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Abstract: DNA-binding proteins (DBPs) play a critical role in the development of drugs for treating 
genetic diseases and in DNA biology research. It is essential for predicting DNA-binding proteins more 
accurately and efficiently. In this paper, a Laplacian Local Kernel Alignment-based Restricted Kernel 
Machine (LapLKA-RKM) is proposed to predict DBPs. In detail, we first extract features from the 
protein sequence using six methods. Second, the Radial Basis Function (RBF) kernel function is 
utilized to construct pre-defined kernel metrics. Then, these metrics are combined linearly by weights 
calculated by LapLKA. Finally, the fused kernel is input to RKM for training and prediction. 
Independent tests and leave-one-out cross-validation were used to validate the performance of our 
method on a small dataset and two large datasets. Importantly, we built an online platform to represent 
our model, which is now freely accessible via http://8.130.69.121:8082/. 

Keywords: DNA-binding proteins; multiple kernel learning; local kernel alignment; restricted 
kernel machine 
 

1. Introduction  

Many biological processes are carried out by the DBPs, such as specific nucleotide sequence 
recognition, transcription and DNA replication. Therefore, identification of DBPs has become an 
import subject of biology. The protein can be identified by various experimental techniques, such as 
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ChIP-chip [1,2] and filter binding assays [3]. However, with the development of high-throughput 
sequencing technology, protein sequence databases have increased unprecedentedly. Proteins whose 
structure and function are unknown are on the rise. A rapid and accurate method for identifying and 
characterizing DBPs based on their protein sequence is highly desired. Computer prediction methods 
have been widely applied to various biological problems [4–11]. 

The existing prediction methods are broadly divided into two groups. The first group is model based 
prediction methods. These methods that borrow prior information across sequences to predict DBPs, 
including amino acid composition [12,13], evolutionary information [14,15] and physicochemical [16] 
character. For example, Rahman et al. [17] presented a predictor named DPP-PseACC. They used Chou’s 
PseAAC [18] to extract features from amino acid composition and Random Forest (RF) model to reduce 
the dimension of feature vector. Then, they applied Support Vector Machine [19] (SVM) with linear 
kernel to train prediction model. Similarly, StackPDB take three steps to predict DBPs, including feature 
extraction, feature selection and model construction. StackPDB extract protein sequence features from 
amino acid and composition and evolutionary information. Evolutionary information can be represented 
by the position specific scoring matrix (PSSM), which is generated by PSI-BLAST [20] program. In 
StackPDB method, PsePSSM, PSSM-TPC, EDT and RPT are used to extract PSSM. They then used 
extreme gradient boosting-recursive feature elimination to select the best features. Finally, the excellent 
feature subset is fed into the stacked ensemble classifier, which composes XGBoost, SVM and 
LightGBM. From the previous study [21–25], we can see that the protein sequence can be described by 
different representations, such as amino acid composition and PSSM. Because fusion methods can 
exploit information from all representations to effectively improve the model performance, some fusion 
techniques are performed in identification of DBPs.  

For example, CKA-MKL [26], HSIC-MKL [27], HKAM-MKL [28] and MLapSVM-LBS [29]. 
CKA-MKL, HSIC-MKL and HKAM-MKL are the Multiple Kernel Learning (MKL), which is popular 
early fusion techniques. MKL aims to learn optimal kernel weights. The optimal kernel is linear 
combined by multiple base kernels based on the related weight. CKA-MKL maximizes the cosine 
similarity score between the optimal and the ideal kernel. In addition, CKA-MKL introduce the 
Laplacian term about weights into objective function to avoid extreme situations. CKA-MKL only 
considers the global kernel alignment and ignore the difference information between local samples. 
Therefore, HKAKM-MKL both maximize the score of local and global kernel alignment. CKA-MKL 
and HKAM-MKL both use SVM as a classifier. HSIC-MKL maximizes the value of independence 
between trained samples and labels in Reproducing Kernel Hilbert Space (RKHS). Then, the optimal 
kernel was input into a hypergraph based Laplacian SVM, which is the extension of SVM. CKA-MKL 
only considers the global manner. Furthermore, HKAM-MKL both consider global and local manners. 
HKAM-MKL is therefore superior to CKA-MKL in predicting DBPs. Different from the above MKL 
methods, MLapSVM-LBS fuses multiple information during training progress. MLapSVM-LBS uses 
the multiple local behavior similarity graph as the regularization term. Because the objective function 
of MLapSVM-LBS is non-convex, an alternation algorithm is employed. The advantage of 
MLapSVM-LBS is that the multiple information is fused during the training phase while allowing for 
some degree of freedom to model the views differently.  

