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Summary

Model-based estimation and control methods for batch

cooling crystallizers

Crystallization processes are of key importance for the separation of chemical compo-

nents in the chemical process industry and pharmaceutical industry. The quality of the

materials produced by crystallization processes has a large impact on efficiency of the

subsequent (downstream) processes.

This thesis describes research on the development of measurement and control tech-

nology to enable reproducible and predictable operation of industrial batch cooling crys-

tallization processes. The goal of the research is to reduce sensitivity of the process to

disturbances and to enable reproducible operation of the process. As such, these meth-

ods enable to produce crystalline products with high purity and quality at low costs.

The ability to infer information on the process states is of major importance when one

desires to develop control methods for process. Therefore, the observability properties

of the batch cooling crystallization processes equipped with concentration sensors and

sensors for the crystal size have been analyzed in this thesis. Moreover, the controllability

properties of the process have been analyzed.

In order to enable automatic control of batch cooling crystallization processes a control

algorithm based on state feedback linearization has been developed. The method enables

to use a relatively straight forward control strategy for crystallization processes where

tracking of an a priori defined super saturation trajectory is desired. Since the method of

feedback linearization is known to be sensitive to measurement noise and model uncer-

tainties, considerable effort has been put in quantification the effect of both disturbance

sources on the performance and robustness of the controlled system. The effectiveness

of the control strategy has been demonstrated during a experimental campaign in an

industrial environment.

Moreover, attention has been paid to the development of algorithms for state estimation

based on available dynamic models of the crystallization processes. The research con-

tributes to the development of a methodology for the design of estimators for infinite

dimensional systems in general. The relation between control and estimation problems

v
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for infinite dimensional system has been analyzed. The developed methodology is applied

to design a state estimator for the batch crystallization processes under study.

The results on the method for estimator design for infinite dimensional systems pro-

vide insight in the optimal performance which can be achieved by the estimators. The

research shows that optimal estimators for infinite dimensional system are also infinite

dimensional systems themselves, which is a large hurdle for implementation. Based

on the developed insight on estimators, known results on the approximation of control

systems for infinite dimensional systems by discretization method have be used to an-

alyze the effect of approximation of the estimators by discretization. This analysis has

been used to support decisions on discretization methods which have to be made for

implementation of the estimators.

The developed method enables to derive properties of the approximated estimators for

the batch cooling crystallization process, which is in contrast to existing heuristic meth-

ods. The developed method enables to design estimators for crystallization processes

where effects like non-uniform growth, crystal attrition or crystal dissolution are present.

This is not possible with current state of the art methods based on the methods of mo-

ments. The developed algorithm has been tested by simulation for a representative

test system such as a diffusion problem and representative simulations have been imple-

mented for an industrial batch crystallization process.
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Notation Explanation Unit
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CHAPTER 1

Introduction

Abstract

This thesis contains results of research that was carried out during four years

on methods to improve the predictability and reproducibility of the behavior

of industrial crystallization processes. In this chapter an introduction to the

work described in this thesis is given. The first part of this chapter sets the

scene. An introduction to the crystallization process as it is used in industry

is given, after which the current issues in operation of these processes in

an industrial environment are discussed. The second part of the chapter

introduces the research objectives which have been formulated and explains

how these objectives result in the desired improvement in the operation of

these processes. Finally the outline of the thesis is given.

Separation of chemical components is one of the most important operations in modern

process industry. Separation technology is of importance to extract and purify valuable

components from a mixed component stream. It also plays a major role in analysis meth-

ods, waste treatment and recycling and is of key importance in production processes.

At the pharmaceutical company Du Pont it has been estimated in 1988 that for 70% of

their products crystallization is involved in the production process [Larsen et al., 2006].

The worldwide market for pharmaceutical products in 2009 was estimated to be 597

Billion Euro ex-factory prices and the Dutch pharmaceutical industry produced in 2009

products with a combined worth of 5.7 Billion Euro [EFPIA, 2011]. In general, separa-

tion processes are large energy consumers, since one has to apply a force to initiate and

continue the separation of components. After distillation, crystallization is the second

1
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2 Introduction 1.1

largest method for purification and separation in process industry. In the production of

fine chemicals and pharmaceutical active components separation by crystalllization is

considered to be the major work horse. With this in mind, it is clear that crystallization

processes have large economic significance.

Given the enormous scope that crystallization processes have, there is a large demand to

operate these processes in a reliable and reproducible manner. Unfortunately, industrial

crystallization processes are known to behave irreproducible and to be very sensitive

to changes in operating procedures. On the other hand, small improvements of the

efficiency of crystallization processes may result in large economic and environmental

benefits.

This thesis contains results of research with the goal to develop methods to improve the

predictability and reproducibility of crystallization processes in industrial environments.

The conducted research has been focused on the operation of batch crystallization

processes in the process industry and especially in the pharmaceutical industry. The

study and analysis of operation methods and technology to improve the predictability

and reproducibility of industrial batch crystallization processes is the primary goal of the

research. Although it is an interesting research area, the research has not as its primary

goal to study the physics and mechanisms of crystal growth itself.

In this chapter an overview of the crystallization process is provided. We will explain the

problems with crystallization during operation as they are faced by industrial users. An

incentive for the research is given in Section 1.3 and from this incentive we will formulate

the goals that motivate the research that has been conducted. Finally, the outline of

this thesis will be given in Section 1.4.

1.1 Introduction to crystallization processes

In general, separation methods in chemical industry exploit differences in properties of

components in the mixture. By exposing the mixture of materials to conditions where the

various components of a mixture behave differently, the components can be separated.

In separation processes involving crystallization one exploits differences in phase change

behavior of materials.

Crystallization may be defined as a phase change in which a crystalline product is ob-

tained from a solution, as in [Myerson, 2002, section 1.1]. In this context, a solution has

to be interpreted in a broad sense, namely as a mixture of two or more species in a homo-

geneous phase. This covers mixtures of components in gas phase and melts [Myerson,

2002, section 1.1]. In this thesis we only consider crystallization where the solution is

a liquid phase and where the driving force for crystallization is generated by cooling of

the solution. In such a process, the crystallized component and the residue can be sep-

arated, for instance, by filtration. A more detailed description on mechanisms involved

in crystallization is given in Section 2.1.

Crystallization has applications in the manufacturing of a broad range of material in

chemical process industry, in the bulk industry as well as in the fine chemical industry.
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1.2 Industrial issues with crystallization 3

Production of salts, semiconductors, food, fertilizers, paints, resins and waste treatment

are just a few examples of processes where crystallization has major applications. An

interesting feature of crystallization processes is that the characteristics of the solid

material produced by these processes often have a large influence on the quality of the

final product. For instance in food manufacturing, the characteristics of the products

obtained by crystallization might effect the consistency, structure and taste of a prod-

uct [Myerson, 2002, Crystallization in foods p.287].

Crystallization is also an important technique used in the pharmaceutical industry. Since

there are high demands on purity of active pharmaceutical ingredients (API), crystal-

lization is used widely for purification and separation of intermediates in the production

process. Also the vast majority of the final products of pharmaceutical industry is manu-

factured in solid and crystalline form, which are obtained from crystallization of solutions.

In the pharmaceutical industry, the characteristics of the solid material have important

consequences, for instance:

• The particle characteristics might have an effect on the bio-availability 1.
• The particle characteristics might have an effect on the stability and sensitivity of
the product during storage.

Especially in the industries that produce specialty chemicals and products with high

value, such as the pharmaceutical industry, the specifications on products are tight and

demands on specifications, predictability, precision and quality are high. Therefore, there

is a large demand for reproducibility and predictability. The urgency to gain control over

reproducibility and predictability is reflected in efforts by of industry and the supervisory

authorities such as the Fedaral Drug Authority (FDA) to introduce Process Analytical

Technology (PAT) and Quality by Design (QbD) in industrial environments.

In order to understand how the material properties are related to the crystallization

process and to understand if and how these properties might be influenced by the way

the process is operated, it is relevant to get a thorough understanding and insight in

the physics of crystallization in more detail. We will come back to this discussion later

and in Section 2.1 the crystallization process will be discussed. Next we will discuss the

issues in crystallization that are faced by industry.

1.2 Industrial issues with crystallization

Despite the numerous applications of crystallization processes in industry, the unit oper-

ations involving crystallization are known as sensitive parts of the process chain. Due to

the problems with crystallization processes, they are known in industrial environments as

unpredictable and irreproducible. The unpredictable and irreproducible behavior of the

processes has a large impact on the economic and operational aspects of the process.

First of all, the behavior induces large variations in the quality of the final products, which

in general is not desired. Although it is often technically possible to rework material that

does not meet quality specifications, these procedures need specific authorizations by

1The term bio-availability refers to the fraction of, and the rate with which, a dose of administered

drug reaches the desired site in the body without undergoing changes.
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4 Introduction 1.2

the FDA and are in general not desired in industry. Such a procedure has a negative

impact on the production costs and capacity of a plant and demands for additional inter-

action by the operators. Moreover, pharmaceutical components are produced following

certified production procedures, which in general do not allow for additional or batch to

batch specific procedures.

In order to quantify the quality of crystalline products various measurable characteristics

are of importance. The most important industrially relevant characteristics with respect

to quality are given:

Crystal size and crystal size distribution: Specification on the crystalline product are

given in terms of size or volumetric measures. Typical measures are a prescribed

crystal size distribution, a prescribed number of quantiles of the distribution, and

the mean and median of the crystal size.

Crystal morphology: Materials can crystallize to crystals with a number of different

internal structures, called polymorphism. A specification on a product can be

given in terms of the mass fraction of polymorphic types with respect to the total

mass of the particle population.

Crystal shape: The shape of particles can be characterized by classification of shapes,

in classes of spherical, cubic, octahedron, etc. Most often, all particles are of the

same shape class and a multidimensional crystal size distribution might be used to

quantify the shapes present in a population.

Purity: Depending on the components in a solution, undesired components such as

pollutants and solvent molecules might be integrated in the particles during the

growth process. The purity of particles can be specified on a mass fraction basis.

It is important to remark that crystal morphology and crystal shape are often related. It

is well known that [Mersmann, 2001, section 5.3] the impurities might cause reduction

or even blockage of growth of certain crystal faces. Therefore, also the crystal shape

and purity are often related.

The question on which characteristics are of importance for the quality of a specific

product, differs from product to product and from case to case. We give some examples

of how the characteristics might influence important properties:

• Properties of the crystalline material, such as dissolution rate and bio-availability
often vary strongly between the polymorphic types of crystals.

• The flow properties, also known as flowability, of a mixture of crystals and residue
is known to depend on the shape and size of the crystals.

• A small particle size might result in a product in which crystals can be packed
together in a very dense manner. Such a product might be very difficult to filter.

• A crystalline product with included liquids might be difficult to dry.

From the examples it is evident that downstream processing of the intermediates might

heavily depend on the properties of the crystalline material. Therefore, the particle char-

acteristics are not only of concern for the production of the final product but are also

important for the production of intermediates. In general, the pharmaceutical indus-

try desires products with a narrow crystal size distribution, a uniform crystal shape, a

high fraction of specified morphology and high purity and demands high reproducibility
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1.2 Industrial issues with crystallization 5

of these characteristics. Moreover, customers tend to relate reproducibility to pro-

fessionalism and understanding of a production process by a manufacturer. As such,

reproducibility is an important aspect to sustain the relationship between consumer and

manufacturer.

Numerous external sources that influence the crystallization process and the character-

istics of the final particles can be identified. There are known causes of influence that

are quite general for batch crystallization processes, which include:

Impurities The presence of a second chemical component or impurity. Small quantities

(concentrations of less than 1 ppm) of materials present in the solution can alter

the physical mechanisms involved in crystal growth. This reflects in, for instance,

changes of the shape of crystals in presence of impurities. Moreover, growth rate

and nucleation kinetics can be affected by orders of magnitudes [Mersmann, 2001,

chapter 5.3].

Variation in feedstock composition The feedstock of material in the crystallization

processes originates often from the preceding unit operations. Slight variation in

composition in general occurs due to different sources or apparently small differ-

ences of material properties or handling of the material.

Variation in operating conditions Small variations in the operation conditions can re-

sult in large changes in product quality. The production facilities for batch crys-

tallization are often only automated to a semi automatic level. Operators execute

the subsequent steps in the recipe, inherently with small batch to batch variations.

Disturbance Environmental disturbances on the process can induce large deviations

of the product characteristics. Disturbances can, for instance, be caused by the

undesired interaction between different pieces of equipment which are connected

to the same utility network. An example is a disturbance on the temperature of the

cooling medium, which might depend on the demand of coolant on the complete

site.

Since not all of the external sources can be prevented, there is a demand from industry

to develop methods that enable robust operation of the crystallization process in the

presence of these perturbations and sources of disturbance.

The particle characteristics can, in general, not be measured on-line in production fa-

cilities. The crystal purity, morphology, shape and size characteristics are in general

examined on a sample basis, in a laboratory environment after the product has been

crystallized completely. Moreover, there is a number of important mechanisms involved

in the growth of crystals which lack predictability but that are known to be of influence

on the product quality. For instance, for most processes,

• Models that can be used to quantitatively predict the effect of specific impurities
on the crystal growth rate do not exist.

• The effect of operating conditions on crystal shape and morphology is not known.
• The mechanisms responsible for the creation of poly-morphs are not known in
detail.

Since quantitative models for these mechanisms do not exist, the state-of-the-art dy-

namical models for batch crystallization processes do not take this type of quality char-
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6 Introduction 1.3

acteristics into account. In Chapter 2, the models for batch crystallization that are

available will be introduced.

1.3 Incentives and problem statement

As discussed in the previous section, the mechanisms involved in crystallization are sen-

sitive to external influences, such as the presence of impurities, feedstock variations,

variations in operation condition and external disturbances. Therefore, industrial pro-

cesses that involve crystallization often show behavior which is perceived as irreproducible

and unpredictable. On the other hand, the industry demands methods and strategies of

operation which guarantee robust, reliable and predictable process behavior and can be

applied in an industrial setting and on an industrial scale. These demands put specific

requirements on the methods to be developed. The requirements are:

Robustness The operation methods need to be insensitive to or at least capable of

handling small variations in the environment, the feedstock, the material properties

and external disturbances. With small we mean as large as reasonable based on

physical considerations.

Predictability It is demanded that a process behaves predictably, such that the result-

ing properties of a product can be predicted a priori based on applied initial and

operating conditions of the process.

Reliability The process can be run in a (rough) industrial environment. Potentially un-

safe operation modes need to be avoided. The equipment needed to implement

the methods needs to be suitable and sufficiently robust for use in industrial en-

vironments. Interaction and maintenance is only allowed at predefined moments

and not when the process is in operation.

Development of methods that meet these demands is the incentive of the research

described in this thesis. It is our belief that general techniques and methods in the field

of model-based control, optimization and estimation can contribute to development of

these methods. In this thesis we explore to what extent these methods can be used

to enable robust, reliable and predictable operation of the batch cooling crystallization

process. The problem statement of this thesis is the following:

Problem statement:

Given the available models, knowledge of crystallization, state-of-the-art industrial

equipment and measurement technology, analyze the possibilities to operate the

current batch cooling crystallization processes in such a way that the quality pa-

rameters are reproducible and predictable. If possible, develop control methods that

achieve this goal.

We recognize that various aspects are relevant to finding a solution to this problem

statement. For instance, it is of key importance to understand the process behavior,

to be able to infer information of the process during operation and to influence the

process behavior. Based on the problem statement the following research topics have

been defined:
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Process analysis Analyze which sensors are necessary to be able to obtain a reliable

estimate of the states 2 of the process. Analyze if it is possible to influence

the desired quality parameters independently and to what extent this is possible.

Analyze to what extent it is possible to control and steer the current process.

Controller development Development of control methods which enable robust and

reproducible operation of crystallization processes. The design of the operational

procedure can be part of the design.

Sensor development Development of sensors that enable to measure relevant process

variables (such as the liquid concentration and crystal size distribution) and that

enable the reliable reconstruction of the state of the process.

Estimator development Given the measurement techniques known for crystallization

processes, develop estimation methods which infer reliable information on the state

of the system from the available measurements.

New actuation methods Study what kind of modifications on the process equipment

help to improve the robust operation of batch cooling crystallization processes.

A part of these research topics has been covered in this thesis. In order to enable the

analysis of the dynamic behavior of process, a generic dynamic model for the batch

crystallization process will be presented in Chapter 2. The purpose of this chapter is

to provide a generic model for batch cooling crystallization processes that enables to

perform basic analysis and to avoid unnecessary complexity.

In Chapter 3 the observability and controllability properties of the generic batch cooling

crystallization model are analyzed. This analysis provides insight in the chances for suc-

cess of the development of (model based) estimation and control methods and therefore

is a necessity when one desires to develop control and estimation methods.

In Chapter 4 a method for the control of the supersaturation in a batch cooling crys-

tallization process is development. The development of this method contributes to the

goal of development of control methods that enable robust and reproducible operation

of crystallization processes since the supersaturation is considered to be one of the most

important variables that influences the growth of crystals.

Since online measurements for crystallization processes are expensive and known to

be unreliable in industrial applications, a large part of this thesis is devoted to the

development of model based estimation methods for crystallization processes. In the

Chapters 5, 6 and 7 the development of estimators for crystallization processes will be

presented. The development of estimators for crystallization processes is all but trivial

since crystallization processes are described by non-linear infinite dimensional models. To

reduce the mathematical complexity the problem of estimator design has been studied

in a linear setting. In Chapters 5 a method for the synthesis of optimal estimators for

linear infinite dimensional systems will be presented. In Chapter 6 the approximation

and implementation of these estimators will be discussed. The focus in the Chapters 5

and 6 is on the analysis of the methods for estimator design of infinite dimensional

systems. In Chapter 7 the methods developed in the previous chapters are used to

2In the context of dynamic process models, ”state” refers to the memory of a process.

In [Polderman and Willems, 1998, Definition 4.3.3] the definition of state is given in a precise man-

ner. Roughly speaking the state is “the collection of variables of a system containing all the information

about the past required to be able to understand what the future may look like.”.
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8 Introduction 1.4

obtain an estimator for batch cooling crystallization processes. The estimator has been

implemented and tested in a simulation environment.

The development of sensors has been restricted to the evaluation and application of cur-

rent commercially available measurement methods. The development of new actuation

methods for batch crystallization processes is not covered and left for future research.

In the next section we will provide a detailed overview of the content of this thesis.

1.4 Outline and reading guide for this thesis

This section presents an outline of this thesis, which contains eight chapters. The first

chapter is an introduction of the project and provides the motivation of the research

described in this thesis. Chapter 2 till Chapter 7 present the results that have been

achieved in the research project. In the final chapter, Chapter 8, the conclusions on the

studied topics will be summarized and some reflections on the implications for the process

will be given. The last chapter also contains a number of recommendations for future

work. The thesis contains besides results on engineering aspects that are relevant for

crystallization also the mathematical analysis that is necessary for development of control

and estimation methods. The readers which are not comfortable with the mathematical

treatment can skip the analysis without any problem and are encouraged to read the

introduction and conclusions of the chapters. We will give a detailed overview per

chapter in the remainder of this section.

Chapter 2 - Modeling of batch cooling crystallization processes

This chapter provides a technical introduction to the batch cooling crystallization pro-

cess. The chapter begins with an introduction describing the physical aspects of crystal-

lization and the main mechanisms that are of importance for the crystallization process.

Based on these mechanisms, a dynamic model for the batch cooling crystallization pro-

cess will be introduced. The model will serve as a reference model for the analysis of

the crystallization process and implementation of the control and estimation methods.

The model that will be derived belongs to the class of nonlinear distributed parameter

systems.

Chapter 3 - Observability and controllability of crystallization processes

This chapter provides an analysis of the observability and controllability properties of

batch crystallization processes. Roughly speaking, observability indicates to what extent

it is possible to infer information on the state of the system from measurement of

specific variables of the process. Similarly, the controllability indicates to what extent

it is possible to steer the process from an initial state to any arbitrary desired state. In

order to provide a sound basis for the analysis and discussion on both topics, the chapter

begins with the formal definition of the concepts of observability and controllability. The

results will be derived from these concepts.

Chapter 4 - Control of batch cooling crystallization by feedback linearization
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In this chapter the development and analysis of a method for control of batch crystal-

lization processes by control of the supersaturation level is presented. We believe that

the control of supersaturation is of large value, since supersaturation is considered to

be the driving force behind crystal growth and nucleation. The control method that

will be presented is based on an application of the method of feedback linearization. In

the analysis, special care has been taken to show that the method is robust to model

uncertainties and therefore remains functional in the presence of modeling errors and in

practical situations. In order to test the proposed method, a control scheme based on

the theoretical analysis has been implemented in an industrial environment.

Chapter 5 - Estimation for distributed parameter systems

This chapter considers the design of optimal estimators for distributed parameter sys-

tems. Since measurements of operating conditions and product properties in a crystal-

lization process in an industrial environment have limited accuracy (especially at small

particle size), it is necessary to develop model based estimation methods. Such methods

can be used to combine online measurements with the existing knowledge on process dy-

namics, in order to obtain accurate estimates of the process states. The crystallization

process is a distributed parameter system, therefore it is necessary to study the design of

estimators for distributed parameter systems. In this chapter we will show how optimal

estimators can be designed for linear distributed parameter systems in a systematic way.

We will discuss two types of estimators based on different design criteria. The first type

of estimator will minimize the Hilbert-Schmidt norm of the error system. The second

type of estimator will minimize the L2-gain of the error system. The methods to design

the optimal estimators are based on the duality between estimation problems and control

problems, which we will present in the introduction of the chapter. The analysis will be

based on the estimation problem with a finite time horizon. Special attention will be

given to the analysis of knowledge of the initial conditions of a process.

Chapter 6 - Approximation and implementation of estimators

This chapter considers the implementation of estimators for distributed parameter sys-

tems. The analysis in Chapter 5 will show that the optimal estimator for distributed

parameter systems is an infinite dimensional system itself. Therefore, this estimator

cannot be implemented on a digital computer. In Chapter 6 we will study three meth-

ods to approximate the infinite dimensional optimal estimator by a finite dimensional

estimator, which can be implemented. We will pay attention to the performance of

the approximate estimator compared with the optimal estimator. We will show how an

estimator for a system with heat diffusion and an estimator for a system with convection

can be implemented.

Chapter 7 - Estimators design and implementation for crystallization

In this chapter the theory of Chapter 5 and Chapter 6 will be combined to build an esti-

mator for the batch cooling crystallization process that has been introduced in Chapter

2. Since the process model for batch cooling crystallization is nonlinear we will base

the estimator design for this system on a linear approximation of the model. Simulation

results will show the performance of the estimator.
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10 Introduction 1.5

Chapter 8 - Conclusion and Recommendations

In the last chapter we present conclusions on the research which has been presented in

this thesis. We will indicate how these results relate to the problem statement which

has been introduced. Moreover, we will provide recommendations for future research.

1.5 About the project

The research contained in this thesis is part of the project PH-00-04 Intelligent observer

and control design for industrial batch cooling crystallization. This project is an initiative

of the Institute for Sustainable Process Technology (ISPT) and is a collaboration be-

tween pharmaceutical industry, SME’s and universities in The Netherlands. Within the

project PH-00-04, the following industrial and academic partners have been cooperating.

• Albemarle Catalysts,
• Merck Sharp & Dohme,
• DSM Research,
• Friesland Campina DOMO,
• Perdix Analytical Systems,
• Ipcos Boxtel B.V.,
• Institute for Sustainable Process Technology (ISPT),
• Delft University of Technology - Department Process and Energy,
• Delft University of Technology - Department DCSC,
• Eindhoven University of Technology - Control Systems, Faculty of Electrical En-
gineering.
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CHAPTER 2

Modeling of batch cooling crystallization processes

Abstract

This chapter provides an introduction on the aspects of crystallization which

are relevant for control of batch crystallization processes. The chapter starts

with a process description. Based the process description a dynamic model

will be introduced that serves as a basis for the examples discussed in this

thesis. At the end of this chapter the sensors for online measurement on

crystallization processes will be discussed.

In this chapter a general dynamic model for crystallization processes will be presented.

The model serves as a basis for the work presented in the subsequent chapters of

this thesis. The aim of the model is to describe the dynamic behavior of the system

under study in such a way that it is suitable for analysis of the process and design of

control methodologies for the process. That is, the model is based on a simple but

realistic process description, in which the dominant aspects of crystallization processes

are present. It is important to remark that it is not the aim to obtain an exact process

model valid for all processes, but that the goal is to obtain a generalized model serving

the purpose of enabling the analyzes made in this thesis. Such a generalized model can

be specialized to a specific process by minor changes in the structure and identification

of kinetic relations and parameters. The idea is that such a generalized model is better

suited for analysis and research purposes. The reasoning being this approach is that the

main conclusions of a sound analysis must be independent of the exact realization of a

model describing all details of a process and must be valid as long as the key process

mechanisms are represented well in an adequate mathematical model. First a description

11
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12 Modeling of batch cooling crystallization processes 2.1

of mechanisms present in the crystallization process will be given. In the remainder of

the chapter an dynamic state space model for the crystallization process will be derived.

2.1 Process description of a crystallization process.

A key characteristic for a crystallization process is the presence of at least two thermody-

namic phases, known as the liquid phase and the solid phase. In a crystallization process

the liquid phase contains at least the solvent and the solute. Moreover, additional agents

for stabilization of the compound, reactants and impurities might be present. The solid

phase consists of the population of particles of crystalline material. In this thesis only

batch processes in which there is no significant exchange of mass between the process

and the environment are considered.

Moreover, the following additional assumptions on the crystallization process under study

are made:

• The solution is a dilute solution. That is, the volume of solvent, solute and solid
can be approximated well by the volume of the solvent.

• The solvent does not take part in the crystallization process.
• Particles are single crystals and do not consist of agglomerates of crystals.
• There are no effects of impurities in the liquid on the solubility, crystal growth and
nucleation rate.

• There is only one polymorphic form present in the process.
• The process is ideally mixed.

The first two of these assumptions have been made to avoid an unnecessary complica-

tion of the crystallization model. In principle, it is possible to drop the assumptions and

increase the complexity of the model, but this does not change the main characteristics

of the batch crystallization process. In the literature, the condition on agglomerate

formation is often not made explicitly. However, if agglomerates do influence the evo-

lution of the process then one should include the state of agglomerates in the model of

the system and one has to include the formation and evolution of agglomerates in the

dynamics of the process model. In practical industrial systems, agglomerate of crystals

(also known as agglomerates) are often present. In what sense and how they precisely

do influence the growth of particles is beyond the scope of this thesis.

The two phases in the process do have a mutual influence on each other by various

mechanisms. For instance, due to the crystallization of matter, there is a transfer of

mass between the solid and liquid phase. The particles in the system can be altered by

various mechanisms:

Growth Solid particles can increase in size due to uptake of dissolved material from the

liquid phase. The transition process from solution to crystalline material is known

as crystallization1 or crystal growth.

1It must be noted that the word crystallization refers to the formation of crystalline material out of

a gas phase or a liquid phase, but that in process industry the term crystallization process refers to the

process in which growth, dissolution, nucleation and breakage might be present simultaneously.
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Figure 2.1: General schematic of a batch cooling crystallizer.

Dissolution Particles can decrease in size due to the transfer of material from the crystal

surface to the liquid phase. This mechanism is known as dissolution.

Nucleation New crystalline particles can be created if the process conditions are right.

This mechanism is known as nucleation. There are various mechanisms and causes

which can lead to the formation of new particles. The classification in primary and

secondary nucleation mechanisms is the most well known classification [Mersmann,

2001]. Primary nucleation refers to nucleation that is not accommodated by

crystalline material and secondary nucleation refers to nucleation that is assisted

by crystalline material.

Breakage Particles can break into multiple fractions, either due to forces from the

internal structure of the particle or due to external forces acting on the particles.

This mechanism is known as breakage or fragmentation. The attrition of particles

is often considered as main source of small particles.

Due to the simultaneous growth, dissolution, nucleation and breakage of particles, the

population of particles in a process is continuously subject to change. How such changes

in the population of particles can be modeled is explained in Section 2.2.1. In the

next subsection the physical mechanisms relevant for nucleation, dissolution and crystal

growth are described.

