3,198 research outputs found

    Integrative methods for analyzing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Integrative methods for analysing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Identification of DNA-binding protein based multiple kernel model

    Get PDF
    DNA-binding proteins (DBPs) play a critical role in the development of drugs for treating genetic diseases and in DNA biology research. It is essential for predicting DNA-binding proteins more accurately and efficiently. In this paper, a Laplacian Local Kernel Alignment-based Restricted Kernel Machine (LapLKA-RKM) is proposed to predict DBPs. In detail, we first extract features from the protein sequence using six methods. Second, the Radial Basis Function (RBF) kernel function is utilized to construct pre-defined kernel metrics. Then, these metrics are combined linearly by weights calculated by LapLKA. Finally, the fused kernel is input to RKM for training and prediction. Independent tests and leave-one-out cross-validation were used to validate the performance of our method on a small dataset and two large datasets. Importantly, we built an online platform to represent our model, which is now freely accessible via http://8.130.69.121:8082/

    Development and Application of Chemometric Methods for Modelling Metabolic Spectral Profiles

    No full text
    The interpretation of metabolic information is crucial to understanding the functioning of a biological system. Latent information about the metabolic state of a sample can be acquired using analytical chemistry methods, which generate spectroscopic profiles. Thus, nuclear magnetic resonance spectroscopy and mass spectrometry techniques can be employed to generate vast amounts of highly complex data on the metabolic content of biofluids and tissue, and this thesis discusses ways to process, analyse and interpret these data successfully. The evaluation of J -resolved spectroscopy in magnetic resonance profiling and the statistical techniques required to extract maximum information from the projections of these spectra are studied. In particular, data processing is evaluated, and correlation and regression methods are investigated with respect to enhanced model interpretation and biomarker identification. Additionally, it is shown that non-linearities in metabonomic data can be effectively modelled with kernel-based orthogonal partial least squares, for which an automated optimisation of the kernel parameter with nested cross-validation is implemented. The interpretation of orthogonal variation and predictive ability enabled by this approach are demonstrated in regression and classification models for applications in toxicology and parasitology. Finally, the vast amount of data generated with mass spectrometry imaging is investigated in terms of data processing, and the benefits of applying multivariate techniques to these data are illustrated, especially in terms of interpretation and visualisation using colour-coding of images. The advantages of methods such as principal component analysis, self-organising maps and manifold learning over univariate analysis are highlighted. This body of work therefore demonstrates new means of increasing the amount of biochemical information that can be obtained from a given set of samples in biological applications using spectral profiling. Various analytical and statistical methods are investigated and illustrated with applications drawn from diverse biomedical areas

    Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

    Get PDF
    Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established. Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones

    Unsupervised multiple kernel learning approaches for integrating molecular cancer patient data