There are several methods for predicting protein sequences that are based on structural 
information. Using structural alignment and statistical potential, Gao et al. [4] proposed the DBD-
Hunter. DBD-Threader was subsequently proposed by Gao et al. [30] for the prediction of DBPs. The 
DBD-Threader uses a template library consisting of DNA-protein complex structures, while its 
classification relies only on the sequence of the target protein. When the structure of a candidate protein 
is known, structure-based predictors can be used. Therefore, predictors that rely solely on structural 
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information about proteins are limited in their application. 
The second group is deep learning-based prediction methods. Deep learning-based methods are 

designed by capture the hidden representation of protein sequence. For example, Du et al. [31] reported 
a deep learning-based method called MsDBP. MsDBP only relies on the primary sequence, without 
human-crafted feature selection. Lu et al. [32] proposed a predictor that contains parallel long and 
short-term memory (LSTM) and convolutional neural networks (CNN). In Lu’s work, the input of 
LSTM and CNN is sequence and PSSM, respectively. The spatial structure of a protein contains 
richer information compared with protein sequences. Therefore, Lu et al. [33] further constructed 
a graph convolutional network based on the contact map, which is generated by Pconsc4 [34]. Yan 
et al. [35] employed the transfer learning to construct data sets and build a deep learning neural 
network with attention mechanisms to detect DBPs. Because of their nature, most deep learning-based 
methods [33,36,37] are not suitable for small datasets. 
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Figure 1. A workflow of the LapLKA-RKM. 

Inspired by a series of recent publications [26,27,38–46], we propose a predictor for detecting 
DBPs. This predictor was called LapLKA-RKM, which needs the following three steps: 1) represent 
the protein sequence with a set of feature vectors, including Global Encoding (GE), Multi-scale 
Continuous and Discontinuous descriptor (MCD), Normalized Moreau-Broto Auto Correlation 
(NMBAC), PSSM-based Discrete Wavelet Transform (PSSM-DWT), PSSM-based Average Blocks 
(PSSM-AB) and PSSM-Pse; 2) fuse these features by LapLKA (this progress can be seen as selection 
of features); 3) RKM was developed to make the prediction. A brief architecture of LapLKA-RKM is 
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shown in Figure 1. We conducted LOOCV and independent testing on PDB1075 and PDB2272, 
respectively. The prediction accuracy indicate that our methods is an effectively tool for DBPs detection. 

The contributions of our methods include: 1) we propose a MKL algorithm, called LapLKA, 
which can outperform other MKL methods in handling multiple kernels; 2) we extend the RKM to a 
multiple kernel setting by weighting shared hidden features. 

2. Methods 

2.1. Datasets and experiment setup 

Three protein datasets with different sizes were adopted in our study to test the ability of LapLKA-
RKM in predicting DBPs. These datasets collected from the PDB, UniProt and Swiss-Prot database, 
namely PDB1075 [12], PDB14189 [31] and PDB2272 [31].  

The dataset construction rules are as follows: 

𝑁 𝑁 ∪ 𝑁 1  

where N is the number of total samples, N   is the number of DBPs samples and N   is the number 
of non-DBPs samples. We present a brief summary of the three datasets in Table 1. Sequences with 
sequence similarity greater than 25%, 25%, 40% in PDB1075, PDB2272 and PDB14189 were 
removed, respectively. 

Leave-one-out cross-validation (LOOCV) and independent testing are conducted to show the 
ability of predictor. We conduct the LOOCV and 10-CV on PDB1075, because PDB1075 is a small 
dataset and its running time is acceptable. To show the robustness of generalization and ability of big 
dataset of models, we take PDB14189 dataset as training set and PDB2272 as test set. 

Table 1. A summary of three datasets used in this study. 

Datasets N 
 N 

 N  

PDB1075 525 550 1075 

PDB14189 7129 7060 14,189 

PDB2272 1153 1119 2272 

2.2. Feature extraction 

A total of six sequence-based features are extracted from proteins, including GE [47], MCD [48], 
NMBAC [49], PSSM-DWT [50], PSSM-AB [51] and PSSM-Pse [13,52–54]. Where GE and MCD 
extract feature vectors from the amino acid composition of sequences. NMBAC describes the six 
physicochemical properties of amino acids, namely Polarizability, Polarity, Solvent Accessible Surface 
Area, Hydrophobicity, Net Charge Index of Side Chains and Volume of Side Chains. PSSM-AB, 
PSSM-DWT and PSSM-Pse consider proteins’ evolutionary information, which can be represented by 
the position specificity score matrix (PSSM). PSSM is generated by PSI-BLAST [20]. The optimal 
parameters of NMBAC and PSSM-Pse were implemented by previous study [26]. In the related 
literature, these features are described in detail. 