Batch crystallization processes in industry are mostly carried out in general purpose

reactors with a volume in the order between 0.1m3 and 10m3. Such a general purpose

reactor is often a glass or a stainless steel, glass lined, stirred tank reactor, which is

frequently equipped with baffles to improve mixing behavior. This type of reactors is

equipped with a cooling and heating jacket for thermal control of the system. A picture

of such a reactor is given in Figure 2.1. When working with organic solvents, the reactor

will also be equipped with a vacuum pressure control system to control the exhaust of

vapors.
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14 Modeling of batch cooling crystallization processes 2.1

2.1.1 Physics of nucleation and crystal growth

The term crystallization refers to the physical process in which molecules arrange to form

solid matter, called crystals.Typical examples are the crystallization of a component

from a solution or a melt. The aspect that makes crystallization interesting to be

used as separation technology is the high selectivity in which molecules are selected

to be added to the solid matter. In this section the physical aspects of this process

which are relevant for the dynamic model will be discussed. The interested reader can

find a detailed discussion on the physics behind the mechanisms of crystal growth in

[Mersmann, 2001].

The fundamental driving force for crystal growth is the difference in chemical potential

of the given substance in the transferring and transferred state in the solution and in

the crystal [Mullin, 2001, p.128]. The crystal growth rate is also influenced by the mass

transport between the surface layer of the particle and its environment. The driving

force for these mechanism is the concentration difference between the crystal surface

and the environment.

At a given temperature there is a maximum amount of solute that can dissolve in the sol-

vent. The concentration at which the solution (measured in the ratio of solute mass and

solvent mass) is saturated is described by the saturation curve csat(T ) [kgsolute/kgsolvent],

where T is the solvent temperature. When this maximum concentration is reached, the

solution is said to be saturated. With respect to the saturation curve the solution can

be undersaturated, saturated or supersaturated, depending on whether the solute con-

centration is less than, equal to or greater than the saturation curve, respectively. In

this thesis it will be assumed that the solubility increases strictly with the temperature

T , that is csat(T1) < csat(T2) for all T1 < T2, (or equivalently
dcsat
dT (T ) > 0 for all T ).

The supersaturation level is commonly expressed by the difference between the so-

lute concentration c and the saturation curve csat(T ). The absolute supersaturation

Sa(c, T ) and relative supersaturation Sr (c, T ) are defined by:

Sa(c, T ) = c − csat(T ) and Sr (c, T ) =
Sa(c, T )

csat(T )
. (2.1a,b)

In practical applications it is common to consider not the chemical potential directly,

but either the absolute or relative supersaturation measure for the driving force for both

crystal growth and nucleation. Figure 2.2 shows a typical concentration temperature

diagram of a solvent-solute combination, with the solubility line and the undersaturated

and supersaturated zones. For completeness, the diagram also shows the metastable

zone width limit which is often used in industrial environments. The metastable zone

width line or limit divides the supersaturated region in a metastable zone and unstable

zone [Mullin, 2001, Section 3.12]. In the metastable zone spontaneous nucleation is

improbable, but crystal growth will occur once crystals are present. In the unstable zone

spontaneous nucleation is possible and not inevitable on the long term. In practice an

accurate determination of the metastable zone width is difficult, which is amongst other

reasons due to the limited capabilities of online sensors to detect small particles. It is

well known that the measured meta stable zone might depend on the operation condi-

tions, equipment, scaling and mixing effects [Kadam, 2012]. Therefore, the existence



i

i

“thesis” — 2012/9/3 — 21:29 — page 15 — #29
i

i

i

i

i

i
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of the meta stable zone and the concept of the metastable zone limit as partitioning

of the concentration temperature plane in distinct zones is disputed and might need

reconsideration.

There are various methods to generate supersaturation in a solution. For industry rele-

vant methods are:

1. Cooling crystallization: The solubility of solute in a solvent in general depends on

the temperature. For solid-solvent combinations of which the solubility increases

with temperature, supersaturation can be generated by cooling of a saturated

solution.

2. Evaporative crystallization: By evaporation of solvent from a solution, the con-

centration of the solute in the solvent increases. This mechanism causes super-

saturation if applied to a saturated solution.

3. Reactive crystallization: Due to the addition of an extra component in the solution

the solubility properties of a solvent might be altered and cause supersaturation

of a solution.

The choice which method will be applied in an industrial case depends, amongst others,

on the solute properties, the solvent properties, the slope of the solubility curve, the

tendency toward scaling and the efficiency of the methods for a specific case. Also a

combination of the methods is applied in industry to increase yield or decrease production

time.

Cooling crystallization is often employed when a high purity of the product is desired but

requires a significant dependency of the solubility on temperature. A drawback of the

cooling crystallization processes are the relatively low yield and the sensitivity for scaling

phenomena. Evaporative crystallization is often employed when the solubility is less

dependent on temperature or when a high yield is desired. A drawback of evaporative

crystallization is that it is energy intensive and requires relatively complex equipment

compared to cooling crystallization. Reactive crystallization is often employed when

high yield is desired.

Although in general it is assumed that supersaturation is the driving force behind crystal

growth, growth of the particles can depend on the condition of the particle itself and the

condition of the liquid phase. For instance, the presence of impurities or irregularities on

the crystal surface might alter the crystal growth rate and characteristic significantly.
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Figure 2.2: Concentration - Temperature diagram with solubility line.

2.2 A model for batch cooling crystallization processes

In this section a dynamic model for batch cooling crystallization processes will be derived.

First a model for the dynamic modeling of the particle population and the conservation

laws for energy and mass will be introduced. Then, by combination of these models, a

general model applicable to batch cooling crystallization processes will be derived.

2.2.1 Model of the particle population

In this section a method for modeling of a process with contains a population of particles

will discussed. In industrial crystallization processes the solid phase can consist of a large

number of particles per volumetric unit of suspension. More than 109 particles per m3 is

common. Since this number is large, models which deal with particles individually, have

extreme high computational demands. To circumvent this, macroscopic models based

on statistical properties of the population of particles will be introduced. These models

describe properties of a complete population, rather than properties of individual parti-

cles. Such models will be called population models. The usage of population models has

been reported in a wide range of applications such as grinding, aerosol coagulation, and

granulation of particles, but also modeling of cell populations in biology. The usage of

population models in crystallization processes has been introduced in [Hulburt and Katz,

1964].

First , the state of a particle population with N particles in a compartment with volume

V will be modeled. For this purpose, the concept of a number density distribution
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2.2 A model for batch cooling crystallization processes 17

represented by nV (x) will be introduced. Assume that particles in a population are

characterized by a size parameter x such as for example length, surface area or volume,

where x ∈ [0, x̄) with x̄ > 0. Define the number density nV as a distribution, that is,
nV is such that the total number of particles with parameter x in the interval [x1, x2]

present in a compartment with volume V is given by:

∫ x2

x1

nV (x)dx.

Clearly, the number density distribution is normalized such that:

N =

∫ x̄

0

nV (x)dx.

is the total number of particles in the volume V .

The number distribution n(x) (also known as number density function), for an infinites-

imal volume V is defined by the limit process:

∫ x2

x1

n(x)dx = lim
V→0

1

V

∫ x2

x1

nV (x)dx.

The number distribution n(x) can be used to model the state of crystallization processes

per volumetric unit of the process. For a more extensive introduction to population

models in the context of crystallization the reader is referred to [Randolph and Larson,

1971] and [Ramkrishna, 2000]. For a introduction to population models in a more

mathematical context we refer to [Engel and Nagel, 2000, Section 6.1] and [Webb,

1985].

In models of crystallization processes is often assumed that the state of the particle

population can described uniquely by the number density distribution of a characteristic

property x of the particles. The volume of the particle is a possible choice and it

is becoming increasingly popular to use multiple characteristic properties, for instance

two characteristic lengths of the particles. This leads to multidimensional population

densities. In this thesis it will be assumed that the state of the particle population

can be completely described by the length of the particle, which will be denoted by ℓ.

Therefore, it is assumed that the state of a population can be described by a function

n(ℓ) ∈ R with unit m−1 per volumetric unit. Moreover, it is assumed that the population
density distributions are in the class N = L2(L,R) with L = [0, ℓ̄] for some ℓ̄ ∈ R+.
ℓ̄ represents the length of the largest crystal that can occur in the process. From a

mathematical point of view this assumption can be subject to discussion and one can

argue that N = L1(L,R), which is a Banach space, is more natural. However, the

choice for N = L2(L,R) has been made since this is a Hilbert space. In a Hilbert space
the solution of optimization problems can be done by exploitation both the existence of

an inner product and completeness of the function space, whereas optimization problems

in L1 require a deeper mathematical analysis.

It will be assumed that the volume fraction occupied by the particles in the population

can be calculated from the population density function. Therefore, it is supposed that

there exists a functional V : N → R that calculates the total volume of the particles
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Figure 2.3: Population balance and various phenomena present in the crystallization

process.

represented by a population density distribution. A commonly used function V , for the

case where the particles are characterized by the edge length ℓ is given by:

V (n) =

∫ ℓ̄

0

v(ℓ)n(ℓ)dℓ (2.2)

where v(ℓ) is a polynomial expression depending on the particle shape. Remark that

the unit of V (n) is m
3

m3 . When growth manifest itself in three dimensions of the particle

one considers v(ℓ) ≈ ℓ3, when growth manifest itself in two dimensions of the particle
one considers v(ℓ) ≈ ℓ2 and when growth manifest itself in only one dimension of the
particle one considers v(ℓ) ≈ ℓ. The model leaves freedom for other polynomial relations
between ℓ and v as long as physics are respected.

The population of particles can be subject to change due to various mechanisms and

therefore it is assumed that the number density distribution is a time dependent distri-

bution, which will be denoted by n ∈ L2(L × T,R), where L and T denotes the length
interval and time interval under consideration. In this situation the volume fraction ob-

tained by the solid phase will change with time as defined by the mapping t 7→ V (n(·, t))
and will be denoted by [V (n)](t) and V (n(·, t)). A graphical representation of these
mechanisms acting on the particle size distribution is given in Figure 2.3. The mecha-

nisms responsible for change of the particle size distribution are which are described in

Section 2.1. The evolution of the population density distribution can be described by

the so called balance equation for the population. The mechanisms can be incorporated

in the balance equations will be described in the following subsection.

Growth

Growth of particles in the population balance can be modeled as a convection process

with a velocity equal to the growth rate of the particles. Suppose there exists a time

dependent number density distribution n(ℓ, t), describing particles with length ℓ which

growth with rate G(ℓ). Consider the number of particle in the interval [ℓ1, ℓ1+∆ℓ], given
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2.2 A model for batch cooling crystallization processes 19

n(ℓ1) n(ℓ1 + ∆ℓ)

G(ℓ1)n(ℓ1) G(ℓ1 + ∆ℓ)n(ℓ1 + ∆ℓ)

Figure 2.4: Growth process.

by
∫ ℓ1+∆ℓ

ℓ1
n(ℓ)dℓ. The change of the number of particles in the interval ℓ ∈ [ℓ1, ℓ1 +∆ℓ]

is equal to the flux of particles across the boundaries of the interval, which is graphically

represented by Figure 2.4. Therefore, the change of number of particles in the interval

[ℓ1, ℓ1 + ∆ℓ] can be modeled by:

∂

∂t

∫ ℓ1+∆ℓ

ℓ1

n(ℓ, t)dℓ = G(ℓ1)n(ℓ1, t)− G(ℓ1 + ∆ℓ)n(ℓ1 + ∆ℓ, t).

Observe that by the Fundamental Theorem of Calculus the right hand side can be

rewritten as:

∂

∂t

∫ ℓ1+∆ℓ

ℓ1

n(ℓ, t)dℓ =

∫ ℓ1+∆ℓ

ℓ1

−∂G(ℓ)n(ℓ, t)
∂ℓ

dℓ.

Since this holds for all ℓ1 > 0 and ∆ℓ > 0, it follows that n(ℓ, t) satisfies the partial

differential equation:

∂n

∂t
=− ∂Gn

∂ℓ
, (2.3)

where G is the (possibly size dependent) growth rate, with G(ℓ) ∈ R > 0. This equa-
tion needs a boundary condition on n(0, ℓ̄) in order to be well posed. In case of size

independent growth one has G ∈ R. In case of size dependent growth G is a function
of ℓ. In crystallization processes the growth rate can be a function of the concentration

and temperature, which will be shown in Section 2.2.3.

Dissolution

Dissolution is the release of material from the solid phase to the liquid phase. As a result

crystals decrease in size. Dissolution has been far less studied than crystal growth but

is under ideal circumstances assumed to be reciprocal to growth. Therefore, dissolution

can be modeled by the equation.

∂n

∂t
=
∂Dn

∂ℓ
,

where D is the (possibly size dependent) dissolution rate, with D > 0. It must be

remarked that this equation needs a boundary condition on n(0, ℓ̄) if ℓ̄ <∞, in order to
be well posed.



i

i

“thesis” — 2012/9/3 — 21:29 — page 20 — #34
i

i

i

i

i

i

20 Modeling of batch cooling crystallization processes 2.2

If crystal growth and dissolution were purely diffusion controlled in nature, they would

exhibit a true reciprocity. The faces of a crystal would grow and dissolve at the same rate

and the rate of crystallization would equal the rate of dissolution at a given temperature

and equal driving forces. In [Mullin, 2001] it can be found that these conditions rarely

occur in practice. Crystals dissolve much faster than they grow and up to a fivefold

difference is not uncommon. The large rate of dissolution and attempts to identify

kinetics can also be found in [Matthews et al., 1996]. The dissolution rate can also be

a function of the concentration and temperature.

Nucleation

Due to the mechanism of nucleation new crystalline particles can come into existence.

The particles generated by nucleation are of very small size. It is common prac-

tice [Myerson, 2002, section 10.3] to model nucleation as boundary condition on the

population balance equation in the following way. When the birth rate and growth rate

at time t equal B(t) respectively G(t), then the following boundary condition is applied:

n(0, t) =
B(t)

G(t)
.

Alternatively, nucleation can be modeled by addition of particles in a certain size range to

the number density distribution. For instance, when it is assumed that after nucleation

particles have a length within the interval ℓ0 ± ǫ then the increase in the number of
particles in this size interval is described by

∂n

∂t
= B(t)w(ℓ)

where w(ℓ) is a weighting function and is, for instance. given by:

w(ℓ) =

{
1
2ǫ if ℓ0 − ǫ < ℓ < ℓ0 + ǫ,

0 else.

Breakage or Fragmentation

The process of particle breakage can be modeled by the fragmentation equation. A

fundamental treatment of the theory of particle breakage is given in [Filippov, 1961].

The effect of particle breakage can be described by the follow equation:

∂n

∂t
(ℓ, t) = [En](ℓ, t) = −β(ℓ)n(ℓ, t) +

∫ ℓ̄

0

β(y)P (ℓ, y)n(y , t)dy

where β(ℓ) > 0 is the rate of breakage of particles with length ℓ and P (x, y) is the

breakage kernel. The first term −β(ℓ)n(ℓ, t) describes to the removal of particles of
size ℓ from the number distribution due to breakage of these particles. The second

term
∫ ℓ̄

0 β(y)P (ℓ, y)n(y , t)dy describes the addition of particles at size ℓ as a result of

breakage of particles of larger sizes.
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2.2 A model for batch cooling crystallization processes 21

There are some physical constraints on P (x, y). Obviously, the breakage rate and break-

age kernel have to be such that the conservation of mass is respected. Since breakage

can only decrease size it follows that P (x, y) = 0 for x > y . Moreover, for binary

breakage, i.e. breakage of a particle into precisely two parts, it follows that: P (x, y) =

P (y − x, y). In practical applications the identification of a breakage model is difficult.
An overview of the modeling of particle breakage is given in [Valentas and Amundson,

1966] and overview of breakage models is given in [Peterson et al., 1985].

Population balance model with growth, breakage and nucleation

The combined model for a number density distribution of the particle population subject

to change due to growth, nucleation and breakage is given by:

∂n

∂t
=
∂Gn

∂ℓ
+ En =

∂Gn

∂ℓ
− β(ℓ)n(ℓ, t) +

∫ ℓ̄

0

β(y)P (ℓ, y)n(y , t)dy (2.4)

with boundary condition n(0, t) = B(t)
G(t) . Here G is the growth rate (G(t) > 0 for all t),

B is the nucleation rate, β is the fragmentation rate and P is the fragmentation kernel.

In practical applications one will often neglect the effect of fragmentation and one will

set β = 0.

2.2.2 Mass and energy balance

All models that are considered here are based on two conservation laws:

1. Conservation of mass. The total change of mass that is stored in the system and

exchanged with its environment is zero.

2. Conservation of energy: The total change in energy stored in the system and the

exchange of energy between a system and its environment is zero.

The mass and energy balance serve as basis to establish the structure of the dynamic

model and will be discussed individually in the following subsection.

Mass balance

The conservation of mass serves as basis to determine the relation between the masses

of the various components in the crystallizer. The conservation of mass reflects that

the change of the mass of a component in the reactor equals the difference between the

flux into and the flux out of the component through the boundaries of the system. Since

it has been assumed that there is no significant exchange of mass between the process

and the environment it follows that the total mass present in the system is constant. In

batch crystallization processes there are two components present, the solvent and the

to-be-crystallized component. The mass of the solvent will be indicated by ms [kg], the

mass of the solute will be indicated by ml [kg] and the mass of the solid component will

be indicated by mc [kg].
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22 Modeling of batch cooling crystallization processes 2.2

From the assumption that there is no mass exchange between the process and the

environment, the mass balance dictates that:

dms
dt
=0, (2.5)

dml
dt
+
dmc
dt
=0. (2.6)

Enthalpy balance

The conservation of energy serves as a basis to derive a model for the enthalpy and

thereby for the temperature of the system. The conservation of energy reflects that

the change of the energy in the system equals the inflow and outflow of energy through

the boundaries of the system. There are several mechanisms that influence the enthalpy

stored in the reactor.

• Exchange of thermal energy between the reactor and the thermal jacket by heat
conduction, denoted by Qj [J/s].

• Exchange of thermal energy between the reactor and the environment by heat
conduction, denoted by Q0 [J/s].

• The release of energy due to crystallization, denoted by Qc [J/s].
Let ET [J] denote the enthalpy in the reactor. It follows from the law of conservation

of energy that the energy in the system satisfies the equation:

dET
dt
= Q0 +Qj +Qc . (2.7)

It is assumed that the diffusion processes can be modeled by a first order equation.

Let T [◦C] denote the reactor temperature, Tj [◦C] denote the jacket temperature and
T0 [

◦C] denote the environmental temperature, then the heat flows follow from Fourier’s
law and can be modeled as follows:

Q0 =h0(T0 − T ), (2.8)

Qj =hj(Tj − T ), (2.9)

where h0, [J/(s
◦C)] is the heat transfer coefficient between environment and reactor,

hj , [J/(s
◦C)] is the heat transfer coefficient between the thermal jacket and reactor.

Moreover it is assumed that the heat flow due to crystallization is linear with respect to

the rate of crystallization, such that it can be modeled by:

Qc =∆HVrR(t), (2.10)

where ∆H [J/kg] represents the enthalpy of crystallization and R(t) [kg/sm3] denotes

the rate of crystallization per volumetric unit of slurry. The rate of crystallization R(t)

is given by:

R(t) = ρc
dV (n(·, t))
dt

,
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2.2 A model for batch cooling crystallization processes 23

where ρc [kg/m
3] is the specific crystal density and V is the volume function given by

Equation 2.2. Let Cp [J/
◦C] denote the heat capacity of the reactor and its content,

then the temperature in the reactor can be determined as follows:

T =
ET
Cp
. (2.11)

Often, the heat capacity of the reactor will be approximated by the heat capacity of the

slurry inside the reactor and one will use Cp ≈ Vrρcp where Vr [m3] is the reactor volume
and ρ [kg/m3] and cp [J/kgK] are the density specific heat capacity of the solvent. A

dynamic model for the temperature in the reactor is then obtained by combination of

the Equations (2.7), (2.8), (2.9), (2.10) and (2.11),

dT

dt
=
1

Vrρcp
(Q0 +Qj +Qc) = α0(T0 − T ) + αj(Tj − T ) +

∆H

ρcp
R(t).

where α0 =
h0
Vrρcp

and αj =
hj
Vrρcp

are the thermal time constants of the system.

2.2.3 Kinetic relations

In the balance equations given in this chapter, the rates G and B have not been defined.

The domain of the functions G and B has been defined. Independent of the values

of G and B the mass and energy balances are conservative. However, what lacks is

the value of these functions and with that the rate of change of the state variables in

the models. In chemical engineering these equations are known as kinetic relations or

kinetics. The word kinetics means [Oxford, 2010] here ”relating to or resulting from

motion”. For chemical processes, the interaction between particles originates from the

collision between particles and therefore from the motion of particles and the kinetics

involved here.

Depending on whether growth is diffusion or surface integration controlled, the absolute

or relative supersaturation is the driving force for crystal growth [Mersmann, 2001]. It

is often assumed that the crystal growth rate is size independent and can be modeled by

an empirical power law of either the absolute or relative supersaturation. In this thesis

this assumption is adopted and it is assumed that the growth rate satisfies the relation:

G(c, T ) =

{

kgS(c, T )
g ifS(c, T ) > 0

0 else
, (2.12)

where, kg > 0 is the exponential factor, g > 0 is the growth rate exponent and S is

either the relative or absolute supersaturation level.

For nucleation, it is assumed that the rate of nucleation is dependent on the supersat-

uration as well. In case of secondary nucleation it is assumed that the driving force is

the absolute supersaturation level [Mersmann, 2001, p.6]. Moreover, it is assumed that

the total volume present in the solid phase is of influence on the nucleation rate. It is

assumed that the nucleation rate can be modeled the empirical power law:

B(c, T, n) =

{

kbSa(c, T )
bρcV (n(·, t)) forSa(c, T ) > 0

0 else
(2.13)
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24 Modeling of batch cooling crystallization processes 2.2

where, kb > 0 is the exponential factor, b > 0 is the birth rate exponent, Sa is the

absolute supersaturation level, V (n(·, t)) is the volume fraction of the solid phase and
ρc is the density of the crystalline material.

2.2.4 Reference model for batch crystallization process.

Cooling crystallization reference process

In the pharmaceutical industry, cooling crystallization processes are mostly carried out

in general purpose reactors with a volume between 0.1m3 and 10m3. In this section the

dynamic model for the the particle population, the mass balance equation and thermal

energy balance equation are combined in order to obtain a general model for a batch

crystallization process. It will be assumed that the batch cooling crystallization process

is carried out in a vessel with a volume of 1m3, which will be denoted by Vr .

The concentration of the solute in the process has been defined as ratio between the

solute mass and solvent mass, i.e. c = ml
ms
. Therefore, the change of concentration

with respect to time satisfies the relation:

dc

dt
=
d

dt

ml
ms
.

Using the mass balance for the closed system (Equations 2.5 and 2.6 ), this can be

rewritten to:

dc

dt
= − 1

ms

dmc
dt

.

The volume fraction occupied by the solid phase can be computed by the functional

V (n). Therefore, the solid mass can be computed by

mc = ρcVrV (n),

where ρc [kg/m
3] is the solid density. From the assumption that the solution is dilute it

follows that

ms ≈ ρVr ,

where ρ [kg/m3] is the solvent density. From the combination of these equations it

follows that:

dc

dt
= −ρc

ρ

dV (n)

dt
.

From the latter equation it follows that the concentration is not a state in the system,

since it is linearly dependent on the particle distribution. It follows by integration of

the left and right hand side, that when initial conditions are given by c(0) = c0 and

n(ℓ, 0) = n0(ℓ) that c(t) satisfies:

c(t) = c0 +
ρc
ρ
[V (n0(·))− V (n(·, t))] . (2.14)
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2.2 A model for batch cooling crystallization processes 25

The latter equation is the direct result from the assumption that the system does not

exchange mass with the environment.

By combination of the population balance equation (2.4), the energy balance, the mass

balance and the kinetic Equations (2.12), (2.13) the system can be modeled. It follows

that if Sa(c, T ) > 0, then G(c, T ) > 0. The following set of equations describes the

dynamics of the system:

∂n

∂t
=− ∂Gn

∂ℓ
, (2.15a)

dT

dt
=αj [Tj − T ] + α0 [T0 − T ] +

∆H

ρcp
R(t), (2.15b)

n(0, t) =
B(c, T, n)

G(c, T )
, (2.15c)

where the states are n(ℓ, t) ∈ L2(L × T,R), T (t) ∈ R is the reactor temperature,
Tj(t) ∈ R is the jacket temperature, T0(t) ∈ R is the environmental temperature. The
constants αj =

hj
CT
and α0 =

h0
CT
are the thermal time constants. The growth rate

G(c, T ) and nucleation rate B(c, T, n) are dependent on the reactor temperature and

the concentration via the supersaturation. The concentration satisfies Equation (2.14)

in which V is the volume fraction function for the crystal size distribution n(ℓ, t) and is

given by (2.2).

Moreover, in the situation where Sa(c, T ) < 0 and D(c, T ) > 0, it follows by combina-

tion of the population balance Equation (2.4), the energy balance, the mass balance and

the kinetic Equations (2.12), (2.13) that the system can be modeled by the following

set of equations:

∂n

∂t
=
∂Dn

∂ℓ
, (2.16a)

dT

dt
=αj [Tj − T ] + α0 [T0 − T ] +

∆H

ρcp
R(t), (2.16b)

where D(c, T ) > 0 is the dissolution rate and the boundary condition n(ℓ̄, t) = 0 holds.

In this thesis will be assumed that the volume fraction of the solid phase can be computed

by the function V given by Equation (2.2) with v(ℓ) = kv ℓ
3, where kv is the shape factor,

determined by geometry of the crystals. For cubic particles it follows that kv = 1. By use

of integration by parts ddt [V (n)](t) can, in the situation of particle growth, be rewritten

to:

d

dt
[V (n)](t) =kvG(c, T )

(

[ℓ3n(ℓ, t)]ℓ̄ℓ=0 − 3
∫ ℓ̄

0

ℓ2n(ℓ, t)dℓ

)

. (2.17)

In the situation of the dissolution of particles a similar expression holds.

It is important to make some remarks with respect to the model which has been in-

troduced. Well posedness 2 of the population balance equations (2.15) and (2.16) is

2A problem is said to be well posed (in the sense Hadamard) if: 1) a solution to the problem exists,

2) the solution is unique, and 3) the solution depends continuously on the problem data.
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σ(t) > 0

σ(t) < 0

Dissolution Growth
modemode

Figure 2.5: Automaton corresponding to the hybrid behavior of crystallization processes.

The switching function σ(t) is equal to the level of supersaturation in the system, i.e.

σ(t) = Sa(c(t), T (t)).

of course of importance. In order to establish uniqueness of solutions one boundary

condition is necessary and allowed. Please notice that:

• If Sa(c, T ) > 0, the model is well posed if and only if a boundary condition at ℓ = 0
and the initial condition are specified. That is n(0, t) = η0(t) with η0(t) ∈ R,
n(ℓ, 0) is given and n(ℓ, 0) and T (0) are given.

• If Sa(c, T ) < 0 and ℓ̄ < ∞ the model is well posed if and only if a boundary
condition at ℓ = ℓ̄ and the initial condition are specified. That is n(ℓ̄, t) = ηℓ̄(t)

with ηℓ̄(t) ∈ R is given and n(ℓ, 0) and T (0) are given.

The system can be interpreted as a hybrid nonlinear distributed parameter system. The

consequence is that if the sign of Sa(c, T ) changes, the system switches between the

growth mode and dissolution mode, which is illustrated with Figure 2.5. Therefore,

three modes of operation can be distinguished namely

Supersaturated operation The process operates only in the supersaturated region for

the complete time interval T.

Undersaturated operation The process operates only in the undersaturated region re-

gion for the complete time interval T.

Mixed super and under saturated operation The process alternates between the un-

dersaturated or supersaturated region for during the time interval T.

The initial conditions of the process determine in which mode one can operate the

process. Clearly, the initial conditions have to be compatible with the operational modes.