    Get PDF
    Cancer is the second leading cause of death worldwide. A characteristic of this disease is its complexity leading to a wide variety of genetic and molecular aberrations in the tumors. This heterogeneity necessitates personalized therapies for the patients. However, currently defined cancer subtypes used in clinical practice for treatment decision-making are based on relatively few selected markers and thus provide only a coarse classifcation of tumors. The increased availability in multi-omics data measured for cancer patients now offers the possibility of defining more informed cancer subtypes. Such a more fine-grained characterization of cancer subtypes harbors the potential of substantially expanding treatment options in personalized cancer therapy. In this thesis, we identify comprehensive cancer subtypes using multidimensional data. For this purpose, we apply and extend unsupervised multiple kernel learning methods. Three challenges of unsupervised multiple kernel learning are addressed: robustness, applicability, and interpretability. First, we show that regularization of the multiple kernel graph embedding framework, which enables the implementation of dimensionality reduction techniques, can increase the stability of the resulting patient subgroups. This improvement is especially beneficial for data sets with a small number of samples. Second, we adapt the objective function of kernel principal component analysis to enable the application of multiple kernel learning in combination with this widely used dimensionality reduction technique. Third, we improve the interpretability of kernel learning procedures by performing feature clustering prior to integrating the data via multiple kernel learning. On the basis of these clusters, we derive a score indicating the impact of a feature cluster on a patient cluster, thereby facilitating further analysis of the cluster-specific biological properties. All three procedures are successfully tested on real-world cancer data. Comparing our newly derived methodologies to established methods provides evidence that our work offers novel and beneficial ways of identifying patient subgroups and gaining insights into medically relevant characteristics of cancer subtypes.Krebs ist eine der häufigsten Todesursachen weltweit. Krebs ist gekennzeichnet durch seine Komplexität, die zu vielen verschiedenen genetischen und molekularen Aberrationen im Tumor führt. Die Unterschiede zwischen Tumoren erfordern personalisierte Therapien für die einzelnen Patienten. Die Krebssubtypen, die derzeit zur Behandlungsplanung in der klinischen Praxis verwendet werden, basieren auf relativ wenigen, genetischen oder molekularen Markern und können daher nur eine grobe Unterteilung der Tumoren liefern. Die zunehmende Verfügbarkeit von Multi-Omics-Daten für Krebspatienten ermöglicht die Neudefinition von fundierteren Krebssubtypen, die wiederum zu spezifischeren Behandlungen für Krebspatienten führen könnten. In dieser Dissertation identifizieren wir neue, potentielle Krebssubtypen basierend auf Multi-Omics-Daten. Hierfür verwenden wir unüberwachtes Multiple Kernel Learning, welches in der Lage ist mehrere Datentypen miteinander zu kombinieren. Drei Herausforderungen des unüberwachten Multiple Kernel Learnings werden adressiert: Robustheit, Anwendbarkeit und Interpretierbarkeit. Zunächst zeigen wir, dass die zusätzliche Regularisierung des Multiple Kernel Learning Frameworks zur Implementierung verschiedener Dimensionsreduktionstechniken die Stabilität der identifizierten Patientengruppen erhöht. Diese Robustheit ist besonders vorteilhaft für Datensätze mit einer geringen Anzahl von Proben. Zweitens passen wir die Zielfunktion der kernbasierten Hauptkomponentenanalyse an, um eine integrative Version dieser weit verbreiteten Dimensionsreduktionstechnik zu ermöglichen. Drittens verbessern wir die Interpretierbarkeit von kernbasierten Lernprozeduren, indem wir verwendete Merkmale in homogene Gruppen unterteilen bevor wir die Daten integrieren. Mit Hilfe dieser Gruppen definieren wir eine Bewertungsfunktion, die die weitere Auswertung der biologischen Eigenschaften von Patientengruppen erleichtert. Alle drei Verfahren werden an realen Krebsdaten getestet. Den Vergleich unserer Methodik mit etablierten Methoden weist nach, dass unsere Arbeit neue und nützliche Möglichkeiten bietet, um integrative Patientengruppen zu identifizieren und Einblicke in medizinisch relevante Eigenschaften von Krebssubtypen zu erhalten

    Expression data dnalysis and regulatory network inference by means of correlation patterns