RKM is a kind of kernel methods [55–58]. It maps data points from the input space to the feature 
space. The mapping is determined implicitly by a kernel function. Therefore, we need to construct 
kernel metrics as input to RKM. The kernel function mainly includes Linear Function, Polynomial 
Function and Radial Basis Function. Like other methods [27,38,59–61], RBF is employed to construct 
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kernels and its formula is defined as: 

𝐾 𝐾 𝑥 , 𝑥 𝑒𝑥𝑝 𝛾 𝑥 𝑥 , 𝑖, 𝑗 1,2, ⋯ , 𝑁 2  

where x i  and x j  are sample points,   is the kernel bandwidth. Then, a predefined kernel set K  

is obtained: 

𝐊 𝐊𝑮𝑬, 𝐊𝑴𝑪𝑫, 𝐊𝑵𝑴𝑩𝑨𝑪, 𝐊𝑷𝑺𝑺𝑴 𝑨𝑩, 𝐊𝑷𝑺𝑺𝑴 𝑫𝑾𝑻, 𝐊𝑷𝑺𝑺𝑴 𝑷𝒔𝒆 𝟑  

2.3. Laplacian Local Kernel Alignment Algorithm 

Laplacian Local Kernel Alignment (LapLKA) is a kind of supervised Multiple Kernel Learning 
(MKL). As we all know, an appropriate kernel matrix is very important to the success of any kernel 
method [62]. However, choosing an appropriate kernel matrix is difficult for biological applications. 
In terms of protein sequence, it can be described by different kernel matrixes. To address this limitation, 
MKL is proposed [39]. MKL aims to combine a set of predefined kernels by linear weight and the 
optimal kernel accurately represent a set of protein sequences. Let P  as the number of predefined 

kernels,  1, ,K K KP   as the kernel set. The optimal kernel *K  is the linear combination of the 

kernel set: 

𝐊∗ 𝛽 𝐊 4  

where p  is the kernel mixture weight. Usually, the 1L -norm is imposed to constraint the structure 

of β : 

‖𝛃‖ 𝛽 1 5  

The main goal of the LapLKA algorithm is to determine the values of β . There are two parts to 
LapLKA’s learning strategy: local kernel and the inner relationship of global kernels. In previous 
studies [63–65], the score of kernel alignment is calculated only in global or local manner. Global 
manner aims to maximize the alignment score between the whole optimal kernel and the ideal kernel. 
Global manner may ignore the difference between similar samples. Contrary the global manner, local 
manner only considers the sub kernel, which is constructed by a set of similar samples. In the global 
manner, whole samples will be missed. For this reason, we propose LapLKA, which integrated local 
kernel alignments and the global kernel alignments. 

First, we define the function of kernel alignment as follow: 

𝐴 𝐏, 𝐐
〈𝐏, 𝐐〉

‖𝐏‖ ‖𝐐‖
6  

where P   and Q   are positive defined matrix, ,
F

    and F
   are the Frobenius inner product and 

Frobenius norm, respectively. The value of kernel alignment is the cosine similarity between two kernels. 
For the local manner, we maximize the alignment score between the local kernel and the ideal 

kernel. The local kernel is constructed by each sample and its neighbors. We select the index of the k  
samples neighbor samples that are nearest to each sample. We choose the Euclidean distance in the 
input space as the evaluation of sample similarity. Then, we select the sample’s neighbor samples based 
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the similarity. The set of neighbors of samples of ix  is  k iN x . The local kernel about cx  can be 

represented as: 

𝐊 𝐊 𝑢, 𝑣 , 𝑥 , 𝑥 ∈ 𝑁 𝑥 7  

We maximize the average of all local kernel alignment scores. There, the objective function of 
local manner can be presented as follows: 

arg max
1
𝑁

𝐴 𝛽 𝐊 , 𝐊 8  

where T
YK YY  is ideal kernel,  i

YK  is calculated by the label of related samples. 

