructure of the material 
• hardness of the material 
• type of surface on the metal (smooth or 

scaly) 
• material of the cutting tool 
• profile of the cutting tool 
• type of machining operation being 

performed 
• speed, feed and depth of cut [10] 

In their research, Dimla concludes that the cutting 
speed has the strongest influence amidst these. They 
postulates that ―Regardless of the differences in the 
values and trends of the normal and shear stresses at 
the contact interfaces, minimum tool wear occurs and 
apparent friction coefficient reaches its lowest value at 
the optimum cutting speed [14]‖. 

V. TOOL MONITORING TECHNIQUES 

In the past, various methods of tool wear 
monitoring methods have been proposed but due to 
the complex machining process an ideal model has not 
yet been found. Scheffer [15] classifies the various 
techniques based on the type of sensor used, the 
parameter monitored and the state of machine process. 
Amidst all sensor type ranging from sound, 
temperature, forces and current, methods sensing 
parameters have been classified into direct and 
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indirect sensing methods according to the sensors used 
[16].  

Direct sensing method directly monitors actual 
quantity of wear variable during operation [7]. It is 
less utilized in the industrial sector due to its cost 
implication and intricacy of implementation. Direct 
sensing is greatly affected by environmental 
machining factors such as illumination, the use of 
cutting fluid, chips formation and temperature of 
material. Some examples of sensing technologies 
employing this method are the optical sensing, 
radioactive, laser beams and electrical resistance 
amidst others. 

Indirect sensing has been greatly utilized in the 
industry despite its lower accuracy due to its ease of 
implementation and cost-effectiveness [15]. Unlike 
direct sensing, this method monitors the process 
parameters correlated with tool wear. Indirect method 
employs the heavy usage of statistical and analytical 
models on the tool wear correlations to draw its 
conclusions.  Some of the sensing methods used in the 
indirect method are acoustic emission, spindle motor 
current, cutting force, vibration, cutting temperature 
etc… 

The monitoring techniques could be executed 
during real-time or off-line conditions. Continuous 
monitoring permits the instant recognition of wear 
formation and provides a corrective methodology of 
wear identification. Despite these advantages, on-line 
tool wear monitoring has been a challenging area of 
research and industrial implementation due to the 
various influences from the machining environment 
and technical set-up. 

AE technologies are one of the most effective 
sensing technologies in monitoring tool wear [16]. AE 
signals are very effective in indirect method due to its 
non-intrusiveness, ease of operation and fast dynamic 
response [17]. 

VI. ACOUSTIC MISSION 

A Comprehensive survey on the use of AE in 
TCM was conducted by Li [16]. In their survey Li 
iterates the efficiency and reliability of AE as a viable 
TCM sensing technique. The impressive amount of 
research in the last decade also indicates the present 
day interest in AE [18] [19] [3]. AE originates from 
the strain energy released as the rubbing process of 
cutting takes place. This is caused by the considerable 
amount of plastic deformation which occurs in metal 
cutting. AE signal refer to transient elastic waves due 
to the rapid energy release from a localised source 
within a material [19]. Li [16] reiterates the basic 
sources of AE during tool monitoring as the 
following: 

• Plastic deformation during cutting in the work 

piece; 

• Plastic deformation in the chip; 

• Frictional contact between the tool flank face 

and the work piece resulting in flank wear; 

• Frictional contact between the tool rank face 

and the chip resulting in crater wear; 

• Collisions between chip and tool; 

• Chip breakage; 

• Tool fracture. 
Figure 4 shows the various AE wear zones generated 

during the cutting operation and how they relate to the 

various faces of the tool. The interaction of these 

various AE sources is responsible for the noisy signal 

generation of AE waves. 

 

Figure 4. Zones of AE generation during metal 
cutting [18] 

Piezoelectric devices are suitable in the measurement 

of AE stress waves on the workpiece. Piezoelectric 

devices convert mechanical stress waves into 

electrical AE signals. They are resilient to process a 

higher sensitivity ratio to most other sensors i.e. 

capacitive, electrodynamics and laser optical [20]. 

Piezoelectric possess sensitivities as high 1000 V/µm 

which exceed environmental noise. The AE transducer 

operates with a flexible range of 20kHz to 1Mhz [5] 

which can be used to detect most significant 

machining conditions, but most research were 

conducted in the range 100kHz – 800kHz. Most recent 

articles use piezoelectric sensors to establish the wear 

rate on flank face of the tool [5] [16]. 

