18 research outputs found

    A Model-based Framework to Control the Crystal Size Distribution

    Get PDF
    Crystallization is an old unit operation in the industry which is widely used as a separation process due to its ability to produce highly valued chemical with high purity. Despite the long history of batch crystallization, industry still relies on rule of- thumb techniques for their crystallization processes. Thus, any method to improve the products characteristics such as size and morphology will be highly valued. Advances in robustness and accuracy of automated in situ sensors give the possibility to move towards an engineering based approach by implementing the real-time monitoring and control of the process. The research undertaken here investigates the development of an advanced framework for the operation of crystallization processes. This project builds upon the synergy among the research teams at LSU and at the University of Cagliari. The proposed methodology comprises of exploiting an advanced model to simulate the process, On-line implementation of the image-based approach within a feedback loop in a completely automated feedback fashion and implementation of model-free control technology. In situ measurement of crystals’ size distribution by using image-based technique and wavelet-fractal algorithm is implemented in a real-time environment for inferring the particles characteristics captured at different time of the experiment. This technique is becoming increasingly more attractive due to availability of high speed imaging devices and powerful computers at reasonable costs and the adaptability to real time application. The process is modelled by means of a stochastic approach. This is an alternative method to the traditional population balance which leads to a more straightforward model that can be solved analytically and obtain the CSD over time. The simplicity of the model gives the possibility to properly implement an automatic control strategy

    Industrial Separation Processes:Fundamentals

    Get PDF
    Separation processes on an industrial scale account for well over half of the capital and operating costs in the chemical industry. Knowledge of these processes is key for every student of chemical or process engineering. This book is ideally suited to university teaching, thanks to its wealth of exercises and solutions. The second edition boasts an even greater number of applied examples and case studies as well as references for further reading. - An authoritative introduction to industrial separation technology. - Contains exercises at the end of each subject as well as solutions. - Now with extended and updated examples and case studies

    Model-based estimation and control methods for batch cooling crystallizers

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis

    Putting reaction-diffusion systems into port-Hamiltonian framework

    Get PDF
    Reaction-diffusion systems model the evolution of the constituents distributed in space under the influence of chemical reactions and diffusion [6], [10]. These systems arise naturally in chemistry [5], but can also be used to model dynamical processes beyond the realm of chemistry such as biology, ecology, geology, and physics. In this paper, by adopting the viewpoint of port-controlled Hamiltonian systems [7] we cast reaction-diffusion systems into the portHamiltonian framework. Aside from offering conceptually a clear geometric interpretation formalized by a Stokes-Dirac structure [8], a port-Hamiltonian perspective allows to treat these dissipative systems as interconnected and thus makes their analysis, both quantitative and qualitative, more accessible from a modern dynamical systems and control theory point of view. This modeling approach permits us to draw immediately some conclusions regarding passivity and stability of reaction-diffusion systems. It is well-known that adding diffusion to the reaction system can generate behaviors absent in the ode case. This primarily pertains to the problem of diffusion-driven instability which constitutes the basis of Turing’s mechanism for pattern formation [11], [5]. Here the treatment of reaction-diffusion systems as dissipative distributed portHamiltonian systems could prove to be instrumental in supply of the results on absorbing sets, the existence of the maximal attractor and stability analysis. Furthermore, by adopting a discrete differential geometrybased approach [9] and discretizing the reaction-diffusion system in port-Hamiltonian form, apart from preserving a geometric structure, a compartmental model analogous to the standard one [1], [2] is obtaine
    corecore