The three modes of operation are illustrated in the concentration-temperature diagram

as shown in Figure 2.6.

Two additional classes UG and UD of the input signals for input Tj will be defined,

which contain the input signals that keep the process inside the supersaturated and

undersaturated mode respectively. Define UG and UD as follows:

UG(c0, n0, T0) :=
{

Tj ∈ L2(T;R)
∣
∣
∣ S(c, T ) > 0 for all t ∈ T and (2.15) holds.

}

(2.18)

UD(c0, n0, T0) :=
{

Tj ∈ L2(T;R)
∣
∣
∣ S(c, T ) < 0 for all t ∈ T and (2.16) holds.

}

(2.19)
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Temperature T →

C
o
n
ce
n
tr
a
ti
o
n
C
→

Undersaturated

C < Cs(T )

Supersaturated

C > Cs(T )

Solubility line

Cs(T )

b

b
b

Figure 2.6: Concentration - Temperature diagram with three modes of operation. Super-

saturated operation (dotted line), Under-saturated operation (straight line) and Mixed

super and under saturated operation (dash dotted line).

Note that UG(T0, c0, n0) = ∅ (UD(T0, c0, n0) = ∅) whenever the initial conditions
(n0, c0, T0) are such that S(c0, T0) ≤ 0 (S(c0, T0)) ≥ 0).

The model which we have introduced exhibits hybrid, nonlinear and infinite dimensional

characteristics. Although the individual types of systems have been studied in detail and

quite advanced analysis methods exist for these systems, theory for systems that are

hybrid, nonlinear and infinite-dimensional is not mature yet. Therefore, in this thesis

we will assume that the process will only operate in one of the two modes and does

not switch between the modes. The subsets UG and UD will be used in Chapter 3 in

the context of the analysis of the observability and controllability of the crystallization

process.

2.3 Model approximation by moment transformation

A very popular method to deal with the complexity of population balance models is ob-

tained by application of the moment transformation [Mersmann, 2001]. The moment

transformation is known as the method of moments and has been reported the first time

in [Hulburt and Katz, 1964] in the context of population balance models. Crystallization

models obtained by transformation of the population balance models are known as mo-

ments models. The method of moments has severe limitations when it comes to more

complicated crystallization models. In this section we introduce the method of moments

and highlight its properties.
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28 Modeling of batch cooling crystallization processes 2.3

Table 2.1: Popular of moments of a particle length density distribution.

Symbol and Definition Dimension

µ0(t) =
ℓ̄∫

0

n(ℓ, t)dℓ [1/m3]

µ1(t) =
ℓ̄∫

0

ℓn(ℓ, t)dℓ [m/m3]

µ2(t) =
ℓ̄∫

0

ℓ2n(ℓ, t)dℓ [m2/m3]

µ3(t) =
ℓ̄∫

0

ℓ3n(ℓ, t)dℓ [m3/m3]

The moments transformation Mi : L2(0, ℓ̄) → R assigns for every positive integer i a
number to a distribution n ∈ L2(0, ℓ̄). The i-th moment of the distribution n is given
by:

µi = Mi(n) =

∫ ℓ̄

0

ℓin(ℓ)dℓ. (2.20)

In case the domain L represents the length of particles in the distribution, the units of

the first four moments µ0, µ1, µ2, µ3 of the distribution, shown in Table 2.1, have a

dimension that has a physical interpretation. This makes the moment transformation

particular popular under chemical and process engineers. However, some cautions need

to be exerted with interpreting these numbers as physical quantities.

The method of moments has some limitations. Calculation of the moment from a

distribution is rather straightforward. However, calculation of a distribution from a given

finite number of moments, the inverse problem, is rather involved. Several researchers

from various fields have studied this problem in detail. From a mathematical point of

view, the inverse problem is known as Hausdorff moment problem [Talenti, 1987] for

L2(0, 1) and as Stieltjes moment problem L2(0,∞). In [Talenti, 1987] it has been shown
that the Hausdorff moment problem in general is ill-posed, in the sense that the solution

does not depend smoothly on the moments. Some results can be obtained, especially

when a priori information on the shape of the distribution is taken into account. For

narrow distributions reconstruction remains cumbersome [John et al., 2007].

The moment transformation is a popular transformation to deal with the infinite di-

mensional state space of the population balance equation. Application of the moment

transformation is known as the “method of moments”, and will be introduced in the

remainder of this section.

2.3.1 Method of moments applied to population balance equations

The method of moments can be considered as a special case of a Galerkin projection or

the method of weighted residuals. We will make the assumption that there the exists an

size ℓ̄ such that for all ℓ > ℓ̄,n(ℓ, t) = 0 for all t ≥ 0, that is we assume that the crystal
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2.3 Model approximation by moment transformation 29

remains smaller than ℓ̄ for all t ≥ 0. We call n a weak solution of (2.4) with respect to
Φ if n ∈ L2 and (2.21) holds.

〈∂n
∂t
+
∂Gn

∂ℓ
− En, φ〉 = 0 for allφ ∈ Φ (2.21)

The method of moments considers Φ = span{ℓi}∞0 and it is easy to see that this is
equivalent to:

〈∂n
∂t
+
∂Gn

∂ℓ
− En, ℓi 〉 = 0 for all i = 0, 1, 2, ... (2.22)

Under certain assumptions, which we will state next, an approximation of (2.4) can be

obtained from (2.22). After rearrangement, (2.22) can be expressed as follows:

〈∂n
∂t
, ℓi〉 = −〈∂Gn

∂ℓ
, ℓi〉+ 〈En, ℓi 〉 for all i = 0, 1, 2, ...

Depending on the particular characteristics of G and E this can be simplified. Important

cases are those in which the growth rate is independent of the size: G ∈ R, or cases
with a growth rate with polynomial dependence on size G(ℓ) =

∑K
k=0 γkℓ

k . In the

derivation above, the coefficients γk might depend on other variables than ℓ, such as

time, concentration or temperature. For those cases it follows that:

〈∂n
∂t
, ℓi〉 = −

K∑

k=0

γk〈
∂ℓkn

∂ℓ
, ℓi〉+ 〈En, ℓi 〉 for all i = 0, 1, 2, ...

Using integration by parts this can be rewritten as:

〈∂n
∂t
, 1〉 = −

K∑

k=0

γk([ℓ
kn(ℓ, t)]ℓ=∞ℓ=0 + 〈En, 1〉

〈∂n
∂t
, ℓi〉 = −

K∑

k=0

γk([ℓ
i+kn(ℓ, t)]ℓ=∞ℓ=0 − i〈n, ℓi+k−1〉) + 〈En, ℓi 〉 for i = 1, 2, ...

With use of the definition of moments, Equation (2.20) and the assumption n(ℓ, t) = 0

for ℓ > ℓ̄, condition (2.21) can now be expressed as a system of an infinite but countable

number of ordinary differential equations in the moments:

dµ0
dt
= γ0n(0, t) + 〈En, 1〉, (2.23a)

dµi
dt
= i

K∑

k=0

γkµi+k−1 + 〈En, x i 〉. (2.23b)

From the system of equations (2.23) it follows that for general growth and breakage

relations each moment µi depends at least on the moments uj with j = i − 1, ..., i +
K − 1. Therefore, in general, the system of equations (2.23) cannot be truncated to a
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30 Modeling of batch cooling crystallization processes 2.3

finite number of differential equations without violating (2.21). This is a fundamental

limitation of the method of moments.

For the special case in which there is no particle breakage and the growth rate is linear

with the particle length (E = 0 and K ≤ 1) truncation of (2.23) to a finite set of
differential equations is possible at an arbitrary order. This property has made the

method of moments extremely popular and widely used in crystallization research. After

truncation, one obtains a simple model, given by:

dµ0
dt
= γ0n(0, t) (2.24a)

dµi
dt
= i(γ0µi−1 + γ1µi) (2.24b)

This is generally referred to as the moments model.

2.3.2 Moment model for batch crystallization

The moment transformation can be applied to the reference model, which is given by

the Equations (2.15). We will make the following assumptions:

• The growth rate G(c, T ) is independent of ℓ,
• The volume fraction of the solid phase is given by

V (n) =

∫ ∞

0

kv ℓ
3n(ℓ)dℓ.

• The nucleation rate can be modeled by the rate equation

B(c, T, n) = kbSa(c, T )
bV (n).

We define the moments µ0, µ1, ... as in Equation (2.20). It follows that kvµ3 = V (n).

Therefore, by Equation (2.14) the concentration can be related to µ3 and satisfies:

c(t) = c0 +
ρc
ρ
kv [µ3,0 − µ3(t)] , (2.25)

where c0 is the initial concentration and µ3,0 is the initial third moment and is given by

µ3,0 = V (n0). The rate of crystallization R(t) satisfies:

R(t) = 3ρcG(c(t), T (t))µ2(t).

By use of the moment transformation, the batch model crystallizer model 2.15 can be

transformed to the model:

dµ0
dt
=
kb
kv
ρcSa(c, T )

bµ3, (2.26a)

dµi
dt
= iG(c, T )µi−1, for i = 1, 2, ...

(2.26b)

dT

dt
= αj [Tj − T ] + α0 [T0 − T ] +

∆H

ρcp
3ρckvG(c, T )µ2. (2.26c)
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We remark that this model is only representative for the crystallization process when it

is operated in a regime where G(c(t), T (t)) ≥ 0 for all t, that is Tj has to be chosen
such that Tj ∈ UG as defined by Equation (2.18). This has to be kept in mind when the
moment model is used. Moreover, we remark that only the states µi > 0 for i = 0, 1, 2, 3

are of physical relevance and that this property is inherited from the positivity of the

number density function. Since truncation of the moment model at i = 3 results in a

closed system of equations, it is common to use the moment model with the four states

µ0, µ1, µ2 and µ3.

2.4 Online Measurement Equipment

An important aspect in the development of online optimization and control methods is

the availability of measurements of the process variables. Various devices exist to per-

form measurements in the two thermodynamic phases of crystallization processes. For

the online measurement of the concentration of solute in the liquid phase, commercially

available solutions exist. These devices can be implemented in an industrial environment.

An overview of the sensors that have been tested in this project can be found in [Kadam,

2012]. Determination of the concentration can be done by a refractive index measure-

ment or by measurement of the attenuation spectra of infrared light. Experience has

shown that fouling of sensors can cause severe problems. The online measurement of

the state of the particle population is more problematic in an industrial environment with

current technology. For the measurement of the particle size distribution various devices

exist based on different measurement principles. Popular measurement principles exploit

the measurement of the attenuation spectra of ultra sound and in situ microscopy in

combination with image processing. Also the measurement of reflection patterns by a

rotating light beam is possible and used in FBRM (Focused Beam Reflectance Measure-

ment) devices. Potential problems in the online measurement of the particle size that

have been identified are:

• Problems with accuracy of the measurements occur when the volume fraction of
particles becomes large.

• The measurement devices are in general sensitive to particle shape and need an
extensive calibration.

• The measurement of small particles is typically not accurate, unreliable or even
impossible.

Especially the last issue is of large importance for modeling, online optimization and con-

trol purposes. If measurement devices are insensitive for small particles, it is impossible

to accurately determine the instant at which nucleation does take place. The measure-

ment of nucleation will therefore be delayed until particles have grown to a detectable

size. This should to be taken into account when kinetic data and nucleation models are

identified. The implication for online control is that the feedback path for small particles

will contain a uncertain (probably large) delays and that the delay will severely degrade

the possibility to correct for the presence small particles by feedback methods.
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1

2

3

4

ATR-FTIR

ISPV

RI

OPUS

Measurement and pump Skid

Figure 2.7: Flow diagram skid

2.4.1 Measurement Skid

In the context of the ISPT project a system for online measurements on batch crystal-

lization processes in industrial environments has been developed. The system consists

of a temperature controlled circulation line, a circulation pump, a number of commer-

cially available sensors and an electrical cabinet for data processing. The circulation line

is connected to the batch crystallizer by use of heat traced hoses. The system pro-

vides a means to perform measurements on industrial crystallization processes while it

avoids the necessity to perform changes to the process equipment. The latter property

makes it suitable for industrial environments, where changes to process equipment imply

large costs due to downtime. Moreover, especially in pharmaceutical environments, the

changes to processes have large implications for the certification of equipment. A flow

diagram of the measurement system is given in Figure 2.7.

The measurement system consists of two parts, called skids. One skid houses the pump

system, the second skid houses the sensors and electronics systems for the sensors. The

skid contains four sensors, based on different measurement principles:

ATR-FTIR - Bruker Optics (MATRIX-MF) Spectrometer used for the measurement

of the concentration of solute in liquid phase. The sensor is based on the ATR-

FTIR (Attenuated Total Reflectance - Fourier Transform Infrared) principle.

Refractive index - K-Patents (PR-23-IA) Refractive index sensor, used for concen-

tration measurement of the liquid phase.

Ultrasound diffraction - Sympatec (OPUS) Sensor for crystal size distribution. The

measurement is based on the extinction spectrum of ultrasound due to the particle

population.

In situ microscope - Perdix Analytical Systems (ISPV) In situ microscope system

with flow trough cell and back flash light illumination. In combination with im-

age processing software this sensor forms a means to measure for crystal size

distribution.
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2.4 Online Measurement Equipment 33

(a) Pump skid (b) Measurement Skid

Figure 2.8: Photograph of measurement skid located at MSD Apeldoorn.

The sensors are mounted in the measurement skid and can be remotely read out via the

industrially standardized OPC protocol. The measurement system is certified to operate

in explosive environments and is compliant with the (tight) sanitary requirements which

are demanded by pharmaceutical industry. A photograph of the measurement system

operational at MSD Apeldoorn during the period October till December 2010, is shown

in Figure 2.8.
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CHAPTER 3

Observability and controllability of crystallization

processes

Abstract

In this chapter the controllability and observability of the batch crystalliza-

tion process will be studied. Observability and controllability are important

properties of a model of a process. Controllability indicates to what extent

the states of a system can be steered to desired values. Likewise, observ-

ability indicates to what extend one can obtain information on the state of

a system from available measurements.

In this chapter the analysis of the observability as well as the controllability properties of

batch crystallization processes will be presented. We consider the question which sensors

need to be installed on a batch crystallization process to obtain sufficient information to

predict the future evolution of the state of the process. This question can be answered by

analysis of the observability of the process. The controllability of the batch crystallization

process is of relevance to steer the states, (for instance the crystal size distribution,

temperature or level of supersaturation) of a process to certain desired states in finite

time.

First, in Section 3.1 an introduction to the concept observability will be given. We explain

how observability can be analyzed and what observability means in the context of batch

crystallization processes. Thereafter, the observability of the population balance model

given by Equations (2.15) in combination with a concentration sensor and a particle

size measurement will be analyzed. Since in crystallization research the moment models

35
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36 Observability and controllability of crystallization processes 3.1

given by Equations (2.26) play a central role, the observability properties of these models

will be analyzed separately.

In Section 3.3 an introduction to the concept of controllability will be given. We explain

what is needed to analyze controllability and what this means in the context of batch

crystallization processes. Thereafter, the controllability of the population balance model

for batch crystallization given by the Equations (2.15) will be analyzed. The controlla-

bility of the moment models given by Equations (2.26) will be analyzed separately.

The contribution of this chapter is the analysis of the observability and controllability

of the batch cooling crystallization process model. We remark that the introduction of

the sections on observability and controllability have a fundamental character in which

we go back to the definitions of observability and controllability. This introduction is

necessary since the process model of batch cooling crystallization is a nonlinear infinite

dimensional system, such that well known analysis methods for linear finite dimensional

or nonlinear finite dimensional system cannot be applied directly.

3.1 Observability

In this section we provide an introduction to observability. Subsequently, the observability

of batch crystallization processes in combination with a concentration sensor and particle

size measurement will be presented.

3.1.1 Introduction to observability

Observability is the property that indicates if and to what extent information of the

states of a system can be obtained from measurements. This concept is well stud-

ied in system theory. For finite dimensional linear systems the concept is classical and

well known [Kailath, 1980]. For infinite dimensional linear systems the concept is also

well studied and can be found in, for instance, [Curtain and Zwart, 1995]. For finite

dimensional non linear systems observability also has been studied and can be found in

for instance [Nijmeijer and Van der Schaft, 1990]. Since we deal with a nonlinear and

infinite dimensional system, we have chosen to present a definition of the concept of ob-

servability that is suitable for this situation and which is compatible with the approaches

mentioned above.

Let us consider a system Σ given by:

Σ :

{

ẋ = f (x, u),

y = h(x),
(3.1)

with x(t) ∈ X, y(t) ∈ Y and u(t) ∈ U, and X,U and Y Hilbert spaces and t ∈ T with
T = [0, τ) where τ > 0. Moreover, introduce the set of admissible inputs U ⊂ UT.

We assume that f is sufficiently smooth, in the sense that for every u ∈ U and every
x0 ∈ X the solution x(t, 0, x0, u) of the differential equation (3.1) with initial condition
x(0) = x0 and admissible input u is uniquely defined on the time interval T.
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3.1 Observability 37

Let y(t, 0, x0, u) denote the output of system Σ corresponding to the initial condition

x(0) = x0 and input u, that is y(t, 0, x0, t) = h(x(t, 0, x0, t)). Moreover we introduce

the concept of a system map for the system Σ.

Definition 3.1.1 (System map)

The system map of the system Σ on T is the map Gτ : X × U → Y,defined by

[Gτ (x0, u)](t) := y(t, 0, x0, u) for t ∈ T

where both U and Y are subsets of L2, i.e. U ⊂ L2(T, U) and Y ⊂ L2(T, Y ).

We introduce the concept of a distinguishable pair of states as follows.

Definition 3.1.2 (Distinguishable pair of states)

Two states x1, x2 ∈ X are said to be distinguishable for (3.1) on T, if for every admissible
input function u ∈ U the mappings t 7→ y(t, 0, x1, u) and t 7→ y(t, 0, x2, u), for t ∈ [0, τ ]
corresponding to initial condition x(0) = x1 resp. x(0) = x2 are not identical on their

common domain of definition, i.e.

Gτ (u, x1) 6= Gτ (u, x2) for all u ∈ U .

We are now in the position to make precise what observability is and introduce the

definitions for two types of observability:

Definition 3.1.3 (Approximately observable)

The system Σ is called approximately observable on [0, τ ] (for some finite τ > 0) if

knowledge of the input in U and output in Y determines the initial state uniquely.
Definition 3.1.4 (Exactly observable)

The system Σ is called exactly observable on [0, τ ] (for some finite τ > 0) if the initial

state can be uniquely and continuously constructed from the knowledge of the input in

L2(T, U) and the output in L2(T, Y ).

We make the following observations.

Remark 3.1.1. Approximate observability and exact observability is also defined for au-

tonomous systems.

Remark 3.1.2. Note that exact observability implies approximate observability but that

the converse is not true.

Remark 3.1.3. Approximate observability of a system on the interval [0, τ ], implies

approximate observability of the system on the interval [0, τ ′] for τ ′ ≥ τ .
Remark 3.1.4. The notion of “approximate” observability is common in literature.

However the indication “approximate” is not self explanatory here and is due to the

duality relationship between observability and controllability. In the context of con-

trollability the notion “approximate controllability” is more appropriate, see for in-

stance [Curtain and Zwart, 1995, Definition 4.1.3].

The following theorem shows the relation between the existence of indistinguishable

states of a system and approximate observability.

Theorem 3.1.1

The following two statements are equivalent:
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38 Observability and controllability of crystallization processes 3.1

1. Every pair of states x1 ∈ X, x2 ∈ X with x1 6= x2, is a distinguishable pair of states
for system (3.1) on T.

2. The system Σ is approximately observable.

Proof.

(1⇒ 2) Let every pair of states x1 ∈ X and x2 ∈ X is a distinguishable pair of states for
system (3.1) on T and assume that the system Σ is not approximately observable. Since

every pair x1, x2 is distinguishable, for a given pair (u, y) with y = G
τ (u, x1) there does

not an x2 such that y = G
τ (u, x2) which implies that (u, y) yields x1. This contradicts

with the assumption, therefore the system is approximately observable.

(1⇐ 2) Let the system Σ be approximately observable and assume there exist a pair of
states x1 ∈ X and x2 ∈ X that is indistinguishable. The assumption implies that there
exist indistinguishable pairs x1 6= x2 and an input signal u ∈ U such that y1 = Gτ (u, x1) =
Gτ (u, x2) = y2 for all τ ∈ T. This contradicts with approximate observability since given
an input u ∈ U , approximate observability implies that two pairs (u, y1) and (u, y2) with
y1 = y2 yield x1 = x2.

From the definition of an observable system it now follows why observability is an impor-

tant property. In an observable system the possibility that the evolution of two distinct

initial states x1 and x2 in combination with an input signal u generate one and exactly

the same measurement is excluded.

We have the following theorem for falsification of exact observability and approximate

observability from the system map Gτ (u, x0).
Theorem 3.1.2

The system Σ is neither exactly observable or approximately observable on [0, τ ] if

there exists a pair of not identical initial states x1, x2 ∈ X, i.e. x1 6= x2 which is not

distinguishable for t ∈ [0, τ ].

Proof. The proof follows immediately from the definition.

Analogously to the definition of approximate and exact observability, we introduce the

notion of approximate observability on a set and exact observability on a set.

Definition 3.1.5 (Approximately observable on a set X0 ⊂ X)
Let X0 ⊂ X. The system Σ is called approximately observable X0 on [0, τ ] (for some
finite τ > 0) if knowledge of the input in U and output in Y determines the initial state
x0 ∈ X0 uniquely.
Definition 3.1.6 (Exactly observable on a set X0 ⊂ X)
Let X0 ⊂ X. The system Σ is called exactly observable on [0, τ ] (for some finite τ > 0)
if the initial state x0 ∈ X0 uniquely can be uniquely and continuously constructed from
the knowledge of the input in L2(T, U) and the output in L2(T, Y ).

For finite dimensional nonlinear systems and infinite dimensional linear systems results

exist to characterize observability in more detail. We will introduce the most important

results for both classes. For linear infinite dimensional systems, we have the following
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situation. Consider a linear infinite dimensional system Σl in,

Σl in :

{

ẋ = Ax + Bu,

y = Cx,

where the linear operator A : D(A) → X, D(A) ⊂ X, is the infinitesimal generator of
semigroup operator T (t) : X → X for t ∈ T
For the system Σl in we introduce the observability map, as done in [Curtain and Zwart,

1995]:

Definition 3.1.7 (Observability map for linear systems)

The observability map of the system Σl in on [0, τ ], is the bounded linear map Cτ : X →
L2([0, τ ]; Y ) defined by Cτx = CT (·)x .

Moreover we introduce the controllability map for the system Σl in:

Definition 3.1.8 (Controllability map for linear systems)

The controllability map of the system Σl in on [0, τ ], is the bounded linear map Bτ :
L2([0, τ ];U)→ X defined by Bτu =

∫ τ

0 T (τ − s)Bu(s)ds.

Note that for linear systems Cτx = Gτ (0, x) and CBτu = Gτ (u, 0), such that the
system map of the system Σl in is given by Gτ (x0, u) = Cτx0 + CBτu. Due to linearity
it follows that observability only depends on properties of Cτx0. Exact and approximate
observability for the linear system can be characterized by the following lemma, which

is shown in [Curtain and Zwart, 1995, Corollary 4.1.14].

Lemma 3.1.3

For the linear system Σl in, we have the following necessary and sufficient condition:

(a) The system is approximately observable on [0, τ ] if and only if ker Cτ = {0}, i.e.
CT (t)z = 0 on t ∈ [0, τ ] implies z = 0.

(b) The system is exactly observable on [0, τ ] if and only if ker Cτ = {0} and Cτ has
closed range.

For finite dimensional nonlinear systems we are in a different situation. Consistent with

the definition of local observability in [Nijmeijer and Van der Schaft, 1990] we introduce

the following definition for local observability of the system Σ.

Definition 3.1.9 (Locally observable at x1)

The system Σ is called locally observable at x1 on T (for some finite τ > 0) if there

exists a neighborhood W of x1 such that for every neighborhood V ⊂ W and for all

states x2 ∈ V , we have that

Gτ (u, x1) = Gτ (u, x2) for every u ∈ U implies x1 = x2.

Definition 3.1.10

The system Σ is called locally observable if the system Σ is called locally observable for

every x1 ∈ X.

We remark that (global) approximate observability implies local approximate observabil-

ity, but that the converse is not true.
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We will now discuss observability for nonlinear finite dimensional systems and a sufficient

condition to characterize local observability in more detail. Consider finite dimensional

nonlinear systems of the form:

Σnl in :

{

ẋ = f (x) +
∑k
j=1 gj(x)uj ,

yi = hi(x),
(3.2)

with x(t) ∈ M, with M ⊂ Rn, U ⊂ Rm Y ⊂ Rp for n, p, q < ∞ and i ∈ {1, ..., p}. For
systems of the form (3.2) the following characterization of local observability is known.

First we introduce the concept of a observation space. We will use the notion of a

Lie-derivative, which is introduced in the Appendix A.1.

Definition 3.1.11 (Observation space [Nijmeijer and Van der Schaft, 1990])

The observation space O of system (3.2) is the linear space of functions defined on M
containing h1, .., hp and all repeated Lie-derivatives LX1LX2 ...LXkhi with i ∈ {1, ..., p}
and Xj for j ∈ {1, ..., k} in the set {f , g1, ..gm}.

Then we introduce the concept of the observability co-distribution by the following

definition:

Definition 3.1.12 (Observability co-distribution [Nijmeijer and Van der Schaft, 1990])

Let the observability co-distribution, denoted by dO be defined as follows by:

dO(x0) =span {dH(x0)|H ∈ O} . (3.3)

Here dH(x0) denotes the differential of H at x0.

The following theorem can be used to test if a system is locally observable at a certain

state x0 ∈ M.
Theorem 3.1.4 (Local observability for finite dimensional systems

[Nijmeijer and Van der Schaft, 1990])

Consider the system (3.2) with dim(M) = n. Assume that dim(dO(x0)) = n. Then

the system is locally observable at x0.

Proof. For the proof we refer to [Nijmeijer and Van der Schaft, 1990].

Corollary 3.1.5

The system (3.2) is locally observable if the system is locally observable for any x0 ∈ M.

Theorem 3.1.4 can be used to test local observability, by calculation of the dimension of

the span of a subset of the Lie-derivatives at point x0. We remark that the observation

space O contains all repeated Lie-derivatives. Therefore it depends from case to case if
one can successfully analyze the local observability of the system with this theorem by

calculation of a finite number of Lie-derivatives.

In the next section we will use the previously defined concepts of observability to analyze

the batch cooling crystallization process.
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3.2 Observability of a batch cooling crystallization process 41

3.2 Observability of a batch cooling crystallization pro-

cess

In this section we will analyze the observability of the batch crystallization process as

introduced in Chapter 2. It is important to analyze the observability of a process since by

such an analysis it becomes apparent to which extent is it possible to infer information

on the state of a process from measurements with a given sensor.

Since observability depends on the availability of the sensors in the process, we will discuss

two different configurations. We will analyze observability of a process modeled by the

population balance model (2.15) in presence of a concentration sensor in Section 3.2.1

and in the presence of a population sensor in Section 3.2.2. In Section 3.2.2 we will

analyze the observability of the moment model in presence of a concentration sensor.

The analysis of the observability properties of the model of the batch crystallization

process has been carried out on an model in which mechanisms of secondary significance

have been neglected. This has been done to avoid an unnecessary complicated analysis

and to keep the problem tractable. In our analysis we will assume that the crystallization

enthalpy and the heat exchange with the environment are negligibly small. That is,

we set ∆H = 0 and α0 = 0 in Equation (2.15). Moreover we will assume that the

level of secondary nucleation is small and we set B(c, T, n) = 0. To summarize, we

assume that the process is modeled by a population balance model, such as is given by

Equation (2.15). That is,

∂n

∂t
=− ∂G(c, T )n

∂ℓ
, (3.4a)

dT

dt
=α(Tj − T ), (3.4b)

with boundary condition n(0, t) = 0 and initial condition n(ℓ, 0) = n0(ℓ) and where n

is the population balance, T is the reactor temperature, Tj is the jacket temperature.