The global kernel alignment information is introduced into Eq (8) by the Laplacian regular term: 

𝛽 𝛽 𝐖
,

𝛽 𝛽 2𝛽 𝛽 𝐖
,

9

𝛽 𝐃
,

𝛽 𝐃
,

2 𝛽 𝛽 𝐖
,

2𝛃 𝐋𝛃

 

where P PW R   is the global kernel alignment matrix, ijW   represents the value of kernel 

alignment  ,i jA K K . Equations (8) and (9) are integrated as follow: 

arg max
1
𝑁

𝐴 𝛽 𝐊 , 𝐊 2𝜆𝛃 𝐋𝛃 10

𝑠. 𝑡. 𝛽 1

 

To optimize Eq (10), we introduce the auxiliary variable i  into Eq (10).  is defined as: 

𝜏
𝛃 𝐌 𝛃

𝛃 𝐌𝛃
11  

where  T
ij i jM tr K K ,       T

l l l
ij i jM tr K K . Therefore, Equation (10) can be rewrite as: 

arg max
𝛃 𝐐

𝛃 𝐌𝛃
2𝜆𝛃 𝐋𝛃 12

𝑠. 𝑡. 𝛽 1

 

From [66–72], Equation (12) is equivalent to the following Quadratic Programming problem: 

arg max 𝛃 𝐌𝛃 𝛃 2𝐐 4𝜆𝐋 13

𝑠. 𝑡. 𝛽 1
 

i
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We employ CVX package [73] to optimization Eq (13). 

2.4. Restricted kernel machine 

Restricted Kernel Machine (RKM) classification model is a kind of kernel method [8]. It was proposed 
by Suykens [56]. The objective function of RKM is closely similar to the Least Squares Support Vector 
Machine (LS-SVM) [74] model. SVM is also a kernel method and most methods [15,23,26,28,75] select 
SVM as classification. However, we choose RKM as classification. The reason is that, RKM is easily 
extend to deep framework, called Deep RKM [56]. Deep RKM can produce good results and we will 
use it throughout the rest paper. 

  
1

,
N

i i i
x y


  denotes as the training data, where d

ix R   is the i  -th input pattern and 

 1,1iy    the related sample label. It is well known that the objective function of LS-SVM is: 

arg min
,

𝜂
2

𝑤 𝑤 𝑒 14

𝑠. 𝑡. 𝑒 1 𝜑 𝑥 𝑤 𝑏 𝑦

 

We formulate a lower bound on the function Eq (14), and then the objective function of RKM 
classification is obtained: 

arg min
,

𝜂
2

𝑤 𝑤 1 𝜑 𝑥 𝑤 𝑏 𝑦 ℎ
𝜇
2

ℎ 15  

where b   is a bias term,    and    are hyperparameters and ih   is a hidden feature. The map 
function ( )   maps x  from the input space into a reproducing kernel Hilbert space. Hidden features 
are obtained by an internal pairing of Te h  , where e  is the classification loss. 

The stationary points of the objective function Eq (15) in the primal formulation are characterized by: 

⎩
⎪
⎨

⎪
⎧

1 𝜑 𝑥 𝑤 𝑏 𝜆ℎ , 𝑖 1, ⋯ , 𝑁

𝑤
1
𝜂

𝜑 𝑥 𝑦 ℎ , 𝑖 1, ⋯ , 𝑁

𝑦 ℎ 0

16  

By eliminating the weights w , the linear formulation is obtained: 

1
𝜂

𝐊 𝜇𝐈 1

1 0

𝑦⨀ℎ
𝑏

𝑦
0 17  

where I N  and 1N  are the identity matrix and a one column vector,   is the element-wise product. 

In this paper, we mainly focus on the RKM-based MKL formulations. The final linear system of 
RKM-based MKL is given by: 
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1
𝜂

𝛽 𝐊 𝜇𝐈 1

1 0

𝑦⨀ℎ
𝑏

𝑦
0 18  

The linear system Eq (18) can be solved based on the training data. The variables h  and bias 
term b  are used to construct the classifier. For a test data point tx , the final decision function is: 

𝑓 𝑥 𝐬𝐢𝐠𝐧
1
𝜂

𝛽 𝑦 ℎ 𝐾 𝑥 , 𝑥 𝑏 19  

3. Results and discussion 

3.1. Evaluation measurements 

Because the identification of DBPs is the binary classification problem. The following parameters 
are employed to measure the performance of predictor: 

𝐴𝐶𝐶
𝑇𝑃 𝐹𝑁

𝑇𝑁 𝑇𝑃 𝐹𝑃 𝐹𝑁
100% 20  

𝑆𝑃 100% 21  

𝑆𝑁 100% 22  

𝑀𝐶𝐶 100% 23  

Here, TP  is the number of DBPs that are predicted to be non-DBPs; FN  is the number of non-
DBPs that are predicted to be DBPs; FP  is the number of DBPs that are predicted to be non-DBPs, 
and TN  is the number of non-DBPs that are predicted to be non-DBP. In addition, ROC curve [76,77] 
and PR curve are also used to evaluate classification performance. 