    Get PDF
    With the advance of high-throughput techniques, the amount of available data in the bio-molecular field is rapidly growing. It is now possible to measure genome-wide aspects of an entire biological system as a whole. Correlations that emerge due to internal dependency structures of these systems entail the formation of characteristic patterns in the corresponding data. The extraction of these patterns has become an integral part of computational biology. By triggering perturbations and interventions it is possible to induce an alteration of patterns, which may help to derive the dependency structures present in the system. In particular, differential expression experiments may yield alternate patterns that we can use to approximate the actual interplay of regulatory proteins and genetic elements, namely, the regulatory network of a cell. In this work, we examine the detection of correlation patterns from bio-molecular data and we evaluate their applicability in terms of protein contact prediction, experimental artifact removal, the discovery of unexpected expression patterns and genome-scale inference of regulatory networks. Correlation patterns are not limited to expression data. Their analysis in the context of conserved interfaces among proteins is useful to estimate whether these may have co-evolved. Patterns that hint on correlated mutations would then occur in the associated protein sequences as well. We employ a conceptually simple sampling strategy to decide whether or not two pathway elements share a conserved interface and are thus likely to be in physical contact. We successfully apply our method to a system of ABC-transporters and two-component systems from the phylum of Firmicute bacteria. For spatially resolved gene expression data like microarrays, the detection of artifacts, as opposed to noise, corresponds to the extraction of localized patterns that resemble outliers in a given region. We develop a method to detect and remove such artifacts using a sliding-window approach. Our method is very accurate and it is shown to adapt to other platforms like custom arrays as well. Further, we developed Padesco as a way to reveal unexpected expression patterns. We extract frequent and recurring patterns that are conserved across many experiments. For a specific experiment, we predict whether a gene deviates from its expected behaviour. We show that Padesco is an effective approach for selecting promising candidates from differential expression experiments. In Chapter 5, we then focus on the inference of genome-scale regulatory networks from expression data. Here, correlation patterns have proven useful for the data-driven estimation of regulatory interactions. We show that, for reliable eukaryotic network inference, the integration of prior networks is essential. We reveal that this integration leads to an over-estimate of network-wide quality estimates and suggest a corrective procedure, CoRe, to counterbalance this effect. CoRe drastically improves the false discovery rate of the originally predicted networks. We further suggest a consensus approach in combination with an extended set of topological features to obtain a more accurate estimate of the eukaryotic regulatory network for yeast. In the course of this work we show how correlation patterns can be detected and how they can be applied for various problem settings in computational molecular biology. We develop and discuss competitive approaches for the prediction of protein contacts, artifact repair, differential expression analysis, and network inference and show their applicability in practical setups.Mit der Weiterentwicklung von Hochdurchsatztechniken steigt die Anzahl verfügbarer Daten im Bereich der Molekularbiologie rapide an. Es ist heute möglich, genomweite Aspekte eines ganzen biologischen Systems komplett zu erfassen. Korrelationen, die aufgrund der internen Abhängigkeits-Strukturen dieser Systeme enstehen, führen zu charakteristischen Mustern in gemessenen Daten. Die Extraktion dieser Muster ist zum integralen Bestandteil der Bioinformatik geworden. Durch geplante Eingriffe in das System ist es möglich Muster-Änderungen auszulösen, die helfen, die Abhängigkeits-Strukturen des Systems abzuleiten. Speziell differentielle Expressions-Experimente können Muster-Wechsel bedingen, die wir verwenden können, um uns dem tatsächlichen Wechselspiel von regulatorischen Proteinen und genetischen Elementen anzunähern, also dem regulatorischen Netzwerk einer Zelle. In der vorliegenden Arbeit beschäftigen wir uns mit der Erkennung von Korrelations-Mustern in molekularbiologischen Daten und schätzen ihre praktische Nutzbarkeit ab, speziell im Kontext der Kontakt-Vorhersage von Proteinen, der Entfernung von experimentellen Artefakten, der Aufdeckung unerwarteter Expressions-Muster und der genomweiten Vorhersage regulatorischer Netzwerke. Korrelations-Muster sind nicht auf Expressions-Daten beschränkt. Ihre Analyse im Kontext konservierter Schnittstellen zwischen Proteinen liefert nützliche Hinweise auf deren Ko-Evolution. Muster die auf korrelierte Mutationen hinweisen, würden in diesem Fall auch in den entsprechenden Proteinsequenzen auftauchen. Wir nutzen eine einfache Sampling-Strategie, um zu entscheiden, ob zwei Elemente eines Pathways eine gemeinsame Schnittstelle teilen, berechnen also die Wahrscheinlichkeit für deren physikalischen Kontakt. Wir wenden unsere Methode mit Erfolg auf ein System von ABC-Transportern und Zwei-Komponenten-Systemen aus dem Firmicutes Bakterien-Stamm an. Für räumlich aufgelöste Expressions-Daten wie Microarrays enspricht die Detektion von Artefakten der Extraktion lokal begrenzter Muster. Im Gegensatz zur Erkennung von Rauschen stellen diese innerhalb einer definierten Region Ausreißer dar. Wir entwickeln eine Methodik, um mit Hilfe eines Sliding-Window-Verfahrens, solche Artefakte zu erkennen und zu entfernen. Das Verfahren erkennt diese sehr zuverlässig. Zudem kann es auf Daten diverser Plattformen, wie Custom-Arrays, eingesetzt werden. Als weitere Möglichkeit unerwartete Korrelations-Muster aufzudecken, entwickeln wir Padesco. Wir extrahieren häufige und wiederkehrende Muster, die über Experimente hinweg konserviert sind. Für ein bestimmtes Experiment sagen wir vorher, ob ein Gen von seinem erwarteten Verhalten abweicht. Wir zeigen, dass Padesco ein effektives Vorgehen ist, um vielversprechende Kandidaten eines differentiellen Expressions-Experiments auszuwählen. Wir konzentrieren uns in Kapitel 5 auf die Vorhersage genomweiter regulatorischer Netzwerke aus Expressions-Daten. Hierbei haben sich Korrelations-Muster als nützlich für die datenbasierte Abschätzung regulatorischer Interaktionen erwiesen. Wir zeigen, dass für die Inferenz eukaryotischer Systeme eine Integration zuvor bekannter Regulationen essentiell ist. Unsere Ergebnisse ergeben, dass diese Integration zur Überschätzung netzwerkübergreifender Qualitätsmaße führt und wir schlagen eine Prozedur - CoRe - zur Verbesserung vor, um diesen Effekt auszugleichen. CoRe verbessert die False Discovery Rate der ursprünglich vorhergesagten Netzwerke drastisch. Weiterhin schlagen wir einen Konsensus-Ansatz in Kombination mit einem erweiterten Satz topologischer Features vor, um eine präzisere Vorhersage für das eukaryotische Hefe-Netzwerk zu erhalten. Im Rahmen dieser Arbeit zeigen wir, wie Korrelations-Muster erkannt und wie sie auf verschiedene Problemstellungen der Bioinformatik angewandt werden können. Wir entwickeln und diskutieren Ansätze zur Vorhersage von Proteinkontakten, Behebung von Artefakten, differentiellen Analyse von Expressionsdaten und zur Vorhersage von Netzwerken und zeigen ihre Eignung im praktischen Einsatz