The operator growth rate G is assumed to be size independent and to be dependent

on concentration and temperature G := G(c, T ). In the analysis we only consider

operation in regimes G > 0 so that the population balance equation (3.4) remains well

defined for all t ≥ 0. As described in Section 2.2.4, the concentration and mass of the
particles in the solid phase are related via the algebraic equation (2.6), which is due to

the mass conservation. For simplicity, in this section it will be assumed that ρcρ = 1,

such, the concentration can be expressed as function of the population balance. By use

of equation (2.14), one obtains:

c(t) = c0 − V (n − n0)(t) = c0 + V (n0)− [V (n)](t), (3.5)

where c0 is the initial concentration, n0(·) = n(·, 0) is the population balance at time
t = 0 and n(ℓ, t) is the population balance at time t, and V (·) the volume function
defined in Equation (2.2).

In this section we assume that the volume of the particles in the population n(ℓ, t) can

be calculated from linear combinations of the first k moments of the population n(ℓ, t),
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i.e. v(ℓ) =
∑k
i=0 viℓ

i where vi ∈ R are arbitrary coefficients. With n ∈ L2(L × T,R),
the total volume of particles at time t per volumetric unit of liquid is given by

[V (n)](t) =

∫ ∞

0

k∑

i=0

viℓ
in(ℓ, t)dℓ, (3.6)

as described in Section 2.2.

3.2.1 Observability of population balance model from concentra-

tion measurements

In this section we consider a batch crystallizer, equipped with a concentration measure-

ment c(t) and temperature measurement T (t). That is, we equip the model with the

following output equation:

y(t) =Csens

([
n(·, t)
T (t)

])

=

[
c0 + V (n0)− V (n)(t)

T (t)

]

. (3.7)

Since the model is nonlinear and infinite dimensional, the usual technique for studying

observability does not apply. Therefore we follow a different path. We first simplify the

problem setting to the linear convection equation and analyze this setting. Then we use

the results from the linear convection equation to obtain results on the observability of

the model (3.4) given by Equations (3.4), (3.7).

Observability of a linear advection problem

Consider the following system:

∂n

∂t
=An = −∂n

∂ℓ
, (3.8a)

y(t) =Cn(·, t) :=
∫ ∞

0

ℓkn(ℓ, t)dℓ, (3.8b)

with boundary condition n(0, t) = 0, initial condition n(ℓ, 0) = n0(ℓ), n(·, t) ∈ L2(0,∞)
and the operator as defined in (3.8b) with k a positive integer. In this section we will

study approximate observability of the system given by Equations (3.8).

The operator A is the infinitesimal generator of the left-shift semigroup T (t), with:

[T (t)n](ℓ) =
{

n(ℓ− t) if ℓ− t > 0
0 else

(3.9)

The system under consideration is a linear infinite dimensional system. Therefore, we

can use Theorem 3.1.3 to study if the system is approximately observable.
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3.2 Observability of a batch cooling crystallization process 43

Theorem 3.2.1

Consider the system defined by Equations (3.8) and let Cτn = CT (·)n be the observ-
ability map associated with (3.8), where T (·) is the semigroup defined in (3.9). The
kernel of the observability map is given by:

ker Cτ =
{

n ∈ L2(0,∞)|
∫ ∞

0

ℓin(ℓ)dℓ = 0 for i = {0, 1, 2, ..., k}
}

, (3.10)

and the system is not approximately observable.

The proof of this theorem is based on a simple observation that relates time responses

with moments of the initial condition. Before we proceed with the proof, we introduce

the following lemma:

Lemma 3.2.2

Let f ∈ L2(0,∞) and let k ∈ N an positive integer. Then
∫ ∞

t

ℓk f (ℓ− t)dℓ = 0 for all t ≥ 0 (3.11)

if and only if
∫ ∞

0

ℓi f (ℓ)dℓ = 0 for i ∈ {0, ..., k}. (3.12)

Proof. Introduce the coordinate change σ = ℓ− t to Equation (3.11). With use of the
Binomial theorem of Newton it follows that:

∫ ∞

t

ℓk f (ℓ− t)dℓ =
∫ ∞

0

(σ + t)k f (σ)dσ =

k∑

i=0

(
k

i

)

tk−i
∫ ∞

0

σi f (σ)dσ.

This is a k-th order polynomial in t with coefficients defined by
∫∞
0 σi f (σ)dσ, from

which the assertion follows.

Proof of Theorem 3.2.1. First we will calculate the kernel of the observability map Cτn0
of the system. The map Cτn0 is given by Cτn0 = CT (·)n0 with

CT (t)n0 =
∫ ∞

0

ℓk(T (t)n0)(ℓ)dℓ. (3.13)

With use of the explicit representation of the semigroup T (·), c.f. (3.9) this can be
rewritten as:

CT (t)n0 =
∫ ∞

t

ℓkn0(ℓ− t)dℓ . (3.14)

It now follows from Lemma 3.2.2 that Cτn0 = 0 if and only if the moments αi =∫∞
0 ℓin0(ℓ)dℓ are zero for i = {0, ..., k}. Since, there always exists an n0 6= 0, with
αi = 0 for i = {0, ..., k}, we conclude by lemma 3.1.3 (b), that the system is not
approximately observable on [0, τ ]. Remark that this result is independent of τ . Hence,

the system is not approximately observable for any τ > 0.



i

i

“thesis” — 2012/9/3 — 21:29 — page 44 — #58
i

i

i

i

i

i

44 Observability and controllability of crystallization processes 3.2

Remark 3.2.1. The result of Theorem 3.2.1 admits a straightforward generalization if

the measurement (3.8b) is replaced by a measurement of the form:

y(t) = Cext1n(·, t) =








∫∞
0 ℓkn(ℓ, t)dℓ

∫∞
0 ℓk−1n(ℓ, t)dℓ

...
∫∞
0 ℓ0n(ℓ, t)dℓ








(3.15)

that contain multiple measurements up to order k . We claim that the system (3.8)

with measurement (3.15) is not approximately observable as the kernel of Cτext1n0 :=
Cext1T (·)n0 equals the right hand side of (3.10), i.e. ker Cτext1 = ker Cτ .
The results can also be generalized to more general measurement functions of the form:

y(t) = Cext2n(·, t) :=
∫ ∞

0

k∑

i=1

viℓ
in(ℓ, t)dℓ. (3.16)

with coefficients vi ∈ R. That is, the system (3.8) with measurement (3.16) is not
approximately observable. This results from linearity of Cext2.

For population balance models, Theorem 3.2.1 has the following consequence. Suppose

we consider the system (3.8) with the measurements (3.8b) with (or equivalently (3.15)

or (3.16)) and with two initial distributions n1(ℓ) ∈ L2(L)) and n2(ℓ) ∈ L2(L)) such that
the first k moments are equal. That is

∫∞
0 ℓin1(ℓ)dℓ =

∫∞
0 ℓin2(ℓ)dℓ for i = 0, ..., k .

Then the measurements due to evolution of n1 are equal to measurements due to

evolution of n2. Therefore the initial conditions n1 and n2 are indistinguishable in the

measurements of the system.

This can be seen as follows. Let ∆n(ℓ) = n2(ℓ) − n1(ℓ), then the first k moments∫∞
0 ℓk∆n(ℓ)dℓ are equal to 0 The outputs (due to the evolution of initial distribution

n1(ℓ) resp. n2(ℓ)) are equal, i.e.:

y2(t) =

∫ ∞

t

ℓkn2(ℓ− t)dℓ =
∫ ∞

t

ℓk(n1(ℓ− t) + ∆n(ℓ− t))dℓ = y1(t)

since ∆n(ℓ− t) has been constructed such that:
∫ ∞

t

ℓk∆n(ℓ− t)dℓ = 0 for all t ∈ [0,∞).

Therefore, one cannot conclude from an measured output y(t) whether that output is

due to initial condition n1(ℓ) or n2(ℓ).

Conversely, it follows from Theorem 3.2.1 that if the two distributions n1(ℓ) ∈ L2(L)
and n2(ℓ) ∈ L2(L) such that one of their first k moments are not equal, then the

measurements due to evolution of n1 are not equal to measurements due to evolution

of n2. Therefore one can infer from the measurement y1 and y2 what values of the first

k moments of the distributions n1 and n2 are.

Remark 3.2.2. Please note that due to linearity of the measurement equation the anal-

ysis of observability in principle focuses on the observability of the difference between
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3.2 Observability of a batch cooling crystallization process 45

two distributions and as such the focus is on the contribution of this difference in the

distributions in the measurement signals. Therefore, as a result of the linearity of the

measurement with respect to the distributions it is sufficient to analyze the distinguish-

ably of the measurement of the distribution difference from the zero distribution. Remark

that the difference between distributions can be a distribution with negative values.

One might wonder how for this system indistinguishable distributions look like. We will

show that it is possible to construct indistinguishable distributions. In Appendix B.1 we

present Theorem B.1.1, which enables us to construct indistinguishable distributions.

As an example, we will construct two indistinguishable functions n1(ℓ) and n2(ℓ). We

set n1(ℓ) = 0, such that the difference is given by ∆n(ℓ) = n1(ℓ)− n2(ℓ) = −n2(ℓ). We
construct ∆n such that the first k moments are zero with use of Theorem B.1.1. We

choose the parameters k = 3, n2(0) = 0, α1, ...α5 = 0 and α6 =
1
24 , and obtain the

distribution n2(ℓ) that is indistinguishable from n1(ℓ) = 0, shown in Figure 3.1.

n
2
(ℓ
)

ℓ

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Figure 3.1: The function n2(ℓ) that is indistinguishable from n1(ℓ) = 0 by either the

measurements (3.8b), (3.15) or (3.16) on the system (3.8), constructed by use of

Theorem B.1.1 with parameters k = 3, n2(0) = 0, α1, ...α5 = 0 and α6 =
1
24 .

Remark 3.2.3. It is important to note that the first moment of the difference between

indistinguishable distributions is zero. Therefore, an distribution n2(ℓ) indistinguishable

n1(ℓ) = 0 either is identical to zero or n(ℓ) is positive for some ℓ as well as negative for

some ℓ. Negative values of n(ℓ) have no physical interpretation, and one might argue

that this type of distributions are not relevant for crystallization processes. We argue

that for the observability problem they do have relevance since we are concerned with

differences in distributions.

We will now proceed with the analysis of the observability properties of the batch crys-

tallization process with concentration sensor.

Observability for the batch crystallization process

We study the observability of the population balance model (3.4) in which a concentra-

tion sensor and temperature sensor are used, such as given by Equations (3.7).

Contrary to the linear advection equation, explicit solutions to the system of equations
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46 Observability and controllability of crystallization processes 3.2

Tj(t) T (t)dT
dt = α(Tj − T ) ∂n

∂t = G(C, T )
∂n
∂ℓ

n(ℓ, t)

Figure 3.2: Illustration of model (2.15) as cascade of two subsystems systems.

are not known, which complicates the analysis. In order to prove that the system is not

approximatly observable, we apply Theorem 3.1.2 and we show the existence for a pair

of two initial conditions that generate identical output signals. We state the main result

of this section as follows:

Theorem 3.2.3

Consider the system (3.4) with the measurement (3.7) and the volume function V (n)

as defined by equation (3.6). The system is not approximately observable. More-

over, let [n1(ℓ, t), T1(t)] and [n2(ℓ, t), T2(t)] be the solutions to system (3.4) with

initial conditions [n0,1(ℓ), T0,1] resp. [n0,2(ℓ), T0,2], with T0,1 = T0,2 and an input signal

Tj ∈ UG . Let Gτ : L2(ℓ) × R → R2 denote the system map, as defined in defini-
tion 3.1.1 and let the measurements y1, y2 be defined as y1 = Gτ (n0,1, T0,1, Tj) and
y2(t) = Gτ (n0,2, T0,2, Tj). If the first k moments of n0,1(ℓ) and n0,2(ℓ) are equal, i.e.∫∞
t ℓin0,1(ℓ)dℓ =

∫∞
t ℓin0,2(ℓ)dℓ for k = 1, ..., k , then the measurements y1(t) and y2(t)

are equal for all t ∈ T.

Since the system under consideration is non-linear, we are not able to define a linear

semigroup operator and we are not able to define the observability map of the system

as in definition 3.1.7. Therefore, we will follow a different approach.

We will prove the theorem later in this section. First we introduce some lemmas, which

enable us to analyze solutions of the system (3.4). First we observe that the system

consists of a cascade of two systems, i.e. the evolution of the state n is influenced by

the state T , but the evolution of T is not influenced by the state n. This is represented

in Figure 3.2.

Observe that, for a given solution [n(ℓ, t), T (t)] to the Equations (3.4), we can calculate

the trajectories of c and G a-posteriori, i.e. we can evaluate V (n(·, t)) and G(c(t), T (t))
along the solution. We define the function Γ : T→ R and Λ : T→ R as follows:

Γ(t) :=G(c(t), T (t)) = G(c0 + V (n0,i)− [V (n)](t), T (t)) (3.17)

Λ(t) :=V (n(·, t)) =
∫ ∞

0

k∑

i=0

viℓ
in(ℓ, t)dℓ (3.18)

It follows that the function Γ(t) defines the solution to the Equations (3.4) in terms of

a parametrization of the initial condition. This becomes more apparent in the following

lemma:

Lemma 3.2.4

Consider the time variant system:

∂n

∂t
= −∂Γ(t)n

∂ℓ
, (3.19)
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3.2 Observability of a batch cooling crystallization process 47

with t ∈ [0, τ ], n(0, t) = 0, n(·, 0) = n0(·) ∈ L2(0,∞), Γ(t) ∈ L2(T;R) and
w(t) :=

∫ t

0 Γ(τ)dτ > 0 for all t. The solution to Equation (3.19) is given by n(ℓ, t):

n(ℓ, t) =

{

n0(ℓ− w(t)) if w(t) ≤ ℓ
0 else.

Proof. We show that n(ℓ, t) satisfies (3.19). Therefore, we calculate the derivatives of

n with respect to t and ℓ:

∂n

∂ℓ
=
∂n0(ℓ− w(t))

∂ℓ
=
∂n0(ℓ)

∂ℓ

and

∂n

∂t
=
∂n0(ℓ− w(t))

∂t
= −∂w(t)

∂t

∂n0
∂ℓ
= −Γ(t)∂n0

∂ℓ
,

Therefore:

∂n

∂t
= −Γ(t)∂n0

∂ℓ
= −Γ(t)∂n

∂ℓ
= −∂Γ(t)n

∂ℓ
,

which is (3.19). We conclude n(ℓ, t) satisfies (3.19).

We will now show that for a given initial condition n0(ℓ), the trajectory Γ(t) defined by

Equation (3.17), satisfies a non-homogeneous ordinary differential equation, which can

be parametrized by n0(ℓ) and
∂T
∂t .

Theorem 3.2.5

Consider the system (3.4) and let Γ(t) be defined by (3.17). For given initial condition

n0, c0, T0, and input Tj , and boundary condition n(0, t) = 0, Γ(t) satisfies the equation:

(
Γ̇(t)

ẇ(t)

)

=




− ∂G∂c Γ(t)

k∑

i=1

i−1∑

j=0

ivi
(
i−1
j

)
w(t)i−j−1

∫∞
0 σjn0(σ)dσ +

∂G
∂T
∂T
∂t

Γ(t)



 . (3.20)

with w(0) = 0 and Γ(0) = G(c0, T0).

Proof. Differentiate Γ(t) defined by (3.17) with respect to t.

Γ̇ =
∂G

∂c

∂c

∂t
+
∂G

∂T

∂T

∂t

Differentiate (3.5) to obtain ∂c∂t = −
∂V (n)
∂t and substitute this:

Γ̇ =− ∂G
∂c

∂V (n)

∂t
+
∂G

∂T

∂T

∂t

Then substitute V (n) =
∫∞
0

∑k
i=0 viℓ

in(ℓ, t)dℓ

Γ̇ =− ∂G
∂c

∫ ∞

0

k∑

i=0

viℓ
i ∂

∂t
n(ℓ, t)dℓ+

∂G

∂T

∂T

∂t
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Use that n(ℓ, t) satisfies Equation (3.4) to derive:

Γ̇ =
∂G

∂c

∫ ∞

0

k∑

i=0

viℓ
iΓ(t)

∂n

∂ℓ
dℓ+

∂G

∂T

∂T

∂t

Using integration by parts the equation can be rewritten to:

Γ̇ =
∂G

∂c
Γ(t)

k∑

i=0

vi

(

[ℓin(ℓ, t)]∞0 −
∫ ∞

0

i ℓi−1n(ℓ, t)dℓ

)

+
∂G

∂T

∂T

∂t
,

which can be rearranged to:

Γ̇ =
∂G

∂c
Γ(t)

(

v0 [n(∞, t)− n(0, t)]−
k∑

i=1

ivi

∫ ∞

w(t)

ℓi−1n0(ℓ− w(t))dℓ
)

+
∂G

∂T

∂T

∂t
.

Introduce the coordinate change σ = ℓ− w(t) to obtain:

Γ̇ =
∂G

∂c
Γ(t)

(

v0 [n(∞, t)− n(0, t)]−
k∑

i=1

ivi

∫ ∞

0

(σ + w(t))i−1n0(σ)dσ

)

+
∂G

∂T

∂T

∂t
.

With use of the Binomial theorem of Newton it follows that (σ+w(t))i−1 =
i−1∑

j=0

(
i−1
j

)
w(t)i−j−1σj ,

such that:

Γ̇ =− ∂G
∂c
Γ(t)

k∑

i=1

i−1∑

j=0

ivi

(
i − 1
j

)

w(t)i−j−1
∫ ∞

0

σjn0(σ)dσ +
∂G

∂T

∂T

∂t
.

We introduce the following theorem, which considers the non-uniqueness of a growth

trajectory Γ(t).

Theorem 3.2.6

Let [n1(ℓ, t), T (t)] and [n2(ℓ, t), T (t)] be the solutions to system (3.4) with initial con-

ditions n0,1(ℓ) resp. n0,2(ℓ) and an input signal Tj(t). If
∫∞
0 ℓin0,1(ℓ)dℓ =

∫∞
0 ℓin0,2(ℓ)dℓ

for i = 1, ..., k , then

Γ1(t) = Γ2(t) for all t ∈ [0,∞).

Proof. We analyze the trajectories (Γ1, w1) and (Γ2, w2) for n1 and n2 respectively and

we will show that they satisfy the same differential equation with equal initial conditions.

From Theorem 3.2.5 it follows that (Γ1, w1) satisfies the equation:

(
Γ̇1
ẇ1

)

=




− ∂G∂c Γ1

k∑

i=1

i−1∑

j=0

ivi
(
i−1
j

)
w i−j−11

∫∞
0 σjn0,1(σ)dσ +

∂G
∂T
∂T
∂t .

Γ1



 (3.21)
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with w1(0) = 0 and Γ1(0) = G(c0, T0). Similarly, (Γ2, w2) satisfies:

(
Γ̇2
ẇ2

)

=




− ∂G∂c Γ2

k∑

i=1

i−1∑

j=0

ivi
(
i−1
j

)
w i−j−12

∫∞
0 σjn0,2(σ)dσ +

∂G
∂T
∂T
∂t ,

Γ2



 (3.22)

with w2(0) = 0 and Γ2(0) = G(c0, T0). With use of the assumption
∫∞
0 ℓin0,1(ℓ)dℓ =∫∞

0 ℓin0,2(ℓ)dℓ for i = 1, ..., k , the system of equations (3.22) can be rewritten to:

(
Γ̇2
ẇ2

)

=




− ∂G∂c Γ2

k∑

i=1

i−1∑

j=0

ivi
(
i−1
j

)
w i−j−12

∫∞
0 σjn0,1(σ)dσ +

∂G
∂T
∂T
∂t ,

Γ2



 (3.23)

with w2(0) = 0 and Γ2(0) = G(c0, T0). It follows from (3.21) and (3.23) that (Γ1, w1)

and (Γ2, w2) satisfy the same differential equation, with equal initial conditions. There-

fore we conclude that (Γ1, w1) = (Γ2, w2).

We are now ready to prove Theorem 3.2.3. For this we prove the existence of two initial

conditions which generate equal measurements. By Theorem 3.1.2 this shows that the

system is not approximately observable.

Proof of Theorem 3.2.3. By Theorem 3.2.6 we have that the growth rate Γ1(t) and

Γ2(t) are equal. From the assumptions it follows that V (n0,1) = V (n0,2). Define the

distribution ∆n0(ℓ) by ∆n0(ℓ) = n0,2(ℓ)− n0,1(ℓ). It follows from the assumptions that∫∞
0 ℓi∆n0(ℓ)dℓ = 0 for i = 1, ..., k . From Lemma 3.2.4 and n0,2(ℓ) = n0,1(ℓ) + ∆n0(ℓ)

it follows that n2, can be expressed as follows:

n2(ℓ, t) =

{

n0,1(ℓ− w2(t)) + ∆n0(ℓ− w2(t)) if w2(t) > 0
0 else

where w2(t) =
∫ t

0 Γ2(τ)dτ .

Therefore, the volume in the distributions n1 and n2 as function of time, i.e. [V (n1)](t)

and [V (n2)](t) evaluated along the trajectories [n1(ℓ, t), T (t)] and [n2(ℓ, t), T (t)] are

equal. Indeed:

[V (n2)](t) =

∫ ∞

0

k∑

i=0

viℓ
in2(ℓ, t)dℓ

=

k∑

i=0

vi

[ ∫ ∞

w2(t)

ℓin1(ℓ− w2(t))dℓ+
∫ ∞

w2(t)

ℓi∆n(ℓ− w2(t))dℓ
]

Since
∫∞
0 ℓi∆n0(ℓ)dℓ = 0 for i = 1, ..., k , this equals:

[V (n2)](t) =

k∑

i=0

vi

∫ ∞

w2(t)

ℓin1(ℓ− w2(t))dℓ

=

∫ ∞

w1(t)

k∑

i=0

viℓ
in1(ℓ− w1(t))dℓ = V (n1)(t)
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From this it follows that the outputs y1(t) and y2(t) are equal, i.e.:

y2(t) =

[
C0 + V (n0,2)− [V (n2)](t)

T (t)

]

=

[
C0 + V (n0,1)− [V (n1)](t)

T (t)

]

= y1(t)

By Theorem 3.1.2 it follows that the system is not approximately observable.

For crystallization processes the results of Theorem 3.2.3 have the following conse-

quence. Suppose there exist two initial distributions n1(ℓ) and n2(ℓ) such that
∫ ∞

t

ℓin0,1(ℓ)dℓ =

∫ ∞

t

ℓin0,2(ℓ)dℓ

for k = 1, ..., k . Then outputs y1(t) and y2(t) will be equal for all Tj ∈ UG . Therefore,
it is not possible to distinguish if a measurement due to the evolution of distribution n0,1
from a measurement due to the evolution of distribution n0,2. As such the system is

not approximately observable. Conversely, it again follows that if the two distributions

n1(ℓ) ∈ L2(L) and n2(ℓ) ∈ L2(L) are such that one of their first k moments are not
equal, then the measurements due to evolution of n1 are not equal to measurements

due to evolution of n2. Therefore one can infer from the measurement y1 and y2 what

values of the first k moments of the distributions n1 and n2 are.

3.2.2 Observability of population balance model from particle size

distribution sensor

In this section we study the observability of the batch crystallization process equipped

with a particle size distribution sensor and a temperature sensor. Various types of particle

size distribution sensors are available on the market. The measurement device described

in Section 2.4 contains two particle size distribution sensor.

We consider sensors, which measure the number of particles in a certain size class. We

assume that there are k classes. The output space Y is therefore Y = Rk . We assume

that the measurement is linear and can be represented by the map F : L2(0,∞) → Y .

The sensor is assumed to be functional for particles with sizes between ℓmin and ℓmax
and that the sensor does covers the domain [ℓmin, ℓmax ] completely, i.e.:

F (n(ℓ)) = 0 implies n(ℓ) = 0 for all ℓ ∈ [ℓmin, ℓmax ].
The classes are centered around the points ℓ1, ℓ2, ..., ℓk with distance ∆ℓ between the

points, i.e. ∆ℓ = ℓmax−ℓmin
k and ℓi = ℓmin + (i − 1

2)∆ℓ, thus ℓ1 = ℓmin +
∆ℓ
2 , ℓ2 =

ℓmin +
3∆ℓ
2 , ..., ℓk = ℓmax − ∆ℓ

2 . We will assume ∆ℓ > ℓmin, which is reasonable in

practice.

The sensors are modeled by weighting functions wi(ℓ) which indicate the probability that

a particle of size ℓ is classified to be in size class i ∈ {1, .., k} The observation operator
F : L2(0,∞)→ Y , representing such a sensor is given by:

Fn =






f1
...

fk




 n with fin =

∫ ∞

0

wi(ℓ)n(ℓ)dℓ. (3.24)
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L

....

w1(ℓ) wk(ℓ)

ℓmin ℓmaxℓ1 ℓ2 ℓk

(a) Ideal classification

L

....

w1(ℓ) wk(ℓ)

ℓmin ℓmaxℓ1 ℓ2 ℓk

(b) Approximate classification

Figure 3.3: Illustration of a set of possible CSD sensors

We assume that the system can be modeled by the model given by Equations (3.4) and

we equip this model with the following output equation:

y =
[
Fn T

]⊤
=
[
f1n . . . fkn T

]⊤
. (3.25)

We distinguish different types of classification models. The first case is ideal classifi-

cation in which the sensor performs the classification task ideally, i.e. it classifies the

particle to belong in the right class with probability one. This case can be modeled by

introduction of the binary classification functions wi :

wi(ℓ) =

{

1 if ℓ ∈ [ℓi ± ∆ℓ2 ],
0 else,

(3.26)

as depicted in Figure 3.3a.

In the second case, we model sensors which does not classify particles ideally. We call

this approximate classification and assume that a model of the classification process is

available in the form of more general weighting functions wi(ℓ). We assume that the

weights wi are symmetric around the center of the class and non-negative, i.e.

wi(ℓi + ℓ) = wi(ℓi − ℓ) ≥ 0. (3.27)

An example of this situation is shown if Figure 3.3b.

Since the batch crystallization process is nonlinear it is not possible to use the result on

linear infinite dimensional systems to analyze observability. Therefore, we first simplify

the problem setting to the linear advection equation and analyze this setting. Then we

use the results from the linear advection equation to obtain results for the model given

by Equation (3.4).

Observability of advection equation with population sensor

Consider the linear advection system:

∂n

∂t
= −∂n

∂ℓ
(3.28)

with initial condition n(·, 0) = n0 ∈ L2(0,∞) and boundary condition n(0, t) = 0 for
all t ≥ 0. We augment the system with the sensor y = Fn given by (3.24) and study
whether the system is observable with this particle size sensor.
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The solution to the state equation given by:

n(ℓ, t) = [T (t)n0](ℓ) =
{

n0(ℓ− t) if ℓ− t > 0
0 else

(3.29)

Here, T is the semigroup with infinitesimal generator − ∂∂ℓ .
To study observability, we introduce, conform definition 3.1.7, the observability map Cτ
on [0, τ ] of the system (3.28) with sensor (3.29), as the bounded linear map Cτ : X →
L2(0, τ ;R

k) defined by Cτn = FT (·)n. In the situation that the population sensors
performs ideal classification i.e. with weighting functions (3.26), we characterize the

kernel of the observability map by the following theorem.

Theorem 3.2.7

Consider the system (3.28) with sensor (3.29) and weighting functions (3.26) and

observability map Cτn = FT (·)n. If τ ≥ ∆ℓ then

ker Cτ = {n ∈ L2(0,∞)|n(ℓ) = 0 for ℓ < ℓmax}

Proof. We study the kernel of

Cτn = FT (·)n






f1T (·)n
...

fkT (·)n




 .

For the individual components of FT (t)n we have:

fiT (t)n =
∞∫

0

wi(ℓ)T (t)n(ℓ)dℓ =
∞∫

t

wi(ℓ)n(ℓ− t)dℓ.