F. Types of AE signals 

There are numerous types of AE signals produced 
in the course of machining, continuous and burst type. 
Continuous AE signal are associated with plastic 
deformation in ductile materials [3]. This form of AE 
signal represents the gradual wear which is generated 
on the tool. Burst AE signal have been observed to 
determine brusque coalitions and fractures in metal 
working. These burst can be generated owed to the 
engagement and disengagement with the work piece 
[21]. It is generally acknowledged that AE signals 
generated are due to plastic deformation and crack 
growth in the material. Burst AE signal are thus 
termed to more efficient in identifying fractures than 
monitoring machining processes AE processes are 
more successful in continuous machining operations. 
Due to the frequent nature of entry and exist, AE 
sensing faces challenges in adequately monitoring 
intermittent machining process such as milling. These 
collisions during cutting generate confusing data 
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values about the present tool state. Numerous research 
works also identify a link between the magnitudes of 
the high peak AE parameters with catastrophic tool 
failure detection [21]. 

G. Advantages of AE monitoring system 

AE signals are easily identified in machining due 
to their higher frequency rate to machine vibrations 
and environmental noise which enhances the analysis 
of the signals. The application of non-destructive 
sensors therefore plays a major role in the monitoring 
process. These sensors are of different types and are 
sensitive to the property of the material involved such 
as the gauge thickness [22]. The sensors utilized are 
coupled with the sample to provide uninterrupted 
elastic energy signal based on the operation performed 
besides information about the dynamic changes 
observed on the sample. In the positioning of the 
sensor, further research on the properties of the 
transducers confirms a dominant relationship between 
the choice location and the quality of the observed 
signals.  Inasaki [3] proves the effect of sensor 
positioning in machining by affixing an AE sensor on 
the cutting fluid supply nozzle, using the fluid as a 
medium for the generated signals. This system was 
conceived to avoid to fluctuations in signal magnitude 
caused by the variation of the distance connecting the 
spindle head and the cutting point.  They concluded by 
stating the need to enhance the reliability of a 
monitoring process due to the high sensitivity of the 
AE sensing technology. 

AE sensing technology can be based on numerous 
principles for data acquisition. Capacitance based AE 
sensors possess a high accuracy and are used to 
calibrate other AE sensors. Unfortunately, capacitance 
type displacement sensors are very sensitive to sensor 
position and surface mounting and thus not suitable 
for machining process monitoring [23].  

The basic advantages in using acoustic signals in 
determining tool wear originate from its high 
frequency and sensitivity as well as its ease of 
placement and affordability. 

H. AE Signal Parameters 

Some feature parameters are used in AE analysis 
and empirical models to determine tool state. Features 
such as skew, kurtosis, ring-down count, rise time, 
event duration; frequency and RMS value are 
identified. Jemielniak [21] in his article statistically 
analysed the AE signal from the sensor to determine 
catastrophic Tool failure. The skew measures the 
symmetry of the distribution about its mean value but 
the kurtosis is a measure of the sharpness of its peak. 
These features have shown to respond to changes in 
flank wear during machining.  

VII. Proposed Designed model 

This research is aimed at implementing an online 
monitoring system using a multi-sensor approach to 
adequately determine process parameters necessary 

for creating and adequate tool change timing schedule 
for machining operations in an automated 
environment. 

In the research we will monitor milling machining 
operation at high speed when cutting tool steel to link 
the rate of wear generated on the tools to the AE data. 
Three AE sensors from Kistler with a band pass 
frequency from 50 KHz to 1 MHz would be connected 
to piezotron couplers for signal processing and 
successively to the BNC 2110 block of the National 
Instrument (NI)for data acquisition. The data 
acquisition unit consists of a NI PCI 6110 
simultaneous sampling card integrated on a computer 
and relayed to the sensor via a custom built 
connection (Figure. 5). 

 

Figure 5. Machine Setup on DMU 40 CNC 
Machine 

 

Figure 6. Wear observed on the inserts at different 
feeds 

Figure 6 above shows the first results (after one 
pass of machining) of the wear observed on the inserts 
while machining tool steel at various feeds and speed. 
Numerous experiments are performed following a 
combination of these parameters to link the 
parameters to the wear formed. Figure 7 shows the 
machining setup diagram. 

 

Figure 7. Tool Wear monitoring diagram 

The data values will be sampled at 2 M/s and 
processed using a time-based statistical method to 
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obtain relevant features parameters. Concurrently, the 
acquired features will be utilized to train a neural 
network. Artificial intelligence would be used to 
create a solution for the classification of wear and 
establish a model which describes the effects of 
cutting parameters on tool life. In this research only 
three categories of wear would be under 
consideration; light, middle and severe wear. 

Based on its high sampling rate and multisensory 
approach, this model is anticipated to further optimize 
TCM. Future areas of research geared towards 
determining an optimal choice number of sensors. 

I. Conclusion 

In conclusion, the proposed model presents more 
information on the cutting process and would provide 
a more efficient method in AE monitoring. 
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Appendix: Wear Picture  
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Appendix: Software design 
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Appendix: MATLAB Codes design 
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