    Expression data dnalysis and regulatory network inference by means of correlation patterns

    Get PDF
    With the advance of high-throughput techniques, the amount of available data in the bio-molecular field is rapidly growing. It is now possible to measure genome-wide aspects of an entire biological system as a whole. Correlations that emerge due to internal dependency structures of these systems entail the formation of characteristic patterns in the corresponding data. The extraction of these patterns has become an integral part of computational biology. By triggering perturbations and interventions it is possible to induce an alteration of patterns, which may help to derive the dependency structures present in the system. In particular, differential expression experiments may yield alternate patterns that we can use to approximate the actual interplay of regulatory proteins and genetic elements, namely, the regulatory network of a cell. In this work, we examine the detection of correlation patterns from bio-molecular data and we evaluate their applicability in terms of protein contact prediction, experimental artifact removal, the discovery of unexpected expression patterns and genome-scale inference of regulatory networks. Correlation patterns are not limited to expression data. Their analysis in the context of conserved interfaces among proteins is useful to estimate whether these may have co-evolved. Patterns that hint on correlated mutations would then occur in the associated protein sequences as well. We employ a conceptually simple sampling strategy to decide whether or not two pathway elements share a conserved interface and are thus likely to be in physical contact. We successfully apply our method to a system of ABC-transporters and two-component systems from the phylum of Firmicute bacteria. For spatially resolved gene expression data like microarrays, the detection of artifacts, as opposed to noise, corresponds to the extraction of localized patterns that resemble outliers in a given region. We develop a method to detect and remove such artifacts using a sliding-window approach. Our method is very accurate and it is shown to adapt to other platforms like custom arrays as well. Further, we developed Padesco as a way to reveal unexpected expression patterns. We extract frequent and recurring patterns that are conserved across many experiments. For a specific experiment, we predict whether a gene deviates from its expected behaviour. We show that Padesco is an effective approach for selecting promising candidates from differential expression experiments. In Chapter 5, we then focus on the inference of genome-scale regulatory networks from expression data. Here, correlation patterns have proven useful for the data-driven estimation of regulatory interactions. We show that, for reliable eukaryotic network inference, the integration of prior networks is essential. We reveal that this integration leads to an over-estimate of network-wide quality estimates and suggest a corrective procedure, CoRe, to counterbalance this effect. CoRe drastically improves the false discovery rate of the originally predicted networks. We further suggest a consensus approach in combination with an extended set of topological features to obtain a more accurate estimate of the eukaryotic regulatory network for yeast. In the course of this work we show how correlation patterns can be detected and how they can be applied for various problem settings in computational molecular biology. We develop and discuss competitive approaches for the prediction of protein contacts, artifact repair, differential expression analysis, and network inference and show their applicability in practical setups.Mit der Weiterentwicklung von Hochdurchsatztechniken steigt die Anzahl verfügbarer Daten im Bereich der Molekularbiologie rapide an. Es ist heute möglich, genomweite Aspekte eines ganzen biologischen Systems komplett zu erfassen. Korrelationen, die aufgrund der internen Abhängigkeits-Strukturen dieser Systeme enstehen, führen zu charakteristischen Mustern in gemessenen Daten. Die Extraktion dieser Muster ist zum integralen Bestandteil der Bioinformatik geworden. Durch geplante Eingriffe in das System ist es möglich Muster-Änderungen auszulösen, die helfen, die Abhängigkeits-Strukturen des Systems abzuleiten. Speziell differentielle Expressions-Experimente können Muster-Wechsel bedingen, die wir