For the specific choice of weighting functions wi as in (3.26), wi has compact support

in [ℓi − ∆ℓ2 , ℓi + ∆ℓ2 ] and it follows that:

fiT (t)n =
max(t,ℓi+

∆ℓ
2
)

∫

max(t,ℓi− ∆ℓ2 )

n(ℓ− t)dℓ.

Here, we have used the max-operation to implement the discontinuous character of

T (t)n(ℓ). Introduce the coordinate change σ = ℓ− t to the latter equation and rewrite
fiT (t)n as follows:

fiT (t)n =
max(0,ℓi+

∆ℓ
2
−t)

∫

max(0,ℓi− ∆ℓ2 −t)

n(σ)dσ.

We introduce N(ℓ) as the anti-derivative of n(ℓ). In terms of N(ℓ) we can rewrite the

latter equation to:

fiT (t)n = N(max(0, ℓi +
∆ℓ

2
− t))− N(max(0, ℓi −

∆ℓ

2
− t)).
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3.2 Observability of a batch cooling crystallization process 53

We use ℓi = ℓmin + (i − 12)∆ℓ and it follows that:
fiT (t)n = N(max(0, ℓmin + i∆ℓ− t))− N(max(0, ℓmin + (i − 1)∆ℓ− t)).

It follows that fiT (t)n = 0 if and only if N(ℓi + ∆ℓ2 − t) = N(max(0, ℓi − ∆ℓ2 − t)).
We repeat this for all components of FT (t)n . It follows that FT (·)n = 0 if and only if

FT (·)n =











f1T (·)n
f2T (·)n
.
.
.

fkT (·)n











=











N(max(0, ℓmin + ∆ℓ− ·))− N(max(0, ℓmin − ·))
N(max(0, ℓmin + 2∆ℓ− ·))− N(max(0, ℓmin + ∆ℓ− ·))

.

.

.

N(max(0, ℓmin + k∆ℓ− ·))− N(max(0, ℓmin + (k − 1)∆ℓ− ·))











= 0.

It follows that FT (t)n = 0 for all t ≥ 0 if and only if N(max(0, ℓmin + i∆ℓ − t)) =
N(max(0, ℓmin+(i−1)∆ℓ−t)) for i = {1...k} and t ≥ 0. We conclude that distributions
with N(ℓ) = 0 for ℓ ∈ [0, ℓmax ] are distributions such that FT (t)n = 0 for all t > ∆ℓ.
Since n(ℓ) = ∂N

∂ℓ (ℓ, t). This implies that distributions with n(ℓ) = 0 for ℓ ∈ [0, ℓmax ] are
unobservable for any t > ∆ℓ.

From Theorem 3.2.7 it follows that is is sensible to introduce the following decomposition

of L2(0,∞):
L2(0,∞) = L2(0, ℓmax)⊕ L2(ℓmax ,∞).

The subspace L2(0, ℓmax) is the subspace that is approximately observable for τ > ∆ℓ,

the subspace L2(ℓmax ,∞) is the subspace of not distinguishable distributions for this
sensor.

In the situation that the population sensors performs approximate classification i.e. with

weighting functions (3.27), the observability map can be defined analogously. We have

not been able to characterize the kernel of the observability map in this situation for

general weighting functions wi(ℓ). It is conjectured that for positive and symmetric

weighting functions wi with compact support [ℓi − ∆ℓ2 , ℓi + ∆ℓ2 ], the subspace L2(0, ℓmax)
is approximately observable for τ > ∆ℓ. The formal proof is open for future research.

Observability of crystallization process with population sensors

Since the batch crystallization process is nonlinear we have not been able to conduct

a rigorous observability analysis for the process with a population sensor. However,

when the growth rate of the particles is positive and constant in time, the population

balance equation is equivalent to the system (3.28). Therefore, it follows that if the

growth rate of the particles is positive and constant in time, the subspace L2(0, ℓmax) is

approximately observable for some τ > 0. The analysis for the case with a time variant

growth rate has been left for future research.

3.2.3 Observability of the truncated moment model

In Section 2.3 it is explained that it is a very popular in the field of chemical engineering to

analyze the crystallization process with use of the truncated moment model. In this sec-

tion we analyze the observability of the moment model truncated at the fourth moment
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and equipped with a concentration and temperature measurement. For completeness

we repeat the model:

dµ0
dt
= 0, (3.30a)

dµi
dt
= iG(c, T )µi−1, for i = 1, 2, 3 (3.30b)

dT

dt
= α(Tj − T ) (3.30c)

y =

[
c

T

]

=

[
c0 + µ3,0 − µ3

T

]

(3.30d)

where c0 is the initial concentration of the process, µ3,0 =
∫∞
0 ℓ3n0(ℓ)dℓ is the initial

third moment, G(c, T ) is the concentration and temperature dependent growth function

and Tj is the temperature of the reactor jacket and functions as input of the system.

We remark that this model is only representative for the crystallization process when it

is operated in a regime where G(c(t), T (t)) ≥ 0 for all t, that is Tj has to be chosen
such that Tj ∈ UG as defined by Equation (2.18). Moreover, we remark that only the
states where µi > 0 for i = 0, 1, 2, 3 are of physical relevance. We indicate the state

space for which both conditions hold by XG , i.e.

XG =
{
x ∈ R5|x = col(µ0, ..., µ3, T ), G(c, T ) > 0, µi > 0 for i = {0, 1, 2, 3}

}

(3.31)

In order to show that the system is locally observable on the subset x ∈ XG we use
Theorem 3.1.4.

The model can be represented as an input affine nonlinear finite dimensional model, as

follows:

Σmom

{

ẋ = f (x) + g(x)u

y = h(x)
(3.32a)

where:

x =









µ0
µ1
µ2
µ3
T









, u = Tj , f (x) =









0

G(C, T )µ0
2G(C, T )µ1
3G(C, T )µ2
−αT









, g(x) =









0

0

0

0

α









, (3.32b)

h(x) =

[
h1(x)

h2(x)

]

=

[
C

T

]

=

[
C0 + µ3,0 − µ3.

T

]

(3.32c)

And we have the following result for the moment model.

Theorem 3.2.8

Consider the system Σmom given by Equation (3.32). The system is locally observable

for x ∈ XG .
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Proof. We will verify local observability by Theorem 3.1.4. Theorem 3.1.4 states that

we have to show that dim(dO) = 5 for all x ∈ XG . The first, second and third order
Lie derivatives of h with respect to combinations of the vector fields f and g have been

calculated symbolically in order to analyze the dimension of dO(x) for x ∈ XG . The
detailed results on the symbolic calculations are given in Appendix B.2. It follows that

a subspace dO′(x) of dO(x) can be constructed by the following Lie-derivatives:

dO′(x) = span {dh1(x), dh2(x), dLf h1(x), dLf Lf h1(x), dLgLf h1(x), dLf Lf Lf h1(x)}

=span {









0

0

0

1

0









,









0

0

0

0

1









,









0

0

−3G
−3Gcµ2
−3GTµ2









,









0

−2G2
18GGcµ2
∗
∗

















0

0

−3GT
−3GTcµ2
−3GTTµ2









,









−2G3
∗
∗
∗
∗









}

where ∗ indicates a nonzero entry. When we analyze dO′ , it follows that dim(dO′) = 5
for all states x0 ∈ XG such that {µ0, µ1, µ2, µ3} > 0 and G(c, T ) > 0. Therefore,
we may conclude that dim(dO) = 5 for every x0 ∈ XG and that the system is locally
observable on XG .

Theorem3.2.8 implies that the system (3.30a) is locally observable for every x0 ∈ XG .
It is interesting to note that, since the states in the moment model are the moments

µ0, µ1, µ2 and µ3 and the temperature T this result is compatible with the outcome

of the analysis of the population balance model in combination with the concentration

sensor, which is presented in Section 3.2.1.

3.3 Controllability

In this section the controllability of a batch cooling crystallization process will be dis-

cussed. Controllability is the system theoretic concept that indicates whether a set of

states can be reached from a given set of initial states in finite time. The concept is of

interest for batch cooling crystallization processes since it indicates to what extent one

can steer between the states of the processes, in this case the population balance and

the temperature of the reactor. The controllability of a process plays a role in answering

questions like:

• To what extent can one steer a process from an undesired state to a desired state.
• To what extent can one find control methods which reduce the sensitivity of a
process to disturbances.

• What is the compromise on optimization and optimal operation, if the process is
not controllable?

First, an brief introduction about the concept of controllability will be given in this

section. Subsequently, we will study the controllability of batch cooling crystallization

processes.
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b b

b

t1 t2
time

X
Xb

Figure 3.4: Illustration of a controllable system.

3.3.1 Introduction to controllability

It is important to make precise what controllability means. Consider a system Σ given

by the state space evolution:

ẋ = f (x, u), (3.33)

with x(t) ∈ X, y(t) ∈ Y and u(t) ∈ U, and where X,U and Y are Hilbert spaces

and t ∈ T = [0, τ), with τ > 0. Moreover, introduce the space of admissible inputs
U ⊂ UT. We assume that f is sufficiently smooth, in the sense that for every u ∈ U
and every x0 ∈ X the solution x(t, t0, x0, u) of the differential Equation (3.1) with initial
condition x(t0) = x0 and admissible input u ∈ U is uniquely defined on the time interval
T. From [Nijmeijer and Van der Schaft, 1990] we recall the definition of a controllable

system:

Definition 3.3.1 (Controllable system)

The system (3.33) is called controllable if for any two points x1, x2 ∈ X there ex-

ists a finite time τ and an admissible control function u ∈ U : [0, τ ] → U such that

x(τ, 0, x1, u) = x2.

Figure 3.4 shows a graphical representation of the idea that we steer a state x at time

t = t1 to different value at t = t2.

Moreover we will introduce the concept of a reachable set.

Definition 3.3.2 (Reachable set)

Let x1 ∈ X, let τ > 0 and let V be an open neighborhood of x1. Define the reachable
set from x1, RV (x1, τ), as follows:

RV (x1, τ) = {x2 ∈ X|there exists u ∈ U [0,τ ] such that
x(τ, 0, x1, u) = x2 and x(t, 0, x1, u) ∈ V for all t ∈ [0, τ ]}

It follows that for a controllable system, the union of all reachable sets RX(x1, τ) for
τ > 0 for every x1 ∈ X equals the space X, i.e

⋃

τ>0

RX(x1, τ) = X for all x1 ∈ X.
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Similarly, it follows that for a not controllable system, there exists at least one x1 ∈ X
such that the union of all reachable sets RX(x1, τ) for τ > 0 does not equal the space
X, i.e.

⋃

τ>0

RX(x1, τ) 6= X for some x1 ∈ X.

In the next section we will show that for batch crystallization processes there are large

restrictions on the reachable sets in the case where we only consider particle growth

or dissolution. Then this property of not controllable systems is used to show that the

batch crystallization processes is not controllable.

3.3.2 Controllability analysis of batch crystallization processes

In this section the controllability properties of the model of a batch crystallizer, given

by the Equations (2.15) will be analyzed. The controllability of processes which in-

volve population equations has been studied before. In [Semino and Ray, 1995] an

introduction to controllability for balance systems is given. The controllability of an

evaporation continuous crystallizer has been analyzed and reported in [Eek and Bosgra,

2000]. In [Kalbasenka et al., 2005] an analysis of controllability of population balance

in evaporation batch crystallization is given. This analysis is based on the characteristic

curves in solutions of the population balance equation.

In [Zhang et al., 2010] and [Hang et al., 2010] the reachable sets of a population balance

models has been studied in the context of batch crystallization processes. The analysis is

based on the numerical approximation by the method of characteristics. The reachability

of particle size distributions in semi-batch emulsion polymerization has been studied

in [Wang and Doyle III, 2004]. The control of the particle size distributions in continuous

processes by a receding horizon control algorithm has been reported in [Henson, 2003].

The model (2.15) for batch crystallization is a hybrid nonlinear distributed parameter

model. Since systematic methods for analysis of controllability of hybrid nonlinear dis-

tributed parameter systems do not exist, we will restrict our analysis to the case in which

no switching occurs. That is, we will assume that the input, which is the jacket temper-

ature Tj , is either such that the system is supersaturated for all t ≥ 0 or is such that the
system is under saturated for all t ≥ 0. This is represented by Tj ∈ UG with UG defined
by Equation (2.18) and Tj ∈ UD with UD defined by Equation (2.19), respectively. We
will assume that there is no breakage of particles and that the initial condition of the

process is given by n(ℓ, 0) = n0(ℓ). For both operation modes we will characterize the

reachable set.

First, we consider the growth-only scenario as defined in Section 2.2.4. In this case the

process is described by:

∂n

∂t
=− G(c, T )∂n

∂ℓ
, (3.34a)

dT

dt
=α(Tj − T ), (3.34b)
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with boundary condition n(0, t) = B(n(ℓ, t), T (t)), initial conditions n(ℓ, 0) = n0(ℓ),

T (0) = T0 and input Tj ∈ UG , hence the system is supersaturated for all t ≥ 0.
The solution to the system of Equations (3.34) with initial condition (n0, T0) is given

by:

n(ℓ, t) =

{

n0(ℓ− wG(t)), if: ℓ− wG(t) > 0,
B(n(ℓ, t − ℓ

wG(t)
), t − ℓ

wG(t)
), else,

(3.35a)

and

T (t) =e−αtT0 +

∫ t

0

αe−α(t−τ)Tj(τ)dτ (3.35b)

with: wG(t) =
∫ t

0 G(c(τ), T (τ))dτ . Note that since G(c(t), T (t)) ≥ 0 for all t > 0, it
follows that wG(t) ≥ 0, for t ≥ 0.
Moreover, we consider the dissolution-only scenario as defined in Section 2.2.4 and

assume that the process is described by:

∂n

∂t
=D(c, T )

∂n

∂ℓ
, (3.36a)

dT

dt
=α(Tj − T ), (3.36b)

with initial conditions n(ℓ, 0) = n0(ℓ), T (0) = T0 and input Tj ∈ UD, hence the system
is undersaturated for all t ≥ 0.
Let (n0, T0) be an initial condition of (3.36), then the solution to the system is given

by:

n(ℓ, t) =n0(ℓ+ wD(t)) (3.37a)

and

T (t) =e−αtT0 +

∫ t

0

αe−α(t−τ)Tj(τ)dτ (3.37b)

with: wD(t) =
∫ t

0 D(c(τ), T (τ))dτ . Note that since D(c(t), T (t)) ≥ 0 for all t > 0, it
follows that wD(t) ≥ 0, for t ≥ 0.
For the systems (3.34) and (3.36) we will characterize the reachable sets from the initial

condition (n0, T0).

Let (n0, T0) be an initial condition of (3.34), let VG be a neighborhood of (n0, T0) and

consider the reachable set RVG((n0, T0), τ) for τ > 0 defined by:

RVGG ((n0, T0), τ) =
{

(n, T ) ∈ L2(L,R)×R|∃Tj ∈ UGand for all t ∈ T (3.34) holds
}

.

Let VD be a neighborhood of (n0, T0) and consider the reachable set R
VD
D ((n0, T0), τ)

defined by:

RVDD ((n0, T0), τ) =
{

(n, T ) ∈ L2(L,R)×R|∃Tj ∈ UGand for all τ ∈ T (3.36) holds
}

.
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With use of the explicit solutions (3.35) the reachable set from (n0, T0) can be charac-

terized by:

RVGG ((n0, T0), t) =
{

(n(·, t), T (t)) ∈L2(L,R)× R
∣
∣
∣∃Tj ∈ UG ,

n(ℓ, t) =

{

n0(ℓ− w(t)) if: ℓ− wG(t) > 0
B(n(ℓ, t − ℓ

wG(t)
), t − ℓ

wG(t)
) else.

and

T (t) = e−αtT0 +

∫ t

0

αe−α(t−τ)Tj(τ)dτ
}

with: wG(t) =
∫ t

0 G(c(τ), T (τ))dτ .

With use of the explicit solutions (3.37) from (n0, T0) can be characterized by:

RVDD ((n0, T0), t) =
{

(n(·, t), T (t)) ∈ L2(L,R)× R
∣
∣
∣∃Tj ∈ UG ,

n(ℓ, t) = n0(ℓ+ wD(t))

and

T (t) = e−αtT0 +

∫ t

0

αe−α(t−τ)Tj(τ)dτ
}

with: wD(t) =
∫ t

0 D(c(τ), T (τ))dτ .

It is important to recognize that the reachable set depends on the initial concentration c0
and the initial condition of the process. From the reachable set RVGG it follows that from

the initial conditions (n0, T0) it is not possible to reach a distribution n1 that cannot

be represented as n0(ℓ − γ) with a constant γ > 0. As such, we conclude that the
system (3.34) is not controllable with the admissible set of inputs Tj ∈ UVG . Similarly,
from the reachable set RVDG it follows that from the initial conditions (n0, T0) it is not

possible to reach a distribution n1 that cannot be represented as n0(ℓ + γ) with an

constant γ > 0. As such, we conclude that the system (3.37) is not controllable with

the admissible set of inputs Tj ∈ UVG .

We conclude that if we do assume that the system does not switch between the growth

and dissolution mode during operation, the batch crystallization process is not control-

lable. We cannot draw a conclusion about the controllability of the batch crystallization

process when we pose not assumption on the switching behavior. However, it is known

that controller design for switching systems is difficult. Therefore, although that the

system might be controllable by exploitation of the switching behavior, the design of a

controller that can take this switching behavior into account will be challenging.

The analysis shows that, under the assumption that the given model holds, it is not

possible to steer the process from an arbitrary distribution to an arbitrary different

distribution without switching between growth and dissolution.
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3.4 Conclusions and Recommendations

Conclusions

In this chapter the concepts observability and controllability have been introduced in the

context of a nonlinear system with infinite dimensional state spaces. The definitions have

been applied to study the observability and controllability of batch cooling crystallization

processes which can be modeled with the model 2.15. Since the process model is hybrid,

nonlinear and infinite dimensional, we have restricted the analysis to operation in regimes

where the process is either supersaturated or undersaturated.

In the first part of the chapter we have provided an analysis of the observability proper-

ties of batch crystallization processes in the presence of a concentration measurement

and in the presence of a population size. We have restricted the analysis to operation

regimes in which the system is supersaturated and only growth takes place, in order

to limit the complexity of the problems. From the analysis of the observability of the

process in presence of a concentration sensor, we draw the conclusion that there exist

populations that generate equal measurements. Therefore, we conclude that the system

is not observable. We have characterized states which are indistinguishable in terms of

the moments of the states and provide a constructive algorithm to generate examples

of indistinguishable states. From the analysis it follows that if the process is equipped

with measurements of the k-th moment of the number density distribution, the mo-

ments µ0, ..., µk of the number density distribution are observable, but the moments

µk+1, µk+2, ... are not observable. Moreover, the analysis of the observability properties

shows that if one is interested in only the first moments µ0, µ1, µ2, µ3 of the distribution

there is, from observability point of view, no need to install a population sensor in the

process. It must be noted that in the process model and the analysis we assume that the

initial concentration c0 is known. This is a result of the assumption that there is no mass

exchange between the process and the environment. The outcome of the observability

analysis depends on this assumption.

For the analysis of the observability of the process in presence of a population size sensor,

we have introduced a model of a population size sensor with ideal classification and an

model for a population size sensor with approximate classification. The observability of

the process in combination with a population size sensor with ideal classification has been

analyzed in case of a constant growth rate has been analyzed. It follow that the process

is approximately observable in this situation. In case the growth rate is not constant the

analysis cannot be completed completely and approximate observability is conjectured.

The analysis of the observability of the process with an population size sensor with

approximate classification could be complete due the mathematical complexity and is

left for future research.

In the second part of the chapter we have provided an analysis of the controllability

properties of batch crystallization processes. In order to limit the complexity of the

analysis, we have restricted the analysis to operation regimes in which the system is

only supersaturated or only undersaturated. The analysis shows that the process is not

controllable, when the process is restricted to these operation modes. We cannot draw
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conclusions on operation modes that cover supersaturation as well as undersaturation.

3.4.1 Recommendations

In the analysis of the observability we have only analyzed whether there exists a pair

of two states that generate exactly the same measurement signal to draw conclusions

on observability. However, it might be that a pair of two states exist that generates

almost the same measurement signal. Then, from mathematical point of view the

system is approximately observable, but in practice the reconstruction of the states

might be cumbersome. It would be interesting to analyze if it is possible to extend

the analysis of exact observability in this direction. The analysis of the controllability

properties shows that, under the assumption that the given model holds, it is not possible

to steer the process from an arbitrary distribution to an arbitrary different distribution

without switching between growth and dissolution. Therefore, when one desires to have

influence one the final crystal size distribution, one needs to explore possibilities to make

the process controllable.
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CHAPTER 4

Control Of Batch Cooling Crystallization By Feedback

Linearization

Abstract

In this chapter a method for control of the supersaturation level in a batch

cooling crystallizer is presented and analyzed. The method is based on feed-

back linearization. The sensitivity of the control method to model uncer-

tainties and measurement disturbances has been analyzed and is supported

by an simulation study. The methods has been evaluated in an experimental

environment on an industrial scale process and show the potential of the

presented approach.

In order to produce crystalline products which meet high quality standards, it is of

large importance to enable the reproducible operation of batch crystallization processes.

One of the necessities for reproducible operation is the possibility to create reproducible

operating conditions. In this chapter a method which enables the creation of reproducible

operating conditions is presented. For reproducible operation of a crystallization process

the number of particles in a batch and the driving force during the batch are of high

importance. In this chapter the method of feedback linearization will be introduced.

Based on the method of feedback linearization, a control scheme to control the super

saturation level in a crystallizer is developed. Beside the development of the method,

we analyze in this chapter the applicability of the method of feedback linearization in an

industrial environment. The control law that will be presented is an explicit control law,

which can be combined with linear control techniques to control the process. In contrast

63
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64 Control Of Batch Cooling Crystallization By Feedback Linearization 4.1

to online-optimization based methods such as implicit MPC, the control law is explicit,

which is nice from analysis point of view. The theoretical analysis of the method has

been published in [Jansen, 2011] and [Vissers et al., 2011b]. The experimental results

have been published in [Vissers et al., 2011a].

The idea to control the supersaturation in a crystallization process is not completely new.

Control of supersaturation by use of PID control and bang-bang control can be found

in [Alatalo, 2010] and [Khan et al., 2011]. An application of feedback linearization

on batch cooling crystallization processes can be found in [Corrioua and Rohani, 2002]

and [Xie et al., 2002]. The method of feedback linearization is closely related to the

concept of differentially flatness, used in the analysis of nonlinear systems. An analysis of

differentially flatness of batch cooling crystallization processes and controller synthesis

by use of this property can be found in [Vollmer, 2004].

4.1 Feedback linearization

In this section a method for linearization of the input output dynamics of a process

by feedback, known as feedback linearization will be introduced. The method of feed-

back linearization is well described in literature, for instance see [Khalil, 1992, Chapter

13], [Sastry, 1999, Chapter 9], [Nijmeijer and Van der Schaft, 1990, Chapter 6].

Input-output feedback linearization considers a method to linearize the input-output

behavior of a system, by interconnection of the system with a state feedback controller

(commonly called state feedback law) which has been designed in such a way that

the input-output dynamics of the interconnected system can be described by a linear

mapping.

This is reflected in the following definition:

Definition 4.1.1

System ẋ = f (x) + g(x)u with y = h(x) is called input/output linearizable if a state

dependent control law u = Ψ(x, v) exists, which accommodates a linear mapping v 7→ y .

State feedback linearization can be used to linearize a system by feedback, such that

the resulting closed loop system can be controlled by linear control method such as PID

control, H∞ control, or model predictive control (MPC).
In Figure 4.1 a graphical representation of the state feedback setup is shown.

Ψ(u, v) P

x

uv y

Figure 4.1: State feedback setup

The concept of feedback linearization has been researched quite extensively. We present

the some important results in the context of single input single output systems (SISO
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4.1 Feedback linearization 65

systems). The Lie derivative is a mathematical tool that appears to be quite very useful

for the analysis of of nonlinear systems. An introduction is given in Appendix A.1.

We introduce the concept of relative degree of a system by the following definition:

Definition 4.1.2

System ẋ = f (x)+g(x)u with y = h(x) is said to have relative degree r if the following

two condition hold:

LgL
k
f h(x) = 0 for k = 0, . . . , r − 2 (4.1a)

LgL
r−1
f h(x) 6= 0 (4.1b)

The relative degree of the system can be considered as the number of times we have

to differentiate the output y before the input u appears explicitly and appears to be

useful to characterize if a system is feedback linearizable. The following theorem gives

a necessary and sufficient condition for linearizablility of a system by feedback.

Theorem 4.1.1

The system ẋ = f (x) + g(x)u, y = h(x) is input/output linearizable if and only if the

system has relative degree r with 0 < r <∞. The proof is given in [Kravaris and Chung,
1987].

A general method to synthesize a state feedback law that renders input-output dynamics

of the interconnected system linear is given by the following theorem.

Theorem 4.1.2

Consider an input/output linearizable dynamical system with relative degree r that as-

sumes the form,

ẋ1 = f1(x), (4.2a)

ẋ2 = f2(x) + g(x)u, (4.2b)

y = h(x), (4.2c)

x = [x1, x2]
⊤, f = [f1, f2]

⊤.

Define a state feedback law

Ψ(x, v) :=
v −∑rk=0 βkLkf h(x)
βrLgL

r−1
f h(x)

, (4.3)

and the coordinate transformation

[
η

ζ

]

=








η

ζ1
...

ζr







=








x1
L0f h(x)
...

Lr−1f h(x)







. (4.4)

Then: By defining u = Ψ(x, v) in the system from Equation (4.2), the input/output

mapping, v 7→ y , is a linear system of the form,

ζ̇ = Aζ + Bv, (4.5a)

y = Cζ. (4.5b)
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Proof. From the definition of the Lie derivative (A.1), and definition (4.1) it follows

that for the system 4.2 we have,

dy

dt
=
∂h

∂x

∂x

∂t
= 〈dxh, f (x) + g(x)〉 = Lf h(x) + Lgh(x)u = Lf h(x),

d2y

dt2
= 〈dxLf h(x), f (x) + g(x)u〉 = L2f h(x) + LgLf h(x)u = L2f h(x).

In general to follows that:

dky

dtk
= 〈dxLk−1f h(x), f (x) + g(x)u〉,

= Lkf h(x) + LgL
k−1
f h(x)u = Lkf h(x) for k = 0, . . . , r − 1,

d ry

dt r
= Lrf h(x) + LgL

r−1
f h(x)u.

When the feedback control law u = Ψ(x, v) from Equation (4.3) has been applied, the

closed loop system can be described by,

dky

dtk
= Lkf h(x) k = 1, . . . , r − 1,

d ry

dt r
= Lrf h(x) + LgL

r−1
f h(x)u,

=
v

βr
−
r−1∑

k=0

βk
βr
Lkf h(x),

and can be re-written in matrix form as,










dy
dt
d2y
dt2

...

d r y
dtr










=











0 1 0 . . . 0

0 0 1 . . . 0
...

...
. . . 0

...
... 0 1

−β0
βr

−β1
βr

−β2
βr

. . . −βr−1
βr





















y
dy
dt
...
...

d r−1y
dtr−1











+











0

0
...
...
1
βr











v . (4.6)

This a system of the form,

ζ̇ = Aζ + Bv, (4.7a)

y = Cζ, (4.7b)

with ζ = [ζ1, . . . , ζr ]
⊤ = [L0f h(x), . . . , L

r−1
f h(x)]⊤.

Corollary 4.1.3

The input/output behavior of the closed loop system is governed by,

r∑

k=0

βk
dky

dtk
= v . (4.8)
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4.1 Feedback linearization 67

The transfer function is given by,

Gl(s) =
y(s)

v(s)
=

1

βr s r + βr−1s r−1 + · · ·+ β1s + β0
, (4.9)

showing that the coefficients β(·) define the poles of the feedback linearized system
Gl(s).

In practice, the model parameters in the Lie derivatives of the state feedback law Ψ(x, v)

will never exactly match the real process parameters. Therefore, it is usefull to study

the situation where some parameters are considered to be uncertain. Define parameter

vector θ ∈ Rp, which contains p uncertain parameters and which is contained by the
set of possible parameter values Θ ⊂ Rp. We use θn ∈ Rp to represent the nominal
parameter vector of the uncertain parameters.