3.2. Parameters selection 

We tune parameters for best performance by 5-fold cross-validation (5-CV) and grid searching on 
PDB1075. First, we try to find the optimal kernel bandwidth for six types of kernels. The optimal kernel 
bandwidth is obtained from its single kernel RKM and set the range from 52  to 52  with step 12 . The 
results are shown in Table 2. Then, we select the parameters  ,   and   from 52  to 52  with 
step 12  , k   from 10 to 50 with step 5.    and k   are parameters of LapLKA.    weighs the 
relationship between the local manner and the global manner, and k  is the number of neighbors for 
samples.   and   are regularization parameters in RKM objective function. 

To demonstrate parameters sensitivity of LapLKA, we study the variation of performance according 
to change of  and  with fixed parameters of RKM. Figure 2 shows the ACC variation with  
and   on PDB1075. We can see that our method is not sensitive to   and  , especially  . 
Similarity, we study parameters sensitivity of RKM with fixed parameters of LapLKA. The ACC 
variation of   and   is shown in Figure 3. We can observe that   and   are both sensitivity 
parameters. When   and   , the ACC score is the lowest. With λ and   decreases 

 k 
k  k k

   
52  52  
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gradually, the predicted performance of 5-CV is increase. It is still an open problem that the 
sensitively of the model to hyperparameters. Finally, we set , ,  and  to be 15, 2, 0.125 
and 2, respectively. 

Table 2. The optimal parameters for single kernel RKM. 

Parameters NMBAC GE MCD PSSM-AB PSSM-DWT PSSM-Pse 

       
       

       

 

Figure 2. Effect of  and  on ACC with fixed  and  via 5-CV on PDB1075. 

cc  

Figure 3. Effect of   and   on ACC with fixed 15k   and 2   via 5-CV on PDB1075. 

In our method, there are four hyperparameters: . Here,  is the parameter in the local 
multi-kernel,  weighs the relationship between the global kernel and the local kernel, and  is 
the RKM positive real regularization constant. 

k   

 12 02 02 02 02 02
 02 02 02 12 12 12

 12 12 32 02 42 12

k  0.125  2 

, , ,k    k
 , 
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3.3. Compared with single kernel 

To analyze the performance of these kernels, we evaluate different kernels in two experiments, as 
shown in Tables 3 and 4 and Figure 4. 

Table 3. Compared with single kernel on PDB1075 (LOOCV). 

Kernel type ACC (%) SN (%) SP (%) MCC AUC 

NMBAC 73.49 76.57 70.55 0.4716 0.818 
GE 70.98 71.81 70.18 0.4198 0.786 
MCD 68.19 76.76 60.00 0.3723 0.762 
PSSM-AB 76.37 80.76 72.18 0.5307 0.840 
PSSM-DWT 74.51 75.05 74.00 0.4903 0.828 
PSSM-Pse 77.95 82.67 73.45 0.5628 0.864 
Weighted with LapLKA 85.77 89.90 81.82 0.7185 0.926

Table 4. Compared with single kernel on PDB2272 (independent test). 

Kernel type ACC (%) SN (%) SP (%) MCC AUC 

NMBAC 68.31 72.77 63.72 0.3665 0.7512 
GE 65.36 69.04 61.57 0.3070 0.7225 
MCD 71.79 79.36 63.99 0.4391 0.7853 
PSSM-AB 77.33 88.99 65.33 0.5601 0.8656 
PSSM-DWT 71.74 92.11 50.76 0.4723 0.8377 
PSSM-Pse 75.53 91.33 59.25 0.5354 0.8608 
Weighted with LapLKA 79.53 96.62 61.93 0.6264 0.9303

 

Figure 4. The ROC and PR curves of different kernels (LOOCV). 

Results of LOOCV on PDB1075 are listed in Table 3 and Figure 4. Because LapLKA is a linear 
combination of six types of kernels, LapLKA performs much better than the single kernel. In addition, 
the average scores of ACC, SN, SP, MCC and AUC with kernels using PSSM information (PSSM-AB, 
PSSM-DWT, PSSM-Pse) are 76.28%, 79.49%, 73.21%, 0.5279 and 0.8439, respectively. The kernels 
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using AAC information (GE, MCD) perform worst, its average score of metrices is ACC:69.58%, 
SN:74.28%, SP:65.09%, MCC:0.3960 and AUC:0.7743. We can observe that the model using PSSM 
information is better than other information. Thus, PSSM is an excellent feature extraction method that 
contains the evolutionary relationship with other sequences. 

Table 5. The running time of different kernels on PDB2272 (independent test). 