verwenden können, um uns dem tatsächlichen Wechselspiel von regulatorischen Proteinen und genetischen Elementen anzunähern, also dem regulatorischen Netzwerk einer Zelle. In der vorliegenden Arbeit beschäftigen wir uns mit der Erkennung von Korrelations-Mustern in molekularbiologischen Daten und schätzen ihre praktische Nutzbarkeit ab, speziell im Kontext der Kontakt-Vorhersage von Proteinen, der Entfernung von experimentellen Artefakten, der Aufdeckung unerwarteter Expressions-Muster und der genomweiten Vorhersage regulatorischer Netzwerke. Korrelations-Muster sind nicht auf Expressions-Daten beschränkt. Ihre Analyse im Kontext konservierter Schnittstellen zwischen Proteinen liefert nützliche Hinweise auf deren Ko-Evolution. Muster die auf korrelierte Mutationen hinweisen, würden in diesem Fall auch in den entsprechenden Proteinsequenzen auftauchen. Wir nutzen eine einfache Sampling-Strategie, um zu entscheiden, ob zwei Elemente eines Pathways eine gemeinsame Schnittstelle teilen, berechnen also die Wahrscheinlichkeit für deren physikalischen Kontakt. Wir wenden unsere Methode mit Erfolg auf ein System von ABC-Transportern und Zwei-Komponenten-Systemen aus dem Firmicutes Bakterien-Stamm an. Für räumlich aufgelöste Expressions-Daten wie Microarrays enspricht die Detektion von Artefakten der Extraktion lokal begrenzter Muster. Im Gegensatz zur Erkennung von Rauschen stellen diese innerhalb einer definierten Region Ausreißer dar. Wir entwickeln eine Methodik, um mit Hilfe eines Sliding-Window-Verfahrens, solche Artefakte zu erkennen und zu entfernen. Das Verfahren erkennt diese sehr zuverlässig. Zudem kann es auf Daten diverser Plattformen, wie Custom-Arrays, eingesetzt werden. Als weitere Möglichkeit unerwartete Korrelations-Muster aufzudecken, entwickeln wir Padesco. Wir extrahieren häufige und wiederkehrende Muster, die über Experimente hinweg konserviert sind. Für ein bestimmtes Experiment sagen wir vorher, ob ein Gen von seinem erwarteten Verhalten abweicht. Wir zeigen, dass Padesco ein effektives Vorgehen ist, um vielversprechende Kandidaten eines differentiellen Expressions-Experiments auszuwählen. Wir konzentrieren uns in Kapitel 5 auf die Vorhersage genomweiter regulatorischer Netzwerke aus Expressions-Daten. Hierbei haben sich Korrelations-Muster als nützlich für die datenbasierte Abschätzung regulatorischer Interaktionen erwiesen. Wir zeigen, dass für die Inferenz eukaryotischer Systeme eine Integration zuvor bekannter Regulationen essentiell ist. Unsere Ergebnisse ergeben, dass diese Integration zur Überschätzung netzwerkübergreifender Qualitätsmaße führt und wir schlagen eine Prozedur - CoRe - zur Verbesserung vor, um diesen Effekt auszugleichen. CoRe verbessert die False Discovery Rate der ursprünglich vorhergesagten Netzwerke drastisch. Weiterhin schlagen wir einen Konsensus-Ansatz in Kombination mit einem erweiterten Satz topologischer Features vor, um eine präzisere Vorhersage für das eukaryotische Hefe-Netzwerk zu erhalten. Im Rahmen dieser Arbeit zeigen wir, wie Korrelations-Muster erkannt und wie sie auf verschiedene Problemstellungen der Bioinformatik angewandt werden können. Wir entwickeln und diskutieren Ansätze zur Vorhersage von Proteinkontakten, Behebung von Artefakten, differentiellen Analyse von Expressionsdaten und zur Vorhersage von Netzwerken und zeigen ihre Eignung im praktischen Einsatz

    Application of Machine Learning for Drug–Target Interaction Prediction

    Get PDF
    Exploring drug–target interactions by biomedical experiments requires a lot of human, financial, and material resources. To save time and cost to meet the needs of the present generation, machine learning methods have been introduced into the prediction of drug–target interactions. The large amount of available drug and target data in existing databases, the evolving and innovative computer technologies, and the inherent characteristics of various types of machine learning have made machine learning techniques the mainstream method for drug–target interaction prediction research. In this review, details of the specific applications of machine learning in drug–target interaction prediction are summarized, the characteristics of each algorithm are analyzed, and the issues that need to be further addressed and explored for future research are discussed. The aim of this review is to provide a sound basis for the construction of high-performance models
    • …
    corecore