Consider the state dynamics in the system from Equation (4.2) to be uncertain, i.e.:

f (x, θ) = f (x, θn) + fδ(x),

= fn(x) + fδ(x).

The resulting state feedback closed-loop system can be approximated by a linear system

with additive uncertainty, according to the following theorem based on [Sampath et al.,

2002].

Theorem 4.1.4

Consider an input/output linearizable dynamical system under additive uncertainty and

relative degree r which is independent of θ:

ẋ1 = fn1(x) + fδ1(x), (4.10a)

ẋ2 = fn2(x) + fδ2(x) + g(x)u, (4.10b)

y = h(x), (4.10c)

x = [x1, x2]
⊤,

fn = [fn1, fn2]
⊤, fδ = [fδ1, fδ2]

⊤.

Define the nominal state feedback law based on the nominal state equations,

Ψn(x, v) :=
v −∑rk=0 βkLkfnh(x)
βrLgL

r−1
fn
h(x)

, (4.11)

and the nominal coordinate transformation

[
η

ξ

]

=








η

ξ1
...

ξr







=








x1
L0fnh(x)
...

Lr−1fn h(x)







. (4.12)

Then: By defining u = Ψn(x, v) in the system from Equation (4.10), the input/output

mapping, v 7→ y , can be written as an uncertain linear system of the form,

ξ̇ = A(θ)ξ + Bv +Wdd, (4.13a)

y = Cξ, (4.13b)
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where Wd is a linear time invariant weight, |d | ≤ 1 represents a perturbation and A(θ)
represents the uncertain state matrix.

Proof. Applying the nominal coordinate transformation (4.12) on the uncertain sys-

tem (4.10) results in the following representation,

η̇ = fn1(η) + fδ1(η)

dξk
dt
= 〈dxLk−1fn h, fn + fδ + gu〉 = Lkfnh + LfδLk−1fn h k = 1, . . . , r − 1, (4.14)

dξr
dt
= 〈dxLr−1fn h, fn + fδ + gu〉 = Lrfnh + LfδLk−1fn h + LgL

r−1
fn
h(x)u,

When we apply the nominal feedback law u = Ψn(x, v) (4.11), the closed-loop system

can be described by,

dξk
dt
= Lkfnh + LfδL

k−1
fn

h = ξk+1 + LfδL
k−1
fn

h, k = 1, . . . , r − 1 (4.15)

dξr
dt
= Lrfnh + LfδL

r−1
fn
h +

1

βr

[

v −
r∑

k=0

βkL
k
fnh(x)

]

=
v

βr
−
r−1∑

k=0

βk
βr
ξk+1 + LfδL

r−1
fn
h, (4.16)

where we have used ξk = Lk−1fn h. For convenience, this system of equations can be

written in matrix form as follows:









dξ1
dt
dξ2
dt
...

dξr
dt










=











0 1 0 . . . 0

0 0 1 . . . 0
...

...
. . . 0

...
... 0 1

−β0
βr

−β1
βr

−β2
βr

. . . −βr−1
βr





















ξ1
ξ2
...
...

ξr











+











0

0
...
...
1
βr











v +











∆1
∆2
...
...

∆r











y =
[
1 0 . . . 0

]
ξ,

where we have introduced ∆k(η, ξ, θ) = LfδL
k−1
fn

h(x). Contribution from uncertain

parameter ∆k(η, ξ, θ) = LfδL
k−1
fn

h(x) depends on η, ξ and θ. To isolate the ξ dependent

part, each ∆k can be written as,

∆k =
∂∆k
∂ξ1

ξ1 +
∂∆k
∂ξ2

ξ2 + · · ·+
∂∆k
∂ξr

ξr + ∆̃k(η, ξ, θ)

= δk1(θ)ξ1 + δk2(θ)ξ2 + · · ·+ δkr (θ)ξr + ∆̃k(η, ξ, θ)
where ∆̃k contains all parts of ∆k which are not linearly dependent of ξ and is treated

as a disturbance term. The closed-loop system can be re-written in matrix form:







dξ1
dt
dξ2
dt

...
dξr
dt







=









δ11 1+δ12 δ13 ... δ1r
δ21 δ22 1+δ23 ... δ2r
...

...
...

...
...

...
... 1+δ(r−1)r

δr1− β0βr δr2−
β1
βr
δr3− β2βr ... δr r−

βr−1
βr
















ξ1
ξ2

...

...
ξr







+








0
0
...
...
1
βr







v +









∆̃1(η,ξ,θ)

∆̃2(η,ξ,θ)

...

...
∆̃r (η,ξ,θ)









,

y = [ 1 0 ... 0 ] ξ,
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4.2 Supersaturation control by feedback linearization 69

where the δi j are dependent on θ.

For this system a uncertainty model with structured and unstructured uncertainties can

be found. This uncertainty model has the space representation,

ξ̇ = A(θ)ξ + Bv +Wdd,

y = Cξ.

where d ∈ Rn+p, ||d || ≤ 1, and the matrix Wd ∈ Rq×r , which is such that
Wd = col(wd1, ..., wdr ) with w

⊤
d1 ∈ Rn+p and

|∆̃i(η, ξ, θ)| ≤wdid for all [η, ξ] ∈ X, θ ∈ Θ and for all ||d || ≤ 1.

With this system representation it is possible to use linear robust control theory for the

design of an H∞-controller.

4.2 Supersaturation control by feedback linearization

In this section the method of feedback linearization will be employed to derive a control

strategy for control of the supersaturation of a batch cooling crystallization process. As

mentioned in Section 2.2.3 it is generally assumed that supersaturation is the driving

force for crystal growth and of strong influence on nucleation rate. Therefore it is

reasonable to expect that by control of the supersaturation in a process in a manner

robust to disturbances and model mismatch, the crystal growth and nucleation rate

will behave predictable. In this section we start with the introduction of a process

model for a batch cooling crystallizer, based on the model introduced in Section 2.3.1.

Subsequently we derive the control law for feedback linearization, the disturbance models

for robust controller design and we present the design of a H∞ controller and a linear
MPC controller for the feedback linearized system. We analyze the effectiveness of the

feedback linearization approach by analysis of the tracking performance and disturbance

sensitivity of the controlled feedback linearized system.

4.2.1 Feedback Linearization of the nominal moment model

The non-linear model, introduced in Section 2.3.1, can be written as,

ẋ = f (x) + g(x)u,

y = h(x).
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where the jacket temperature is defined as the system input u = Tj and,

f (x) =

















B(µ3, T )

G(µ3, T )µ0
2G(µ3, T )µ1
3G(µ3, T )µ2

− ρckv

ρcp(µ3)
∆Hc(µ3)3G(µ3, T )µ2 −

UAc

ρV cp(µ3)
T

















g(x) =

















0

0

0

0
UAc

ρV cp(µ3)

















x =
[

µ0 µ1 µ2 µ3 T
]⊤

h(x) =Sa(x)

We assume that the absolute supersaturation Sa(x) and concentration c(t) can be

calculated from the states by the following relations:

sa(x) =c(µ3)− csat(T ) (4.17)

c(t) =c0 + ρckvh(µ3,0 − µ3(t)) with c(0) = c0. (4.18)

Here, the initial solute concentration is represented by c0, ρc represents the crystal

density, h is a conversion factor equal to the volume of slurry1 per mass of solvent, and

µ3,0 = µ3(0).

It is assumed that the initial conditions are defined by,

T (0) = T0,

µi(0) = µi ,Seed =

∫ ∞

0

Li fSeed(L)dL, i = 0, . . . , 3

where fseed(L) represents the CSD at initial time.

The crystal nucleation (birth rate) and crystal growth are assumed to be given by the

following empirical expressions, which are based on the relative supersaturation,

B(t) = kbkvSr (t)
bµ3(t), (4.19)

G(t) = kgSr (t)
g. (4.20)

Here, kb, kg, b, g, and kv are defined as respectively, the nucleation coefficient, growth

coefficient, nucleation exponent, growth exponent, and the volume shape factor. The

birth rate approximates the effects of secondary nucleation.

We assume that the saturation curve, temperature dependent enthalpy of crystallization

and concentration dependent heat capacity are known. Typically this kind of data is

obtained from quadratic fits of polynomials on measured data and we assume that:

csat(T ) =A0 + A1T + A2T
2, (4.21)

∆Hc(c) =B0 + B1c + B2c
2, (4.22)

cp(c) =C0 + C1

(
c

1 + c

)

+ C2

(
c

1 + c

)2

. (4.23)

For simulation we have setup a simulation scenario of crystallization of KNO3 in a

crystallizer with a volume of 1m3. The physical properties of KNO3 have been taken

from [Matthews et al., 1996].

1The entire mass of material in the reactor, comprising solvent, solute and solid crystals.
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4.2 Supersaturation control by feedback linearization 71

Table 4.1: Data used for setup of simulation scenario with a crystallizer with a volume

of 1m3.

Simulation parameters Symbol Value Unit

Vessel volume V 1 m3

Heat transfer coefficient · area UAc 54521 J
min◦C

Sample time Ts 1/6 min

Initial conditions Symbol Value Unit

Initial vessel temperature T0 57.9894 ◦C

Initial concentration c0 1.0483 g(KNO3)
g(H2O)

Initial moments µ0(0) 9.75 · 107 #
V

µ1(0) 3.9 · 104 m
V

µ2(0) 15.6 m2

V

µ3(0) 6.2 · 10−3 m3

V

Initial mass seed crystals M0 13176 g

Initial CSD nseed(L, 0) npe
−(ℓ−ℓ̄0)2
2σ2 #

CSD peak value np 7.78 · 1012 #

Mean crystal length ℓ0 400 µm

Crystal length standard deviation σ 5 µm

The first time-derivative of the output depends explicitly on the input u, which makes

the relative order r = 1. By application of Theorem 4.1.1 it follows that the system is

feedback linearizable. A state feedback law can be found by use of Theorem 4.1.2. As

done in Equation (4.3), a feedback law is defined as follows:

u =Ψ(x, v) =
v − β0h(x)− β1Lf h(x)

β1Lgh(x)
, (4.24)

with

Lf h(x) =
[

∂h
∂µ0

∂h
∂µ1

∂h
∂µ2

∂h
∂µ3

∂h
∂T

]

f (x) =
∂h(µ3, T )

∂µ3
f4 +

∂h(µ3, T )

∂T
f5

=− 3ρckvhG(µ3, T )µ2 +
∂Csat

∂T
(T )

[

ρckv

ρcp(µ3)
∆Hc(µ3)3G(µ3, T )µ2 +

UAc

ρV cp(µ3)
T

]

Lgh(x) =
[

∂h
∂µ0

∂h
∂µ1

∂h
∂µ2

∂h
∂µ3

∂h
∂T

]

g(x) =
∂h(µ3, T )

∂T
g5(µ3)

=− ∂Csat(T )
∂T

UAc

ρV cp(µ3)

4.2.2 Derivation of a uncertainty model for robust control

Parametric uncertainty is considered for the growth rate parameters in Equation (4.20).

That is, we assume

kg =kgn +Wkgδkg, (4.25)

g =gn +Wgδg, (4.26)
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where (kgn , gn) ∈ Θ ⊂ R2 is a vector of nominal parameters, and δi is a real valued
uncertainty with |δi | ≤ 1. Wkg and Wg represent weights to define the uncertainty
bound. This implies that the growth rate can be described as a nominal and disturbed

part according to,

G(µ3, T ) =kgS
g
a = (kgn +Wkgδkg)S

(gn+Wgδg)
a ,

=(kgn +Wkgδkg) (S
gn
a + ∆S) ,

= kgnS
gn
a

︸ ︷︷ ︸

Gn(µ3,T )

+ kgn∆S +Wkgδkg (S
gn
a + ∆S)

︸ ︷︷ ︸

Gδ(µ3,T )

, (4.27)

where ∆S := S
(gn+Wgδg)
a − Sgna . With Gn and Gδ as in Equation (4.27), an uncertain

model of the form (4.10) is defined by,

ẋ =fn(x) + fδ(x) + g(x)u (4.28)

y =c(x)− csat(x) (4.29)

where,

fn(x) =

















B(µ3, T )

Gn(µ3, T )µ0
2Gn(µ3, T )µ1
3Gn(µ3, T )µ2

−3ρckv
ρ

∆Hc(µ3)Gn(µ3, T )µ2

cp(µ3)
− UAc

ρV cp(µ3)
T

















g(x) =

















0

0

0

0
UAc

ρV cp(µ3)

















fδ(x) =

















0

Gδ(µ3, T )µ0
2Gδ(µ3, T )µ1
3Gδ(µ3, T )µ2

−3ρckv
ρ

∆Hc(µ3)Gδ(µ3, T )µ2

cp(µ3)

















x =

[

xa
xb

]

=













µ0
µ1
µ2
µ3
T













The relative order of the system is 1. With a nominal state feedback law as in Equa-

tion (4.24) applied to the system and a nominal coordinate transformation defined as

[η, ξ1]
⊤ = [xa, h(xb)]⊤, a linear system representation is written as in Equation (4.15)

and (4.16).

ξ̇1 = −
β0
β1
ξ1 +

1

β1
v + ∆1(xb)d (4.30a)

y = ξ1 (4.30b)

Where,

∆1(xb) =Lf δh(xb) =
∂h(xb)

∂x4
fδ4 +

∂h(xb)

∂x5
fδ5,

=3ρckvGδµ2

(

(A1 + 2A2T )
∆Hc
ρcp

− h
)

. (4.31)

As ∆1(xb) is state dependent, an upper bound is defined by,

Wd := max
xb∈Xr

|∆1(xb)|, (4.32)

which represents the maximum value of ∆1 over the relevant set of states Xr .
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Table 4.2: Parameter uncertainty.

Parameter Nominal Interval Unit

g 1.32 ±0.03 -

loge(kg) 8.849 ±0.112 10−6 mmin

With the final controller the supersaturation will be bounded. Together with the vessel

temperature range, this defines a representable set of states that might be encountered

during normal process operation. Let

Xr :={xb =
[
µ2
µ3
T

]

| 0 ≤ Sa(µ3, T ) ≤ S̄a, T ≤ T ≤ T̄}. (4.33)

Here µ2 = (
µ3
µ0init
)2/3µ0init is used to estimate the second moment. Figure 4.2 shows

the state space representation of the state feedback linearized system where, A = −β0β1 ,
B = 1

β1
and C = 1. Wd is multiplied by B

−1 to write the system as a nominal plant Pn
with a scaled input disturbance.

1

s
B C

A

B−1Wd

v

d

ξ̇ ξ y

Pn

Figure 4.2: Linear representation of the state feedback system as a nominal plant with

an input disturbance term

4.2.3 Supersaturation State Feedback Analysis

Simulations are carried out to investigate the effects of parameter mismatch and mea-

surement noise on the linearization performance of the supersaturation state feedback

law in Equation (4.24). A desired supersaturation level of Sd = 2 · 10−3 is defined to be
maintained by the linearized system. The dc-gain of the representing linear system Gl(s)

as in Equation (4.9) is given by β−10 . Setting v = β0 · Sd accommodates an output Sd .

Parameter Mismatch in Growth Kinetics

For this simulation, the growth rate parameters, kg and g, are assumed to deviate from

the nominal parameter values. The nominal values are adopted from [Matthews et al.,

1996] and summarized in Appendix E. The estimation confidence region for the param-

eters is used as a bound on the parameter variation, see table 4.2. The state feed-

back law Ψ(x, v) depends on the nominal physical parameters of the crystallizer model,
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θn := [kgn , gn]. The real process parameter values are represented by θ := [kg, g], where

θn 6= θ due to parameter mismatch.
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Figure 4.3: Response of the system in three simulations to evaluate the effect of param-

eter mismatch in growth exponent g. The simulation result shows that the sensitivity

to mismatch in g is dependent on the location of the closed loop pole. The sensitivity

decreases when the close loop pole moves from the origin.
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Figure 4.4: Response of the system in three simulations to evaluate the effect of pa-

rameter mismatch in growth factor kg. The simulation result shows that the sensitivity

to mismatch in kg is dependent on the location of the closed loop pole. The sensitivity

decreases when the close loop pole moves from the origin.

Figures 4.3 and 4.4 show that parameter mismatch leads to inaccurate linearization.

When the real growth rate is smaller than the nominal growth rate in the state feedback

law, the response becomes unstable, continuously raising the growth rate in an expo-

nential manner. A larger actual growth rate results in a more conservative feedback law.

The closed loop pole, defined by β0 and β1, influences how fast the system becomes

unstable. With the closed loop pole further in the left half plane, the linearization is less

sensitive for parameter variations than for the pole close to the origin.

We can conclude that the linearization performance degrades for parameter mismatch

in the growth kinetics. However, this can be compensated by extra feedback control

on the supersaturation output, in combination with the proper choice of parameters

(gn, kgn , β0, β1).
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Temperature Measurement Noise

Noise will be present on the available measurements, used in the state feedback lin-

earization function. Noise, which is represented by δx in Figure 4.5, is added to the

temperature measurement to simulate the effects. The measurement noise δx is mod-

eled by white noise, σn
2 = 0.01◦C.

u
Ψ(x̃, v) P(u, θ)

v = β0Sd y = S

x̃ = x+ δx

x
δx

+

Figure 4.5: State Feedback analysis setup.
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Figure 4.6: Response of the system in state feedback configuration to evaluate the

effect temperature measurement noise on the controlled jacket temperature and the

resulting supersaturation. The four simulations show the influence of the parameter β0β1
and the contributions of the components α0 and α1 (defined in Equation (4.34)) in the

output signal of the feedback controller.

From Figure 4.6 is seen that the average jacket temperature is very similar to the op-

timal temperature profile for a constant supersaturation as proposed in [Miller, 1993].

Additionally, Figure 4.6 shows some remarkable results. The closed loop pole influences

the noise sensitivity which is changing during the process. For some regions, measure-
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ment noise is completely suppressed, while amplified for other parts during the batch.

The source can be found in the construction of the state feedback law. Recall the

state feedback law from Equation (4.24), which can be rewritten in terms of φ(x) and

α(x) = β0
β1
α0(x) + α1(x) by,

u =
1

β1

1

Lgh(x)
︸ ︷︷ ︸

φ(x)

v +
β0
β1

−h(x)
Lgh(x)
︸ ︷︷ ︸

α0(x)

+
β1
β1

−Lfnh(x)
Lgh(x)
︸ ︷︷ ︸

α1(x)

. (4.34)

Temperature dependency in the φ(x) term is small and can be neglected for this analysis.

The influence of small differences in T can be examined by a first order Taylor expansion

for α(x) around x∗,

α(x)|(x≈x∗) =α(x∗) +
∂α(x)

∂T
(x − x∗) +O2 (4.35)

where

∂α(x)

∂T
(x − x∗) =

(
β0
β1

∂α0(x)

∂T
+
∂α1(x)

∂T

)

(x − x∗). (4.36)

From this can be seen that changes in α(x) due to temperature fluctuations are reduced

to zero when,

β0
β1
= −∂α1(x)

∂T

(
∂α0(x)

∂T

)−1
. (4.37)

This can be confirmed from Figure 4.6, where the amplitude of fluctuations in α0(x) is

scaled by β0β1 and for some part during the batch cancels the fluctuations in α1(x).

4.2.4 Advanced Linear Controller design

In the previous section it has been shown that state feedback linearization can be used

to linearize the input-output mapping for the absolute supersaturation of the crystallizer

model. Two advanced linear controllers are designed, based on the linear system rep-

resentation to track a desired supersaturation trajectory Sd . First, a robust controller

is designed according to the H∞ framework. Second, a Model Predictive Controller is
designed, making predictions based on the nominal linear system representation.

Sd ALC SFL P
v Tj

x

Sae

Figure 4.7: Complete control setup, Advanced Linear Control (ALC) combined with

State Feedback Linearization (SFL).
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H∞ Controller Design

A weighted sensitivity setup as in Figure 4.8 is used to design a robust controller. H∞-
synthesis is used to find a controller K∞ that optimizes the infinity norm of the closed
loop transfer function T ,

T =





Td→ṽd Tr→ṽd
Td→ỹ Tr→ỹ
Td→ẽ Tr→ẽ



 =





WvdSB
−1Wd WvdRWr

WyTB−1Wd WyTWr
WeTB−1Wd WeSWr



 (4.38)

The sensitivity, complementary sensitivity and control sensitivity are defined respectively

as, S = (I+PnK∞)−1, T = Pn(I+PnK∞)−1 and R = K∞(I+PnK∞)−1. The weights are
chosen to balance the controller performance and robustness. The input filter Wvd(s)

is high pass to penalize high frequency input signals. The filter on the tracking error We
is low pass to focus control on low frequency tracking errors. The output filter Wy is

set to 0 to focus on sensitivity shaping. The filters are defined as,

Wr = 1, Wd = 0.1, Wvd =
15s + 10

s + 15
, We =

0.4s + 0.4

s + 0.002
.

ṽd

d

P̃p

B−1Wd

Wr

Wvd

Wy

We

K
∞

r

v

ỹ

ẽ

e

(v + d̃) y

r̃

+

+

−

+
Pn

Figure 4.8: Setup for H∞-synthesis.

The settings for the H∞-controller for β0 = 1 and β1 = 0.5 are given by,

A = −2, B = 2, C = 1, K∞ ∈ R3, ‖T ‖∞ ≤ 0.9487.

This concludes the design of a robust controller for the state feedback linearized system

and accounts for parameter uncertainty in the growth parameters. Simulations results

are presented in Section 4.2.5.
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Model Predictive Controller Design

A MPC-controller is designed to obtain a control input which minimizes a quadratic cost

criterion based on predictions from the nominal linearized model. The nominal linear

model Pn, as in Figure 4.2, is discretized using the zero order hold method. The discrete-

time state space model is given by Pd = [Ad , Bd , Cd , Dd ]. To create a cost criterion as

a function of input changes ∆v(k), the discrete-time state space model is transformed

into an Incremental Input Output (IIO) model [van den Boom and Stoorvogel, 2010].

[

y(k)
∆ξ(k+1)

]

=

[

I Cd
0 Ad

] [

y(k−1)
∆ξ(k)

]

+

[

0

Bd

]

∆v(k)

y(k) =
[

I Cd
]

[

y(k−1)
∆ξ(k)

]

which can be written as,

ξi(k) =Aiξi(k−1) + Bi∆v(k), (4.39a)

y(k) =Ciξi(k−1). (4.39b)

The quadratic cost criterion comprises the predicted tracking error e(k), and future

input changes ∆v(k). To make the MPC-controller less dependent of the state feedback

parameters β1 in Bi , the input change penalty matrix R is pre- and post-multiplied by

Bi = [0,
1
β1
]⊤. This equalizes the contribution of ∆v in the tracking error and input-

change weighting in the cost function, defined as

J (ξi(0), V∆) =e⊤(N)Pe(N) +
N−1∑

k=0

(

e⊤(k)Qe(k) + ∆v
⊤
(k)R̃∆v(k)

)

(4.40)

V∆ =[∆v(0),∆v(1), . . . ,∆v(N−1)]
⊤

e(k) =y(k) − r(k) = Ciξi(k−1) − r(k)
R̃ =B⊤i RBi

Vopt =argmin
V
J (ξ(0), V∆) (4.41)

The MPC control horizon is chosen to be equal to the prediction horizon given by

N = 60. The final penalty matrices are given by, R = 750, Q = 1, and P = 1.

Although MPC is famous for taking constraints into account, this is not straightforward

in combination with state feedback linearization [Deng et al., 2009]. In some cases, the

technique known as constraint mapping is effective [Henson and Seborg, 1997]. In the

case of cooling crystallization, actuator constraints are defined for the jacket temperature

Tj = u ∈ [u, ū]. After state feedback linearization u = φ(xb)v +α(xb), v has to be such
that u ∈ [u, ū]. This introduces nonlinear state dependency into the constraints on the
linearized input v .

u ≤ φ(xb)v + α(xb) ≤ ū
u − α(xb)
φ(xb)

≤ v ≤ ū − α(xb)
φ(xb)

∀ xb ∈ Xr
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A set of allowed inputs V, satisfying the state dependent constraints over the realistic
set of states Xr , is defined by,

V =
{

v ∈ [v , v̄ ] | v ≥ u − α(xb)
φ(xb)

, v̄ ≤ ū − α(xb)
φ(xb)

∀xb ∈ Xr
}

which is empty for Xr defined by Equation (4.33). The upper and lower bounds v and v̄
intersect, making it impossible to find bounds satisfying the constraints for the complete

set of states.

4.2.5 Simulation results in closed loop configuration

Simulations are carried out to investigate the performance and robustness of linear con-

trol techniques on the state feedback linearized system. First the situation of parameter

mismatch has investigated by illustrating a tracking problem. Secondly, the noise sensi-

tivity of the control law has been investigated for an external disturbance on the jacket

temperature and for measurement noise. For all simulations the jacket temperature

is limited to stay between −20◦C and +130◦C. To guarantee equal conditions and
make comparison more reliable, a fixed noise sequence is used for every simulation. The

standard deviation of the tracking error is denoted by σe and is used as a measure

for controller performance. The tracking error is defined as (e = Sa − Sd), where Sa
represents the absolute supersaturation, and Sd represents the desired supersaturation

trajectory and is represented by the red-dashed line in the figures.

Growth Rate Parameter Mismatch

The same variation of the growth rate parameters is used as in the analysis part in

Subsection 4.2.3. The nominal values and upper and lower bounds are given in table 4.2.

The nominal state feedback law Ψn(x, v) is based on the nominal parameter values. The

state feedback parameters are chosen as β0 = 1, β1 = 0.5, and define a closed loop

pole of Pn at −2. The batch time is approximately 4 hours.
Three situations are simulated, case (1) nominal case where [g = 1.32, kg = exp(8.849)·
10−6], case (2) growth rate is smaller than estimated [g = 1.32+0.03, kg = exp(8.849−
0.112) · 10−6], and case (3) growth rate is larger than estimated [g = 1.32− 0.03, kg =
exp(8.849+0.112) · 10−6]. Two different supersaturation trajectories are being tracked
to check controller stability and tracking performance for all cases.

Figure 4.9 shows the response of the H∞- and MPC-controller for the supersaturation
output, linear input v , jacket temperature and vessel temperature for a smooth input

trajectory. For case (1) and (2) the output tracking is good throughout the complete

batch. The standard deviation of the tracking error, which is related to the error weight

We , for the H∞-controller is smaller than 0.15 mg(KNO3/H2O). For the MPC con-
troller σe is smaller than 0.05mg(KNO3/H2O). The IIO-structure in the cost function

J results in a small steady state tracking error. The ability to anticipate on the input
trajectory results in a noncausal output tracking response. From the response of the
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linear input v for the nominal case (1), it is seen that the state feedback linearized

system indeed behaves as a first order linear system. For case (2) and (3) the growth

parameter mismatch cause the linearization to be inaccurate, which is compensated by

the linear controllers as can be seen from the response of the linear input v . However,

for case (3) the growth rate is higher than estimated. This results in such a fast crystal

growth that the cooling rate should be increased beyond the limit of the jacket temper-

ature range to maintain the desired supersaturation trajectory. Therefore, after about

160 minutes the jacket temperature is saturated at −20◦C, causing the supersatura-
tion to collapse. The tracking error for case (3) represents the error of the first 160

minutes. Figure 4.10 shows the same responses as in Figure 4.9, only this time for a

Table 4.3: Standard deviation of the output error for the smooth trajectory.

Controller σe (1) σe (2) σe (3) Unit

H∞ 1.393 1.195 1.453 10−4[gKNO3/gH2O]
MPC 0.068 0.263 0.519 10−4[gKNO3/gH2O]

non-smooth input trajectory. The supersaturation trajectory can be maintained within

actuator limits for all parameter variations. Again the tracking error is small, where the

MPC controller is very accurate by anticipating on the trajectory and a steady state

error of less than 0.001mg(KNO3/H2O) for the response between 60 and 140 minutes.