Kernel type Sec 

NMBAC 38.73 
GE 38.91 
MCD 42.04 
PSSM-AB 38.76 
PSSM-DWT 44.62 
PSSM-Pse 38.68 
Weighted with LapLKA 162.32 

Results of independent test on PDB2272 are list in Table 4. Table 4 shows a same trend with Table 3. 
LapLKA achieves best performance and the model using PSSM information is better than other 
information. In addition, PSSM-AB achieves highest SP (65.33%) and second highest ACC (77.33%), 
MCC (0.5601) and AUC (0.8656). The advantage of LapLKA is also reflected on PDB2272. The 
improvement in ACC, SN, MCC and AUC are 2.2% (PSSM-AB), 4.51% (PSSM-DWT), 0.0663 (MCC) 
and 0.0647 (AUC), respectively. 

The running time of RKM with different kernels is also evaluated. In Table 5, the results are 
presented. RKM with multiple kernels is implemented in Matlab. It runs on an Intel i7-10750H CPU 
with 16 GB RAM. As we can see, our method is the most time-consuming. This can be explained by 
looking at the time complexity of RKM with single kernel and RKM with LapLKA-MKL. In RKM 
with single kernel, the time complexity of the training phase is largely influenced by calculating kernel 

matrices (  2O N d ) and solving linear problems (  3O N ). Three steps are involved in RKM with 

LapLKA-MKL: calculate the kernel matrices, MKL and solve a linear problem. These steps have a 

time complexity of  2O PN d ,  3O N  and  3O N . 

3.4. Compared with baseline methods 

Compared with single kernels, LapLKA achieves an obvious advantage. As a further 
demonstration of LapLKA’s fusion capabilities, we compare it with BSV, FC, Comm and MV. Other 
MKL algorithms are also evaluated, including CKA, HSIC and FKL. In addition, we compare our 
method with other well-known classifiers. Other classifiers are fed multiple features concatenated for 
fair comparison. Details of the baseline methods are as follows: 

• Best Single Kernel with RKM (BSK-RKM): The results of applying RKM in the best performance. 
• Feature Concatenation with RKM (FC-RKM): Multiple features are concatenated and RKM is 

used to do classification. 
• Feature Concatenation with Xtreme gradient boosting (FC-XGBoost): Multiple features are 

concatenated and XGBoost is used to do classification. The XGBoost [78] algorithm is a kind of 
ensemble learning model, which produces a strong model by assembling decision trees. 

• Feature Concatenation with Random Forest (FC-RF): Multiple features are concatenated and RF is 
used to do classification. RF [79] is a classification algorithm combining ensemble tree-structed classifiers. 

• Feature Concatenation with K Nearest Neighbors (FC-KNN): Multiple features are concatenated 
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and KNN [80] is used to do classification. KNN is an algorithm for classification, which assigns a 
class label to a new data point based on the k nearest neighbors in the feature space. 

• Committee RKM with RKM (Comm-RKM): Each kernel was input to RKM classification 
separately and taking the average of multiple RKM results as the final prediction result. 

• Multi-View RKM classification [55] (MV-RKM): MV-RKM is an extension of the RKM 
Classification by assuming shared hidden nodes over all different features. The linear system of MV-
RKM is: 

1
𝜂

𝐊 𝜇𝐈 𝑃

1 0

𝑦⨀ℎ
𝑏

𝑃𝑦
0

24  

where NP  is a column vector where each element equals P . From Eq (24), we can observe that MV-

RKM can be seen as the MKL with mean weighted based RKM. 

• Centered Kernel Alignment [26] with RKM (CKA-RKM): CKA is a kind of MKL algorithm. 
CKA estimates the optimal weights of kernels by maximizing the cosine similarity between the optimal 
kernel and ideal kernel. Different from LapLKA, CKA only consider the global manner. 

• Hilbert Schmidt Independence Criterion [81] with RKM (HSIC-RKM): HSIC is a kind of MKL 
algorithm. HSIC optimize the kernel weight by maximize the dependence between the optimal kernel 
and ideal kernel. The advantage of HSIC is simple calculation and fast convergence. 

• Fast Kernel Learning [82] with RKM (FKL-RKM): FKL also is a kind of MKL algorithm. 
FKL find fusing weight by minimize the Euclidean distance between the optimal kernel and ideal 
kernel. Since the objective function of FKL is quadratic programming, it is fast and effective at 
solving kernel weights. 

The hyperparameters of these fusion methods are detected by the 5-CV and the grid search 
on PDB1075. 

Table 6. Performance compared with other baseline methods on PDB1075 (LOOCV). 