The exponential nature of the saturation curve with respect to temperature can be seen

from the vessel temperature response for the nominal case (1). Between 60 and 140

minutes the supersaturation is kept constant. The matching jacket temperature results

in a negative exponential temperature drop, theoretically tending towards minus infinity

if the supersaturation trajectory was not returning to zero. This emphasizes the fact

that the jacket temperature will always reach the actuator limits up to the end of the

batch when the desired supersaturation is nonzero.

Table 4.4: Standard deviation of the output error for the non-smooth trajectory.

Controller σe (1) σe (2) σe (3) Unit

H∞ 0.648 0.571 0.947 10−4[gKNO3/gH2O]
MPC 0.053 0.092 0.420 10−4[gKNO3/gH2O]

Also the inaccurate linearization due to parameter mismatch can be seen from the

response of the linear input v . For case (3) both controller outputs v tend towards

infinity. However, due to the finite nature of the crystallization process the control

output is bounded. Overall, both controllers perform well in the presence of parameter

mismatch in the growth parameters.

Jacket Temperature Disturbance

Another possible source of modelling errors can be due to disturbances on the jacket

temperature. This can be caused by for example, changes in temperature or pressure

of the cooling medium. Actuator disturbance is considered by adding a low frequency
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disturbance d1 to the jacket temperature input, where d1 is modelled by low-pass filtering

of normally distributed white noise (see Equation (4.42) and Figure 4.11).

Ṫ = −3ρckv
ρ

∆Hc(µ3)G(µ3, T )µ2
cp(µ3)

− UAc
ρV cp(µ3)

(T − Tj + d1) (4.42a)

d1(s) =
1

s + 0.1
n(s) (4.42b)

σn =0.4
◦C µn = 0 (4.42c)

Again the three cases of parameter mismatch where simulated in combination with

jacket disturbance. The resulting standard deviation on the output tracking error for

both trajectories are given in table 4.5 and 4.6. The supersaturation output and the

jacket temperature input response for the smooth reference trajectory of both the H∞-
and MPC-controller are shown in Figure 4.12.

Controller σe (1) σe (2) σe (3) Unit

H∞ 1.417 1.239 1.415 10−4[gKNO3/gH2O]
MPC 0.299 0.410 0.522 10−4[gKNO3/gH2O]

Table 4.5: Standard deviation of the output error for the smooth trajectory.

Both controllers manage to achieve a tracking error of less than 0.1mg(KNO3/H2O).

From table 4.5 it can be concluded that the MPC-controller is almost four times as

accurate as the H∞-controller. This is mainly due to the anticipation on the trajectory
resulting in a smaller tracking error. For the non-smooth trajectory with less setpoint

changes, the difference between MPC- and H∞-control is only twice as good, see ta-
ble 4.6.

This concludes that this approach is able to compensate for low frequency fluctuations

in the jacket temperature of industrial batch cooling crystallizers.

Controller σe (1) σe (2) σe (3) Unit

H∞ 0.718 0.678 0.904 10−4[gKNO3/gH2O]
MPC 0.299 0.344 0.394 10−4[gKNO3/gH2O]

Table 4.6: Standard deviation of the output error for the non-smooth trajectory.

Measurement Noise

Actual noise on the temperature sensor was examined from experimental data, see the

blue dashed line in Figure 4.13. The sensor noise is modelled as discrete white noise

with σn = 0.024
◦C. A small part of the noise sequence is shown in Figure 4.13 by

the red solid line. The influence of measurement noise is best illustrated by setting the

supersaturation reference to a fixed value.
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From Figure 4.14 it can be seen that the response is very similar to the uncontrolled

constant input case as in Figure 4.6 for the state feedback pole at −1.8. The state
feedback law shows to be very sensitive to measurement noise, as was shown in Sec-

tion 4.2.3. Noise sensitivity of the state feedback law is small only within a certain range

of process states. This range can be influenced by changing the state feedback closed

loop pole. This gives reason to investigate the performance of a time variant state feed-

back law and time variant linear controller to exploit the use of different state feedback

parameters throughout the batch. In the next section we will study this approach.

Moreover, it is interesting to study what the possibilities and implications are of filtering

of the measured variables. One has to take into account that additional filtering might

degrade the performance of the feedback linearization due to additional phase delays.

This study is beyond the scope of this chapter and is left open for future research.

Time Variant State Feedback

The analysis in Section 4.2.3 showed a strong relation between the noise sensitivity for

temperature measurements and the closed loop pole of the linearized system, given by
β0
β1
. The relation was described by Equation (4.37), which represents the closed loop pole

for which the noise sensitivity is optimal at a given state x . This is used to determine

the optimal poles over the state trajectories of a nominal batch simulation.

We present an approach in which we switch the gain β0β1 in the feedback law by a pre-

programmed schedule. By discretizing this optimal pole trajectory, a set of closed loop

poles is obtained, which correspond to different linear models [P1, P2, . . . , Pn] ∈ P. From
the optimal pole locations, we will select 5 discrete values. The scheduling method

switches between the gains in the feedback linearization law. Figure 4.15 shows the

optimal pole trajectory and the discretized set of closed loop poles, defining 5 linear

models (P1, . . . , P5). The maximal pole is set to −1, and the minimal pole is set to
−10. The blue line indicates which linear model should be used at a given time instant.
Figure 4.16 shows the supersaturation output for the time variant MPC (blue solid line),

and the MPC with a linear model with the closed loop pole located at −2. Also the
linear model planning is shown, indicating at what time instant the time variant MPC

switches model.

The result is seen from the supersaturation output and jacket temperature input in

Figure 4.16. In the beginning of the batch both controllers use almost the same model,

so the response is very similar. However, during the end of the batch the time variant

MPC uses a prediction model and feedback law with the pole at −7.5, instead of −2 for
the time invariant MPC. This results in a far less aggressive jacket temperature input

and less disturbed supersaturation output.

4.2.6 Conclusions and discussion on super saturation control

In this section the application of the state feedback linearization method to batch cool-

ing crystallization has been presented. In order to take parametric model uncertainty
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into account a method for uncertainty modeling of a feedback linearized system with

uncertain parameter has been introduced. State feedback linearization has been success-

fully applied and tested in a simulation environment with the nonlinear industrial seeded

batch cooling crystallizer model and has shown to provide the ability to use advanced

linear control.
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Figure 4.9: Simulation of feedback linearization in combination with MPC and Hinf ty -

control for tracking of a smooth super-saturation trajectory, in absence of measurement

noise and in presence of parameter mismatch. Proper tracking is observed for both

control methods as long actuator limits are not active. Solid line: case(1), Dash-dotted

line: case(2), Dashed line: case(3).
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Figure 4.10: Simulation of feedback linearization in combination with MPC and Hinf ty -

control for tracking of a non-smooth super-saturation trajectory, in absence of measure-

ment noise and in presence of parameter mismatch. Proper tracking is observed for both

control methods. Solid line: case(1), Dash-dotted line: case(2), Dashed line: case(3).
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Figure 4.11: Illustrative example of jacket temperature disturbance d1 used in simulation

examples.
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Figure 4.12: Absolute supersaturation and jacket temperature during simulations with

jacket temperature disturbance as shown in Figure 4.11. The simulation result shows

that the sensitivity of the control setup with respect to disturbances in the jacket tem-

perature are low.
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Figure 4.13: Temperature sensor noise as observed in industrial environment and simu-

lated temperature measurement noise used in simulation examples.
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Figure 4.14: Absolute supersaturation and jacket temperature during simulations in

presence of temperature measurement noise. The simulation shows that the influence

of the temperature measurement noise on the jacket temperature and the resulting

absolute supersaturation depends on the time. The sensitivity is maximal during the end

of the batch.
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Figure 4.15: Closed loop pole optimal for 5 time instances throughout nominal batch

operation. The optimal pole location has been calculated by use of Equation (4.37).
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Figure 4.16: Absolute supersaturation and jacket temperature during simulations with a

combination of invariant feedback linearization and time invariant MPC and a combina-

tion of time variant feedback linearization and time variant MPC following Figure 4.15.

The simulation shows that by the time variant approach the sensitivity of the process

with respect to the measurement noise can be reduced.
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4.3 Control of supersaturation by approximate feedback

linearization.

Although various types of model based control technology for batch crystallization have

been developed in the past [Braatz, 2002; Nagy and Braatz, 2003; Mesbah, 2010] ,

industrial acceptation and implementation of these methods is hampered by high costs

for the development of the methods and the necessary models as well as the complexity

of the methods. Most of these methods do rely on the knowledge of the states of the

process, since they are based on state feedback techniques. For crystallization processes,

this implies that a reliable online measurement or estimate of both the particle size

distribution and the solute concentration are in general necessary for implementation of

advanced control methods. In practical situations particle size measurements are difficult

to get operational in a industrial environment. Also the crystal growth rate kinetics of

a crystallization process might not be known for practical reasons, for instance due to

the lack of modeling data or the lack of a particle size measurement. Therefore, it is

important to determine to what extent crystallization processes can be controlled with

methods that demand a lower level of automation and less information on the process

dynamics.

In this section we study the possibilities for tracking control of the absolute supersat-

uration in absence of measurements of the particle phase. We present a method for

supersaturation control, which can be interpreted as approximation of the feedback lin-

earization law (4.24). This method for supersaturation control has been implemented

and experimentally validated in a production environment of MSD Apeldoorn during a

experimental campaign in December 2011.

In this section we again study a system that can be modeled by the moment model

introduced in Section 2.3.1. For simplicity, we assume that the specific heat capacity

cp and crystallization enthalpy Hc are constant. Hence, the model under consideration

is given by:

ẋ =f (x) + g(x)u,

y =h(x),

where the input is the jacket temperature, u = Tj and,

f (x) =









B(µ3, T )

G(µ3, T )µ0
2G(µ3, T )µ1
3G(µ3, T )µ2

− ρckvρcp ∆Hc3G(µ3, T )µ2 − αT









g(x) =









0

0

0

0

α









x =
[
µ0 µ1 µ2 µ3 T

]⊤
h(x) = Sa(x)

where α = UAc
ρV cp
. Moreover we introduce the tracking error, as the difference between

the reference and realized value:

e = r − y . (4.43)
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We will make use of the observation that during the initial phase of the process, i.e.

when µ2 and µ3 are small and when operated under low supersaturation, the product

G(µ3, T )µ2 is small.

First we make the assumption that G(µ3, T )µ2 = 0. In this situation the control law:

u =K

[

α
∂Csat
∂T
(T )

]−1
e + T (4.44)

asymptotically stabilizes e for K < 0. The variable K is the tuning parameter of the

controller and it will be shown to be the time constant of the system under feedback

with (4.44). The proof of this assertion follows when one considers the error dynamics,

which are given by:

ė = ṙ − ẏ = ṙ − ∂c
∂t
+
∂Cs
∂T
(T )(−ρckv

ρcp
∆Hc3G(µ3, T )µ2 + α(Tj − T )). (4.45)

By substitution of the control law in (4.45) it follows that the closed loop error dynamics

satisfy the equation:

ė = Ke + ṙ − ∂c
∂t
− ∂Cs
∂T
(T )

ρckv
ρcp
∆Hc3G(µ3, T )µ2.

Under the assumption that G(µ3, T )µ2 = 0 (which implies that
∂c
∂t = 0) it follows

that the closed loop error system is asymptotically stable and that the time constant is

defined by K:

ė = Ke + ṙ .

Of course, it is important to consider the implications of the assumption G(µ3, T )µ2 = 0.

The term − ∂c∂t − ∂Cs
∂T (T )

ρckv
ρcp
∆Hc3G(µ3, T )µ2 in Equation (4.45) account for the de-

crease in concentration due to consumption of solute by crystal growth and the change

in supersaturation due to change of temperature of the reactor as a result of the en-

thalpy uptake or release due to crystallization. For cases that the enthalpy change ∆Hc
is small, the effect of the concentration change dominates. As long as the system op-

erates at positive supersaturation, ∂c∂t is negative. It follows that for this situations e

is remains positive for all t, which indicates that the r > y , that is the realized super-

saturation is lower than the reference value. Although not ideal, this situation seems

acceptable for most industrial applications. For cases in which the enthalpy change ∆Hc
is not negligible and positive, the total contribution of the term is again negative. The

same reasoning applies and therefore the realized supersaturation will be lower than the

reference value. For cases in which the enthalpy change ∆Hc is not negligible and neg-

ative, the contribution of − ∂c∂t − ∂Cs∂T (T ) ρckvρcp ∆Hc3G(µ3, T )µ2 can be positive as well as
negative and not decisive answer can be given in general.

Although the control law (4.44) does not provide perfect tracking for all scenarios, it

also has important positive properties. First of all, the control law does not desire kinetic

data of the crystallization process. The saturation curve and an estimate of the thermal

constant is the only necessary information for implementation. Secondly, no information

about the first three moments is necessary. Therefore a measurement or estimator of
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these moments does not have to be present for implementation. These two properties

make that the control law can be implemented with less effort and cost than is necessary

for the implementation of more advanced control methods.

It might be of interest to reconsider the feedback linearization law (4.24) in this context.

It follows that the presented approach is equivalent to application of an approximation

of this state feedback law in combination with a P -controller. For completeness we

repeat (4.24):

u = ψ(x, v) =
v − β0h(x)− β1Lf h(x)

β1Lgh(x)
.

Under the assumption that G ≈ 0 and µ2 ≈ 0, the Lie-derivatives Lf h(x) and Lgh(x)
can be approximated by:

Lf h(x) ≈α
∂Csat
∂T
(T )T Lgh(x) ≈− α

∂Csat
∂T
(T ) (4.46)

The feedback linearization law ψ(x, v) can be approximated by ψ̃(x, v):

ψ̃(x, v) =
v − β0h(x)− β1α ∂Csat∂T (T )T

−β1α ∂Csat∂T (T )
= β−11

[

α
∂Csat
∂T
(T )

]−1
(β0h(x)− v) + T.

Careful comparison of the approximate feedback law ψ̃(x, v) with the controller given

by Equation (4.44) shows that both laws are identical when v = β0h(x) + Kβ1e is

substituted in ψ̃(x, v). The identity v can be interpreted as proportional feedback of

the error combined with a feed forward term, which follows from rearrangement of v :

v = [β0 −Kβ1] h(x) +Kβ1r.

4.3.1 Implementation and experimental test

The controller given by Equation (4.44) has been implemented in a industrial environ-

ment of MSD Apeldoorn. A general purpose reactor with a volume of 1000L has been

used as experimental environment, shown in Figure 4.19. The crystallizer is a stirred

tank stainless steel reactor, equipped with combined cooling and heating jacket, vac-

uum and pressure regulation system and temperature measurement in the bottom and

standard DCS for data acquisition.

The controller has been tested during one seeded batch experiment on a volume of

900L with the pharmaceutical compound Androsta-1,4-diene-3,17-dione,cyclic 17-(2,2-

dimethyltrimethylene acetal), abbreviated as ADD − NEOP . The solvent is a mixture
of pure ethanol (99.5% v/v) and triethyl amine (0.5% v/v). The latter is added as a

stabilizer.

The required temperature measurements of the reactor and jacket temperature are

acquired from the DCS system and the concentration measurements are acquired with
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Figure 4.17: Solubility of ADD − NEOP .

a K-Patents PR-23 refractive index sensor. The concentration sensor has been mounted

on a measurement skid, which is presented in Section 2.4 and has been developed in

the context of the project. The solubility of ADD − NEOP has been determined by a
dissolution experiment in which the crystallized compound has been dissolved by a slow

linear increase of the solvent temperature. A parametrization of the solubility as function

of the literature Cs(T ) been obtained by a least square fit of a third order polynomial

function on the measured temperature and concentration data, which has resulted in

the following polynomial:

Cs(T ) = 32.68 + 2.468T − 5.912 · 10−2T 2 + 2.155 · 10−3T 3.

A graph of the modelled solubility function Cs(T ) of ADD−NEOP measured solubility
given in Figure 4.17.

The control law has been implemented in the INCA software environment from IPCOS

B.V.. The saturation controller has been implemented as master controller, in a mas-

ter/slave configuration with a controller for the jacket temperature. The slave controller

is digitally implemented PID-controller with a sample time of 5 seconds. Figure 4.18

shows a schematic representation of the implemented control architecture. The time

constant α of the thermal dynamics of the reactor has been estimated with a step test

using the jacket temperature to be approximately 20 minutes. The tuning parameter K

of the controller was set to 900 seconds.

During the experiment the approximately 100 Kg of ADD − NEOP was crystallized
from solution. Figure 4.20 shows the measured supersaturation and its reference. The

figure shows the tracking of the desired supersaturating after the controller was turned

on at 10:40h. Step changes in the reference profile have been applied to shown the

convergence of super saturation to the setpoint. True first order behavior is observed

from tracking of changes of the set- point and the time constant of the closed loop

indeed approximately matched the value of K. At 13:30h approximately the measured

saturation does not meet the expectations. Sensor fouling is the most likely cause. The

sensor recovered due to immediate additional heat supply to the sensor using thermal

tracing system of the skid.
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Figure 4.18: Schematic representation of the control architecture that has been imple-

mented for test of the supersaturation controller.

4.3.2 Conclusions

A system for online regulation of the supersaturation during batch cooling crystallization

has been presented. The presented approach is of lower complexity than previously

developed methods. Furthermore, it is based on concentration measurements only and

therefore it might be cheaper and easier to implement.

The presented control method is based only on the solubility curve of the solid/solvent

combination in the process and no kinetic information is needed to design the control

law. This makes the implementation in industrial environment feasible, since a need

for determination of kinetic laws or parameters would demand additional experiments

and increase the costs significantly. The solubility can be calculated online from the

temperature measurement and the concentration can be measured using relatively cheap

equipment.

Experimental results show the system can be applied successfully in an industrial en-

vironment. The control method enables proper control of the supersaturation in a

crystallization process for situations where material consumption is small. Therefore

the method is effective for start up phases of batch processes. Also for processes with

material consumption reasonable performance can be expected, but a supersaturation

that is lower than the reference value will be realized.

4.3.3 Recommendations

The experiment for validation of the supersaturation controller has been carried out only

in one experiment. Although this single experiment is sufficient to show the effectiveness

of the controller method for supersaturation control, it has not been possible to study the

effect of supersaturation control on the product quality in this experimental campaign.

In order to demonstrate a positive effect of tight supersaturation control on product

quality, an experimental campaign with a statistically significant number of experiments

and the possibility to evaluate and quantify product quality has to be carried out.
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Figure 4.19: General purpose reactor HR4RES12 at former plant of MSD Apeldoorn.
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Figure 4.20: Step response test with designed supersaturation controller.
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4.4 Conclusion and recommendations on supersatura-

tion control

In this chapter a method for the control of the supersaturation level in batch cooling

crystallization processes has been presented.

4.4.1 Conclusions

The method is based on the feedback linearization of the nonlinear map between the

jacket temperature and the supersaturation level, (i.e. the input output map described

by the model for batch cooling crystallization processes) by use of a state feedback law.

The effectiveness of the method has been analyzed in a theoretical analysis. It follows

that after feedback linearization, the input/output map can be described by a first order

linear system. In the analysis, special attention has been paid to the effect of modeling

errors on the feedback linearization.

It has been shown that supersaturation feedback control is able to accurately com-

pensate for errors in the supersaturation response, even in the presence of parameter

mismatch or process disturbances. This results in reliable batch process control, which

is of key importance for high-quality products and larger economical benefit. Moreover,

the presented method provides a flexible approach where a process operator can directly

manipulate the supersaturation level and allows the operator to design a customized

supersaturation trajectory. There is no need for a supersaturation to temperature tra-

jectory transformation to generate a proper input that can be used in conventional

temperature control as in [Sampath et al., 2002], [Zhang, 2003].

The effectiveness of the presented control approach has been evaluated in a experiment,

that is representative for industrial environments. In the experiment an approximation

of the control law has been implemented. The control law has been approximated in

such a way that only a concentration measurement is needed for implementation. The

experiment shows that in the initial stage of the batch crystallization process (i.e. when

the consumption rate is low) proper control of the supersaturation level can be achieved.

4.4.2 Recommendations

The method for supersaturation control by feedback linearization is a method based

on nonlinear state feedback. Therefore, the availability of the complete state of the

moment model is assumed in the analysis. In practical applications the state variables

might not be measurable due to lack of sensors. In such a situation feedback linearization

has to be applied in combination with a state observer for the process. The estimate of

the state will be inherently subject to an estimation error. It is of importance to analyze

what the influence of the estimation error is on the method of feedback linearization.

We have not presented this analysis, which is open for future research.
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In this chapter we have studied the sensitivity of the feedback linearized model with

respect to sensor noise in the temperature measurement. The effect of sensor noise

shows to be signification and not negligible. We have not paid attention to sensor noise

and static errors in the measurement of the moment µ2 and µ3. It is recommended to

perform this analysis in future research.

The analysis has shown that by feedback linearization can result in control input to the

process which contain fast and aggressive control actions. It has been shown that this

can be due to amplification of the sensor noise. Given the rather slow thermal dynamics

of the process and the fact that the process dynamics change much slower than the noise

component in the measurement signal, one can question the necessity of the presence of

fast components in the input for the linearization performance of the feedback system.

Therefore, it is interesting to study what the possibilities and implications are of filtering

of the measured variables. One has to take into account that additional filtering might

degrade the performance of the feedback linearization due to additional phase delays.



i

i

“thesis” — 2012/9/3 — 21:29 — page 97 — #111
i

i

i

i

i

i

CHAPTER 5

Estimation for Distributed Parameter Systems

Abstract

This chapters considers the problem of designing estimators to estimate non-

measured outputs of infinite dimensional systems on which a finite number

of measurements are taken in real-time. The design of estimators will be

treated as an optimization problem in which the estimation error is mini-

mized. In this optimization problem the performance of the estimators is

measured either by the Hilbert-Schmidt norm or by the induced L2-gain of

the error-system. It is shown that for those criteria, both optimization prob-

lems are equivalent to a dual regulator design problem. For both problems,

a complete solution is derived which, in turn, provides explicit solutions of

the optimal estimator design problems.

5.1 Introduction

Distributed parameter systems occur in numerous engineering applications. The prob-

lem of estimating non-measured outputs in a distributed system is of key importance

to infer information of system variables from partial information. Partial information

is typically based on measurements or observed outputs and can be inferred from sen-

sors or measurements. One typically distinguishes estimation from filtering problems.

Estimation problems are concerned with the (optimal) approximation of non-observed

97
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98 Estimation for Distributed Parameter Systems 5.1

variables from measurements. Filtering problems deal with the estimation of state vari-

ables. Both estimators and filters infer estimates of variables in a causal manner from

observed data. This means that estimates of non-measured variables will not depend

on anticipated (or future) values of the measured quantities, which is a necessity when

one desires to operate the estimator or filter in an real-time environment. The develop-

ment of non-causal filters has not been covered in this chapter. We will illustrate the

necessity of estimators for infinite dimensional system by two examples. The first one

is motivated by the research on crystallization processes. The second one concerns an

example of temperature estimation in materials.

Example 5.1.1 (Crystal population estimation)

Consider a crystallizer with a population of particles, characterized by the size distribution

n(ℓ, t) where ℓ is the particle length and t is time. The crystallizer is equipped with a

number of sensors, which are able to count the number of crystals that are present in

the reactor and whose length (or size) is in a specific range. See Figure 5.1, where yi
denote the measurements and z1 is the crystal size of interest. The evolution of the

population can be modeled by crystallization models as presented in Section 2.15. This

gives the time-varying length distribution n(ℓ, t). One is interested in a reconstruction

of the actual population balance n(ℓ, t) from a finite number of measurements y1, . . . , yn

where yi(t) =
∫ ℓ+i
ℓ−i
n(ℓ, t)dℓ represents a counter for a sensor that considers particle sizes

of length ℓ with ℓ−i ≤ ℓ ≤ ℓ+i only.

z1

0 L

y1 yny2

d1,3d1,1 d1,2

Figure 5.1: Output estimation problem on crystal size population in crystallization pro-

cesses.

As a second example we introduce the following (fictitious, but rather realistic) example.

Example 5.1.2 (Heat diffusion)

Consider a one dimensional slab of a semiconductor on the domain [0, L], as depicted in

Figure 5.2 with heat producing elements such as transistors distributed over the domain.

Due to diffusion, heat that is locally produced will spread trough the slab. This can be

modeled by Fouriers law of heat diffusion. The slab is equipped with n (non-collocated)

temperature sensors distributed over the slab and which measure the temperature yi at a

specific location of the slab. One is interested in estimating the temperature at the non-

measured locations indicated by zi , so as to monitor the condition of the components.
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0 L

d1,3d1,1 d1,2

z1y1 yny2

Figure 5.2: Output estimation problem on heat diffusion problem.

A nice feature of the framework of estimation in infinite dimensional systems that we

will consider here, is that it is applicable to all kinds of engineering problems that in-

volve spatial-temporal systems. In abstract form, the estimation problem is depicted

in Fig. 5.3. It involves a given dynamical system that is affected by noise and that

produces noise-corrupted measurements y , which are subsequently used to estimate a

non-observed signal z . The estimator to be designed is a causal system that processes

measurements y to estimates ẑ of z . In this chapter we present a complete solution to

the problem of synthesizing output estimators for linear distributed parameter systems

that are optimal in the sense that they either minimize the Hilbert-Schmidt norm or the

L2-gain of the system that generates the estimation error. The optimal estimators will

be called the optimal Hilbert-Schmidt norm output estimator and optimal L2-gain out-

put estimator for linear distributed parameter systems, respectively. Both design criteria

will be discussed in detail in Section 5.2.

The chapter is organized as follows. A precise formulation of the estimator design

problem is given in Section 5.2. Then we will introduce an alternative formulation of the

plant Σp, which enables to formulate the estimator design problem in a more convenient

mathematical framework. The connection between estimation and control problems will

be studied in Section 5.4 and is at the basis of a duality result that we will derive first.

In this Section we will also develop the mathematical tools that enable deriving solutions

for estimation problems from control problems. In Section 5.5 the estimation problem

for Hilbert-Schmidt norm criterion will be solved and in Section 5.6 the estimation

problem for the L2-gain criterion will be solved.

For finite dimensional systems it is known that there is a strong relation between esti-

mation and control problems, which is usually evidenced using arguments from duality

System Σp
Estimator Σe

y

z

ẑ
Sd2

d1
e

−
+

Figure 5.3: Interconnection of plant and estimator.
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100 Estimation for Distributed Parameter Systems 5.2

theory. This relation is studied for instance in [Mutsaers and Weiland, 2009] for fi-

nite dimensional systems and in [Vissers and Weiland, 2010] for an estimator design

for distributed parameter systems based on the Hilbert-Schmidt norm criterion. In this

chapter, we will generalize these results to infer a complete solution of the optimal

L2-gain estimator design problem in an infinite dimensional setting.

5.1.1 Notation:

We denote the inner product associated with a Hilbert space X by 〈 , 〉. With T ⊆ R
a time set, the induced inner product on L2(T, X) is denoted by 〈〈 , 〉〉. That is, for
x, x ′ ∈ L2(T, X) 〈〈x, x ′〉〉 =

∫

T
〈x(τ), x ′(τ)〉dτ . We use || · ||2 to indicate the 2-norm

on X as well as the 2-norm on L2(T, X). For a operator B : L2(T, X) → L2(T, X),

its induced 2, 2-norm is the smallest number α for which ||Bx ||2 ≤ α||x ||2 for all x ∈
L2(T, X). Also, R

n×m is equipped with the structure of an inner product. The inner
product on elements of Rn×m is denoted by 〈M1,M2〉 = tr M∗1M2 where tr represents
the trace. Let M denote the function space L2(T × T,Rn×m) with inner product
〈〈M1,M2〉〉 =

∫∫

T×T〈M1(τ1, τ2),M2(τ1, τ2)〉dτ1dτ2 and corresponding norm ||M||2 =
〈〈M,M〉〉

1
2 . Moreover we introduce the time restriction operator

στ : L2(T, X)→ L2(T, X)

for τ ∈ R+ by :

(στx)(t) =

{

x(t) for t ≤ τ,
0 for t > τ.