Basline method ACC (%) SN (%) SP (%) MCC  AUC 

BSV-RKM 77.95 82.67 73.45 0.5628 0.864
FC-RKM 81.77 85.71 78.00 0.6382 0.898
FC-XGBoost 73.52 76.93 70.34 0.4730 0.807
FC-RF 75.18 65.58 84.39 0.5091 0.837 
FC-KNN 75.68 79.03 72.34 0.5140 0.829
Comm-RKM 81.86 87.05 76.91 0.6418 0.899
MV-RKM 83.35 88.76 78.18 0.6720 0.922
CKA-RKM 82.51 84.19 80.91 0.6509 0.910
HSIC-RKM 83.72 88.00 79.64 0.6777 0.916 
FKL-RKM 84.09 89.14 79.27 0.6863 0.921
LapLKA-RKM 85.77 89.90 81.82 0.7185 0.926

Table 6 and Figure 5 show all baseline methods and LapLKA on the PDB1075 by LOOCV. 
Table 7 shows comparison between each baseline methods on the PDB2272 by independent test. We 
can see: 1) LapLKA has the best performance no matter LOOCV on PDB1075 or independent test on 
big dataset. This indicates that LapLKA can obtain the best optimal kernel for classification by 
effectively combing the multiple kernels. 2) MV, CKA, HSIC and KTA perform better than typical 
fusion methods (BSV, FC and Comm) on PDB1075 by LOOCV. However, these MKL methods (MV, 
CKA, HSIC and KTA) are slightly inferior to typical fusion methods.  
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A good prediction method should have good generalization capabilities. In light of this, we report 
the uncertainties of our method and baseline methods by 10-CV on PDB1075. The results are shown 
in Figure 6. According to the boxplot, our method is likely to produce similar results for different cross-
validation splits. Additionally, our method produces the highest mean ACC. Furthermore, we report 
statistical tests of the differences under 10-CV on PDB1075. Table 7 demonstrates that, our method 
has statistically significant improvement over other baseline methods (P-value < 0.05, by t-test, in 
terms of ACC, for BSV-RKM, FC-RKM, FC-XGBoost, FC-RF, FC-KNN and CKA-RKM). 

 

Figure 5. The ROC and PR curves of different baseline methods. 

 

Figure 6. ACC of different baseline methods on PDB1075 (10-CV). 
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Table 7. The statistics of different baseline methods on PDB1075 (10-CV). 

Basline method P value 

BSV-RKM 1.09E-6 
FC-RKM 2.88E-2 
FC-XGBoost 1.95E-5 
FC-RF 1.15E-3 
FC-KNN 5.81E-11 
Comm-RKM 4.85E-4 
MV-RKM 1.75E-1 
CKA-RKM 4.08E-2 
HSIC-RKM 1.57E-1 
FKL-RKM 1.50E-1

Table 8. Performance compared with other baseline methods on PDB2272 (independent test). 

Basline method ACC (%) SN (%) SP (%) MCC AUC 

BSV-RKM 77.33 88.99 65.33 0.5601 0.8656 
FC-RKM 74.25 92.63 55.32 0.5183 0.8871 
FC-XGBoost 73.62 55.92 91.35 0.5067 0.8243 
FC-RF 76.34 60.24 92.46 0.5561 0.8340 
FC-KNN 74.56 78.45 70.91 0.4968 0.8224 
Comm-RKM 77.11 90.63 63.18 0.5609 0.8647 
MV-RKM 75.18 93.50 56.30 0.5381 0.8855 
CKA-RKM 75.09 92.80 56.84 0.5336 0.8717 
HSIC-RKM 75.79 93.15 57.91 0.5472 0.8774 
FKL-RKM 75.48 92.97 57.46 0.5412 0.8836 
LapLKA-RKM 79.53 96.62 61.93 0.6264 0.9303 

 

Figure 7. The weights of kernels obtained by different MKL on the PDB14189. 

In addition, the weight of each kernel (with MV, CKA, HSIC, KTA and LapLKA) on PDB14189 

NMBAC MCD GE PSSM-AB PSSM-DWT PSSM-Pse
MV 0.166 0.166 0.166 0.166 0.166 0.166
CKA 0.119 0 0.285 0.159 0.437 0
HSIC 0 0 0.111 0.107 0.425 0.357
FKL 0.024 0.071 0.099 0.314 0.232 0.259
LapLKA 0 0.281 0.121 0.271 0.016 0.311
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is shown in Figure 7. In HSIC and LapLKA approaches, the weights of PSSM-Pse are the largest 
and NMBAC is close to 0. Additionally, the weights of kernels using AAC usually lower than kernels 
using PSSM. For example, the sum of weights of PSSM kernels is 0.598, and the weights of AAC 
kernels is 0.281 in LapLKA. The analysis of performance of single kernel demonstrates that, the model 
using PSSM information is better than other information. Therefore, we can draw the conclusion that 
LapLKA could set low weights to noise kernels. 

3.5. Compared with other existing methods 

Table 9. Performance comparison with other existing methods on PDB1075 (LOOCV). 

Method ACC (%) SN (%) SP (%) MCC  

iDNA-Prot [83] 75.40 83.81 64.73 0.50 
iDNA-Prot|dis [84] 77.30 79.40 75.27 0.54 
PseDNA-Pro [12] 76.55 79.61 73.63 0.53 
iDNAPro-PseAAC [13] 76.55 75.62 77.45 0.53 
Local-DPP [85] 79.10 84.80 73.60 0.59 
MKSVM-HKA [86] 81.30 82.29 80.36 0.63 
FKRR-MVSF [87] 83.26 85.17 80.91 0.67 
CKA with SVM [26] 84.19 85.91 82.55 0.68 
MK-FSVM-SVDD [88] 82.23 81.90 82.55 0.65 
UMAP-DBP [89] 82.97 82.83 83.72 0.67 
HKAM-MKM [28] 84.28 80.00 88.76 0.69 
MV-H-RKM [38] 84.65 87.24 93.64 0.69 
LapLKA-RKM 85.77 89.90 81.82 0.72 

Table 10. Performance comparison with other existing methods on PDB2272 (independent test). 

Method ACC (%) SN (%) SP (%) MCC  

DPP-PseACC [17] 58.1 56.6 59.6 0.163 
PseDNA-Pro [12] 61.8 75.3 48.1 0.243
MsDBP [31] 64.3 70.7 63.2 0.340
MKL-HSIC with H-LapSVM [27] 69.4 72.1 56.1 0.401
MLapSVM-LBS [29] 71.2 71.6 70.8 0.424 
DBP-CNN [37] 67.9 69.0 66.8 0.358
Deep Transfer Learning [35] 74.2 - - -
PDBP-Fusion [36] 77.8 73.3 66.9 0.567
GCN-method [33] 78.5 70.7 64.2 0.400
HKAM-MKM [28] 78.4 91.5 62.4 0.596 
LapLKA-RKM 79.5 96.6 61.9 0.626

Here, we compare our approach with other existing methods on PDB1075 by LOOCV and 
PDB2272 by independent test, as shown in Tables 9 and 10, respectively. It can be observed that high 
ACC of 85.77% (PDB1075 by LOOCV), 79.5% (PDB2272 by independent test). On PDB1075, our 
method got 1.12%, 2.26% and 0.03 improvement in ACC, SN and MCC over the second bet MV-H-
RKM, respectively. MV-H-RKM enforce the structure consistency between input feature and the 
hidden node by the hypergraph regularization term. Therefore, MV-H-RKM also achieves the good 
performance. However, MV-H-RKM couple multiple features by means of hidden vector, which is 
same as MV-RKM. This means MV-H-RKM cannot filter noise features. HKAM-MKM achieves good 
performance with ACC (84.28%) and MCC (0.69). Similar our method, HKAM-MKM both consider 
the local and global kernel alignment and propose a hybrid kernel alignment model. Difference our 
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method, the optimal kernel is input to SVM. 

4. Conclusions 

In this paper, we developed an approach called LapLKA-RKM, a machine learning based 
predictor for DBPs. Our method contains three steps: feature extraction, feature fusion and classifier 
construction. We apply six different feature extraction methods (MCD, GE, NMBAC, PSSM-AB, 
PSSM-DWT and PSSM-Pse) to represent the protein sequences. Then, we utilize LapLKA-MKL to 
combine multiple predefined kernels. Finally, we employ RKM as a predictive classifier. 

Compared with other baseline methods and existing DBPs predictor, our method achieves the best 
accuracy on different datasets by LOOCV and independent test. On the LOOCV of PDB1075, 
LapLKA-RKM achieves the highest ACC, SN, MCC and AUC of 85.77%, 89.90%, 81.82%, 0.72 
and 0.9258, respectively. Further, our method was tested on PDB2272 via independent test and also 
achieves better performance with ACC (79.5%), SN (96.6%), MCC (0.626) and AUC (0.9303). The 
results demonstrated that our method is an accurate tool for identification of DBPs. We also built an 
online platform to represent our model. We hope the simple to use web interface will lead to wide 
adoption of our method. 
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