5.2 Problem statement

Let X be a Hilbert space, and let Y = Rm, Z = Rn, D1 = R
d1 and D2 = Y be Euclidean

spaces equipped with the standard inner product. Consider the system Σp with states

x(t) ∈ X, outputs z(t) ∈ Z, measurements y(t) ∈ Y and disturbances d1(t) ∈ D1,
d2(t) ∈ D2, given by:

Σp :







ẋ = Ax + Gd1

y = Cx + Sd2

z = Hx

(5.1)

The operator A : D(A) → X is a linear (possible unbounded) operator and A is the

generator of a strongly continuous semi-group operator T (t) : X → X. In this work

we consider time instants t ∈ T = [0, te ] with te ∈ [0,∞). It is assumed that T (t)
is exponentially stable, i.e. there exists positive constants α and M such that for all

x0 ∈ X, ||T (t)x0|| ≤ Me−αt ||x0|| for all t ∈ T. Moreover, we assume that the pair
(A,C) is T-observable, which means that x0 = 0 whenever CT (t)x0 = 0 for all t ∈ T.
Let the disturbances be d1 ∈ L2(T, D1) and d2 ∈ L2(T, D2).
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5.2 Problem statement 101

Remark 5.2.1. In this setting, the output z(t) represents the signal to be estimated.

The outputs z are not measurable in practice at the process and are here only used to

formulate the estimator design problem, cf. Figure 5.3

We introduce a second system Σe , called the estimator, which is the realization of a

linear mapping L2(T, Y ) → L2(T, Z). The estimator is connected to Σp, as shown

in Figure 5.3 and the estimation error is defined as e = z − ẑ . We allow Σe to be
time variant and demand that it is causal and such that it can be represented by the

input/output-map:

Σe(M) : ẑ(t) :=

∫ t

0

M(t, τ)y(τ)dτ, (5.2)

where integration kernel M is required to be in the classM, which is defined by:

M =
{

M ∈ L2(T× T,Rdim(Y )×dim(Z)) | M(t, τ) = 0 whenever τ > t
}

.

We indicate the parametrization of the estimator with respect to M by Σe(M) when

this is convenient.

Remark 5.2.2. Depending on the application, the initial condition x0 in (5.1) is assumed

to be known or unknown. We will treat both cases. The case in which x0 is known is

without loss of generality covered by the case in which x0 = 0. This can be seen as

follows. If we assume that x0 is known, it follows that the outputs y(t) and z(t) are

given by:
[
y(t)

z(t)

]

=

[
y0(t)

z0(t)

]

+

[
yd(t)

zd(t)

]

,

with:
[
y0(t)

z0(t)

]

=

[
C

H

]

T (t)x0,

[
yd(t)

zd(t)

]

=

∫ t

0

[
C

H

]

T (t − τ)Gd1(τ)dτ +
[
S

0

]

d2(t).

It follows that yd and zd are solutions of (5.1) with x0 = 0. Let ẑd be the output of

an estimator for the case with x0 = 0 and define ẑ(t) := ẑd(t) + HT (t)x0. It follows

that e = z − ẑ = zd − ẑd . Consequently, the error is equal to the error in case in which
x0 = 0. That is, an estimator for the case with x0 6= 0 can be constructed from an
estimator for the case where x0 = 0, by addition of HT (t)x0 to the estimate for zd .

Depending on whether x0 is assumed to be known or unknown, the system Σp defines

a mapping L2(T, D1 × D2) → L2(T, Y × Z) or X × L2(T, D1 × D2) → L2(T, Y × Z),
respectively. In either case, Σp(d1, d2) or Σp(x0, d1, d2) is defined by the output (y , z)

of (5.1) with x(0) = 0 and x(0) = x0, respectively, and disturbance input d1 and d2.

The interconnection of Σp with Σe , denoted by Σp ∧ Σe is defined by the transfer
between the disturbances d1 and d2 and the error e. More precisely, the composite

system is defined by the mapping

Σp ∧Σe : X × L2(T, D1 ×D2)→ L2(T, Z)

if x0 is unknown and by

Σp ∧Σe : L2(T, D1 ×D2)→ L2(T, Z)
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if x0 is known. The explicit characterization of Σp ∧ Σe for the case of an unknown
initial conditions is given by:

e(t) = z(t)− ẑ(t) = Hx(t)−
∫ t

0

M(t, τ)(Cx(τ) + Sd2(τ))dτ, (5.3a)

with: x(t) = T (t)x0 +

∫ t

0

T (t − τ)Gd1(τ)dτ. (5.3b)

The characterization of Σp ∧Σe for the case of known initial conditions can be obtained
analogously by setting x0 = 0 in (5.3b).

In order to deal (in a systematic manner) with the question how the estimator Σe should

be designed or synthesized, we specify the requirements on the interconnection of the

estimator and the plant. A possible way to do this is to specify performance requirements

on the operator that implements the mapping Σp∧Σe . In this chapter we will use norms
on Σp ∧Σe to define the design problem. Specifically, we introduce the design criterion
J(M):

J(M) = ||Σp ∧Σe(M)||,

for different norms on the operator Σp ∧ Σe(M). We distinguish the following design
problems:

Problem 5.1 (Determination of infimum)

For the case of known and/or unknown initial condition of (5.1), find γopt such that

γopt = inf
M∈M

||Σp ∧Σe(M)||.

Problem 5.2 (Determination of optimal estimator)

For the case of known and/or unknown initial condition of (5.1), find an optimal esti-

mator Mopt ∈M such that

J(Mopt) = γopt ,

if it exists.

Problem 5.3 (Determination of the set of optimal estimators)

Determine the setMopt such that

Mopt = {M ∈M|γopt = ||Σp ∧Σe(M)||}.

Problem 5.4 (Determination of a almost optimal estimator)

For all ǫ > 0, find Moptǫ ∈M such that

γopt ≤ ||Σp ∧Σe(Moptǫ )|| ≤ γopt + ǫ.

Of course, these problems crucially depend on the chosen performance index. In this

chapter we will consider the design problem for two norms which we will call the in-

duced norm and the Hilbert-Schmidt norm. The norms will be introduced next by the

Definitions 5.2.1 and 5.2.4.
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Definition 5.2.1 (Induced norm)

Let U and Y be arbitrary Hilbert spaces and suppose K : U → Y is a linear map . Then
the induced norm of the operator K is defined by:

||K|| := sup
0 6=u∈U

||Ku||
||u|| ,

where ||u|| is the norm in U and ||Ku|| is the norm in Y.

When we consider an operator that represents the input output map of a dynamic system

operating on L2-spaces, we will also call the induced norm of that operator the (induced)

L2-gain of the system.

In the context of our estimator design problem with unknown initial condition, the input

space U is defined by U = X×L2(T, D1×D2). We define the criterion J02,2(M) as the
gain of the system after interconnection with the estimator Σe(M) by:

J02,2(M) := ||Σp ∧Σe(M)||02,2 = sup
d1∈L2(T,D1)
d2∈L2(T,D2)

x0∈X

||e||2
√

||x0||22 + ||d1||22 + ||d2||22
,

where e satisfies equation (5.3a). Similarly, in the case with known initial condition the

input space U is defined by U = L2(T, D1 × D2). We define the criterion J2,2(M) as
the L2-gain of the system after interconnection with the estimator Σe(M), i.e.:

J2,2(M) := ||Σp ∧Σe(M)||2,2 := sup
d1∈L2(T,D1)
d2∈L2(T,D2)

||e||2
√

||d1||22 + ||d2||22
,

where e satisfies equation (5.3a) for x0 = 0. In either case M ∈M.
Secondly, we introduce the Hilbert-Schmidt norm. It is defined in terms of the following

class of operators:

Definition 5.2.2 (Linear integral operator)

Let U = Rp, Y = Rm and let K : L2(T, U) → L2(T, Y ) be a linear bounded operator

defined for u ∈ L2(T, U) by

(Ku)(t) :=

∫

T

k(t, s)u(s)ds, for t ∈ T. (5.4)

Any such operator K is said to be an integral operator and k is called the integration

kernel.

In this chapter integral operators are used to represent time variant linear systems.

Within the class of integral operators a subclass of operators can be defined. The class

of Hilbert-Schmidt operators is defined as follows:

Definition 5.2.3 (Hilbert-Schmidt operator)

Let U = Rp, Y = Rm and let K : L2(T, U) → L2(T, Y ) be a linear bounded integral

operator defined by equation (5.4) with k ∈ L2(T× T,Rp×m). Any such operator K is
said to be of Hilbert-Schmidt type.
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104 Estimation for Distributed Parameter Systems 5.2

We will now introduce the Hilbert-Schmidt norm.

Definition 5.2.4 (Hilbert-Schmidt norm)

Let K be an operator of Hilbert-Schmidt type. Then the Hilbert-Schmidt norm ||K||HS
is defined by:

||K||HS := ||k ||2 =
(∫∫

T×T
||k(t, s)||2dtds

) 1
2
.

Please note that in the context of our estimator design problems, the Hilbert-Schmidt

operator is only well defined for linear state space systems with initial condition x0 = 0.

The operator K in Definition 5.2.3 cannot be defined for state space systems with non

zero initial conditions. It follows that the operator Σp∧Σe only can be a Hilbert-Schmidt
operator if x0 = 0. For the estimator design problems that minimize the Hilbert Schmidt

norm of Σp ∧ Σe this means that we will only consider the situation with known initial
conditions (i.e. x0 = 0). For this situation it follows from (5.3a) that:

k(t, τ)

[
d1(τ)

d2(τ)

]

=HT (t − τ)Gd1(τ)−M(t, τ)C
∫ τ

0

T (τ − σ)Gd1(σ)dσ+M(t, τ)Sd2(τ).

(5.5)

An explicit representation for k(t, τ) is given in the following Lemma.

Lemma 5.2.1

Let k be the integration kernel of the integral operator that is a realization of the system

Σg ∧Σe . Then:

k(t, τ) =
[

HT (t − τ)G +
∫ t

τ M(t, σ)CT (σ − t)Gdσ M(t, τ)S
]

(5.6)

Proof. The proof follows directly from the observation that:

∫ t

0

∫ τ

0

M(t, τ)CT (τ − σ)Gd1(σ)dσdτ =
∫ t

0

∫ t

σ

M(t, τ)CT (τ − σ)Gdτd1(σ)dσ,

which is obtained by interchange of the order of integration.

The optimization problem therefore amounts to minimizing

JHS(M) := ||Σp ∧Σe(M)||HS = ||k ||2.

Please note that there is no a-priori guarantee that the integration kernel satisfies the

property that k ∈ L2(T × T,Rm×p). However, by assumption we have that M ∈ M,
T (t) is exponentially stable and that T is a finite time interval. Therefore, under these

assumptions k ∈ L2(T× T,Rm×p).
In the context of linear systems, the three norms have important interpretations which

make them of interest for engineering applications. The L2-gain can be interpreted as

the maximal (worst case) energy transfer by a system between the inputs and output.

In this context this is the L2-gain from the disturbances d1, d2 and mismatch due to

unknown initial conditions to the estimator error. The Hilbert-Schmidt norm can be
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interpreted as the integrated the energy in the time variant impulse response of the

system.

In the next section we will show that the interconnection Σp ∧ Σe(M) of the system
and the estimator can be represented as the interconnection of a generalized plant with

a controller. It will turn out that we can solve the estimator design problem for the

generalized plant using duality theory.

5.3 Generalized plant

In the remainder of this chapter we will study the following generalized plant which

provides an alternative representation of the estimator design problem. We introduce

the system Σg : (x0, d1, d2, ẑ) 7→ (e, y), the generalized plant associated with the

estimator design problem for Σp, which is given by:

Σg :







ẋ = Ax +
[

G 0 0
]






d1

d2

ẑ




 , with x(0) = x0.

[

e

y

]

=

[

H

C

]

x +

[

0 0 −I
0 S 0

]





d1

d2

ẑ






. (5.7)

This system is a realization of the operator Σg : X×L2(T, D1×D2×Z)→ L2(T, Z×Y )
that maps (x0, d1, d2, ẑ) 7→ (e, y) and is given by:

(Σg(x0, d1, d2, ẑ))(t) =

[
H

C

]


T (t)x0 +

∫ t

0

T (t − τ)
[
G 0 0

]





d1(τ)

d2(τ)

ẑ(τ)



dτ +

[
0 0 −I
0 S 0

]




d1(t)

d2(t)

ẑ(t)







 .

(5.8)

The feedback interconnection of the generalized plant Σg and the estimator Σe is defined

by sharing the variables y and ẑ between Σg and Σe as shown in Figure 5.4a with Σc =

Σe . This interconnection defines the operator Σg∧Σe : X×L2(T, D1×D2)→ L2(T, Z)

for the case of unknown initial condition and Σg ∧ Σe : L2(T, D1 × D2) → L2(T, Z)

when the initial condition is known. Observe that the following holds.

Lemma 5.3.1

For every M ∈M there holds that Σp ∧Σe(M) = Σg ∧Σe(M).

Proof. The equivalence follows trivially from the structure of Σp and Σg.

The lemma therefore states that the problem to design an estimator for the plant Σp
in (5.1) as in Figure 5.3 is equivalent to the problem to design a controller or feedback

controller Σe for Σg in (5.7) as in Figure 5.4a.
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5.4 Duality between estimation and control

In the literature it is often stated that the control and estimation problem are dual

problems. This duality has often been used to derive the solution for estimation prob-

lems, for instance in [Kailath, 1980, Chapter 4], [Kailath et al., 2000, chapter 15] and

[Kwakernaak and Sivan, 1972, Section 4.4]. However, the meaning of the duality struc-

ture needs to be made precise in order to justify this observation. In this section we

define the notion of a dual system for infinite dimensional systems. This has been done

in [Van der Schaft, 1990] for finite dimensional systems and the approach taken there

will be generalized to infinite dimensional systems where the state space is a Hilbert

space. We will first characterize the dual system of Σg, by providing an explicit state

space realization and use this to establish the connection between optimal estimation

and the dual control problems. This enables to derive a solution to the estimator design

problems on the bases of known solutions for optimal control problems.

5.4.1 Dual systems

In this section we will establish an interpretation of dual systems as Hilbert adjoint

operators. Consider the general system Σ:

Σ :

{

ẋ = Ax + Bu
y = Cx +Du

(5.9)

defined on the time interval T. Assume x(0) = x0 ∈ X, u ∈ L2(T, U), y ∈ L2(T, Y ) and
let A : D(A) → X be the infinitesimal generator of an exponentially stable semi group

S(t) for t ∈ T. It follows from [Curtain and Zwart, 1995] that the unique mild solution
is given by:

y(t) =CS(t)x0 +
∫ t

0

CS(t − τ)Bu(τ)dτ +Du(t), for t ∈ T

=:Σ(x0, u)(t) (5.10)

where we denote the system operator mapping from (x0, u) ∈ X × L2(T, U)
to y ∈ L2(T, Y ) by Σ. This mapping is well defined under the assumption that S
is exponentially stable. Then we recall the definition of a adjoint operator and two

properties.

Definition 5.4.1 (Hilbert adjoint operator)

[Kreyszig, 1989, Def. 10.1-2] Let T : D(T ) → H be a (possibly unbounded) densely

defined linear operator in a complex Hilbert space H. Then the Hilbert adjoint operator

T ∗ : D(T ∗) → H of T is defined as follows. The domain D(T ∗) of T ∗ consists of all
y ∈ H such that there is a y ∗ ∈ H satisfying

〈T x, y〉 = 〈x, y ∗〉
for all x ∈ D(T ). For each such y ∈ D(T ∗) the Hilbert adjoint operator T ∗ is defined
in terms of that y ∗ by

y ∗ = T ∗y .
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The following property relates the Hilbert-Schmidt norm of operators K and its ad-joint

K∗:

Lemma 5.4.1

Let K be a Hilbert Schmidt operator and || · ||HS the Hilbert-Schmidt norm, then:

||K||HS = ||K∗||HS

Proof. K∗ is well defined for any operator K and can be realized by
(K∗y)(t) =

∫

T
k∗(s, t)y(s)ds, where k∗ is the adjoint kernel, [Weidmann, 1980]. The

property follows from the definition of ||K||HS

||K||2HS :=
∫∫

T×T
||k(t, s)||22dtds =

∫∫

T×T
||(k(t, s))∗||22dtds = ||K∗||2HS.

The following lemma relates the induced norm of operators K and its adjoint K∗:

Lemma 5.4.2

Let U and Y be arbitrary Hilbert spaces and suppose K : U → Y is a linear map and
let K∗ denote the adjoint of K. The induced norm of a operator K and the adjoint
operator K∗ are equal, i.e ||K|| = ||K∗||.

This is a standard result for operators on a Hilbert space, and can be found in for

instance [Kreyszig, 1989, thm 3.9-2].

In order to establish the notion of dual systems we treat linear systems as linear operators

where the domain and range are Hilbert spaces. With use of Definition 5.4.1 we can

now define the dual system as follows:

Definition 5.4.2 (Duality for systems with unknown initial condition)

Let Σ be a system with system operator Σ defined as in (5.10). The dual system of Σ,

denoted by Σ∗, is the system with system operator Σ∗ : L2(T, Y ) → X × L2(T, U),
and is defined as the Hilbert adjoint of Σ. Hence, Σ∗ is the operator for which
〈〈Σ(x0, u), ỹ〉〉 = 〈〈(x0, u),Σ∗ỹ〉〉 for all (x0, u) ∈ X × L2(T, U) and ỹ ∈ L2(T, Y ). Here,
〈〈(x0, u), (x̃0, ũ)〉〉 := 〈x0, x̃0〉+ 〈〈u, ũ〉〉.

The following theorem relates the state space realizations of a system to the state space

realization of its dual system. In order to prove the theorem, the following lemma is

needed.

Lemma 5.4.3

Suppose the operator A with domain D(A) is the infinitesimal generator of the semi-
group S(t). Let the operator A∗ be the adjoint operator of A and let for every t the
operator S∗(t) be the adjoint operator of S(t). Then A∗ is the infinitesimal generator
of S∗(t).

Proof. Given that A generates S(t) and suppose Ā is the generator of S∗(t). Then it
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follows from the definitions of generator of the semigroup operator that:

Ax = lim
h→0

S(t + h)x − S(t)x
h

for :x ∈ D(A)

Āx = lim
h→0

S∗(t + h)x − S∗(t)x
h

for :x ∈ D(A∗)

From the definition of the adjoint operator of A it follows 〈Ax1, x2〉 = 〈x1,A∗x2〉 for all
x1 ∈ D(A) and x2 ∈ D(A∗). We infer:

〈Ax1, x2〉 = lim
h→0

1

h
〈S(t + h)x1 − S(t)x1, x2〉

= lim
h→0

1

h
(〈x1,S∗(t + h)x2 − S∗(t)x2〉) = 〈x1, Āx2〉.

Which shows A∗ = Ā for x ∈ D(A) ∩D(A∗)
Theorem 5.4.4

Let the system operator Σ : X × L2(T, U) → L2(T, Y ) be defined by Equation (5.10).

Then the dual operator Σ∗ : L2(T, Y )→ X × L2(T, U) is given by Σ∗ỹ := (p0, ũ) with:

p0 =

∫ te

0

S̃(0, τ)C∗ỹ(τ)dτ

ũ(t) =

∫ te

t

B∗S̃(t, τ)C∗ỹ(τ)dτ +D∗ỹ(t)

where t ∈ T and S̃(t, τ) := S∗(τ − t) : X → X is the mild evolution operator with

infinitesimal generator −A∗ for t ∈ T. Moreover the following differential equation with
end-point condition p(te) = 0 is a realization of the operator Σ

∗:

Σ∗ :

{

ṗ = −A∗p − C∗ỹ ,
ũ = B∗p +D∗ỹ .

(5.11)

Before we present the proof of Theorem 5.4.4 we introduce the following Lemma.

Lemma 5.4.5

Consider the system Σ∗, defined by Equation (5.11), with end-point condition p(te) =
pte . Then p(t), defined by:

p(t) = S∗(te − t)pte +
∫ te

t

S∗(τ − t)C∗ỹ(τ)dτ for t ∈ T,

is a solution of Σ∗.

Proof. We differentiate p with respect to t and show that (5.11) holds.

ṗ(t) =−A∗S∗(te − t)p(te) +
d

dt

∫ te

t

S∗(τ − t)C∗ỹ(τ)dτ

=−A∗S∗(te − t)p(te) +
∫ te

t

d

dt
S∗(τ − t)C∗ỹ(τ)dτ − S∗(t − t)C∗ỹ(t),

=−A∗
(

S∗(te − t)p(te) +
∫ te

t

S∗(τ − t)C∗ỹ(τ)dτ
)

− S∗(t − t)C∗ỹ(t)

=−A∗p(t)− C∗ỹ(t).
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Proof of Theorem 5.4.4. In order to prove the Theorem, it will be validated whether

Σ∗ satisfies Definition 5.4.2. Given that A is the infinitesimal generator of a semigroup
S(t) for t ∈ T, it follows from Lemma 5.4.3 that A∗ is the infinitesimal generator of
S∗(t). Suppose x0, p0 ∈ X, u(t), ũ(t) ∈ U and y(t), ỹ(t) ∈ Y . Then, we observe that
the following relation holds:

d

dt
〈x(t), p(t)〉+ 〈y(t), ỹ(t)〉 = 〈u(t), ũ(t)〉

Indeed,

d

dt
〈x(t), p(t)〉+ 〈y(t), ỹ(t)〉 =

〈Ax(t) + Bu(t), p(t)〉+ 〈Cx(t) +Du(t), ỹ(t)〉+ 〈x(t),−A∗p(t)− C∗ỹ(t)〉
= 〈u(t),B∗p(t)〉 + 〈u(t),D∗ỹ(t)〉 = 〈u(t), ũ(t)〉

Hence, after integration over T = [0, te ], we infer

〈x(te), p(te)〉 − 〈x0, p(0)〉+ 〈〈Σ(x0, u), ỹ〉〉 = 〈〈u, ũ〉〉 . (5.12)

In particular, with the end-condition on p(te) = 0, we find:

〈〈Σ(x0, u), ỹ〉〉 = 〈x0, p(0)〉+ 〈〈u, ũ〉〉 .

By definition, the left hand side equals 〈〈(x0, u),Σ∗ỹ〉〉, so we infer that:

〈〈(x0, u),Σ∗ỹ〉〉 = 〈x0, p(0)〉+ 〈〈u, ũ〉〉 .

This shows that Σ∗ỹ = (p0, ũ), where p0 = p(0) with p(t) the solution of (5.11) given
by:

{

p(t) = S∗(te − t)p(te) +
∫ te
t S∗(τ − t)C∗ỹ(τ)dτ

ũ(t) = B∗p(t) +D∗ỹ(t)

Since p(te) = 0, this concludes the proof.

We remark that the mild evolution operator S̃(te , t) := S∗(te − t) is not a semigroup
operator, since S̃(te , t1+ t2) 6= S̃(te , t1)S̃(te , t2). However, S̃(te , te − t) is a semigroup
operator with infinitesimal generator A∗, since S̃(te , te − t) = S∗(t). We introduce the
following corollary.

Corollary 5.4.6

Let the system operator Σ : X × L2(T, U) → L2(T, Y ) be defined by Equation (5.10)

and let Σ∗ : L2(T, Y )→ X × L2(T, U) be the dual operator. Then ||Σ|| = ||Σ∗||.

This is an application of Lemma 5.4.2.

Theorem 5.4.4 and Corollary 5.4.6 consider the case where Σ : X × L2(T, U) →
L2(R, Y ). Duality for operators Σ : L2(T, U) → L2(R, Y ) can be defined equivalently.

First we apply Definition 5.4.1 to define Σ∗ for this case.
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Definition 5.4.3 (Duality for systems with x0 = 0)

Let Σ be a system with system operator Σ defined as in (5.10) with x0 = 0. The

dual system of Σ, denoted by Σ∗, is the system with system operator Σ∗ : L2(T, Y )→
L2(T, U) and is defined as the Hilbert adjoint of Σ. Hence, Σ

∗ is the operator for which
〈〈Σ(u), ỹ〉〉 = 〈〈u,Σ∗ỹ〉〉 for all u ∈ L2(T, U) and ỹ ∈ L2(T, Y ).

A characterization of Σ∗ is provided by the following theorem.

Theorem 5.4.7

Let the system operator Σ : L2(T, U) → L2(T, Y ) be defined by Equation (5.10) with

x0 = 0. Then the dual operator Σ
∗ : L2(T, Y )→ L2(T, U) is given by Σ

∗ỹ := ũ with:

ũ(t) =

∫ te

t

B∗S̃(t, τ)C∗ỹ(τ)dτ +D∗ỹ(t)

where t ∈ T and S̃(t, τ) := S∗(τ − t) : X → X is the mild evolution operator with

infinitesimal generator −A∗ for t ∈ T. Moreover, also in this case (5.11) is a state
space realization of Σ∗ with end point condition p(te) = 0.

Proof. The proof of this theorem is identical to the proof of Theorem 5.4.4, when one

sets x0 = 0 in Equation (5.12).

We introduce the following corollary.

Corollary 5.4.8

Let the system operator Σ : L2(T, U) → L2(T, Y ) be defined by Equation (5.10) with

x0 = 0 and let Σ
∗ : L2(T, Y )→ L2(T, U) be the dual operator. Then ||Σ||HS = ||Σ∗||HS

and ||Σ||2,2 = ||Σ∗||2,2.

This is an application of the lemmas 5.4.1 and (5.4.2).

By the lemmas 5.4.1 and 5.4.2 we have shown that the operators Σ and Σ∗ have equal
L2-gain and equal HS-norm. This property will enable us to relate the optimal HS

estimation problem to the optimal LQR control problem and to relate the optimal L2-

gain estimator design problem to the optimal L2-gain controller design problem, as we

will show later in Subsection 5.4.3. First, we will use the duality theory of this section

to obtain the dual systems of Σg, Σe(M) and Σg ∧Σe(M).

5.4.2 Dual systems and interconnections

For the situation where the initial condition is unknown, consider the system Σg defined

in (5.7) together with the corresponding system operator

Σg : X × L2(T, D1 ×D2 × Z)→ L2(T, Z × Y ).

Using Theorem 5.4.4 it follows that the adjoint system operator

Σ∗g : L2(T, Z × Y )→ X × L2(T, D1 ×D2 × Z)
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satisfies:

(Σ∗g(ẽ, ỹ)) =(p(0), d̃1, d̃2, ˆ̃z) for t ∈ T,

where, for any t ∈ T,

p(t) =

∫ te

t

T ∗(τ − t)
[
H∗ C∗

]
[
ẽ(τ)

ỹ(τ)

]

dτ (5.13)





d̃1(t)

d̃2(t)
ˆ̃z(t)



 =





G∗

0

0



 p(t) +





0 0

0 S∗

−I 0





[
ẽ(t)

ỹ(t)

]

. (5.14)

For the situation where the initial condition is known, consider the system Σg defined

in (5.7) with x0 = 0, together with the corresponding system operator

Σg : L2(T, D1 ×D2 × Z)→ L2(T, Z × Y ).

Using Theorem 5.4.7 it follows that the adjoint system operator

Σ∗g : L2(T, Z × Y )→ L2(T, D1 ×D2 × Z)

satisfies:

Σ∗g(ẽ, ỹ) =(d̃1, d̃2, ˆ̃z) for t ∈ T,

with (d̃1, d̃2, ˆ̃z) defined by Equation 5.14.

Moreover, as observed in Subsection 5.4.1, in either case a state space representation

of the adjoint system Σ∗g is given by:

Σ∗g :







ṗ = −A∗p −
[

H∗ C∗
]
[

ẽ

ỹ

]






d̃1

d̃2
ˆ̃z




 =






G∗

0

0




 p +






0 0

0 S∗

−I 0






[

ẽ

ỹ

] , (5.15)

with p(te) = 0.

Consider Σg together with its dual Σ
∗
g. Let Σc be a linear causal map

Σc : L2(T, Y )→ L2(T, Z)

and let Σ∗c be its dual. Consider the interconnected systems Σg ∧ Σc and Σ∗g ∧ Σ∗c as
depicted in Figure 5.4. Then, depending on whether x0 is considered unknown or known

in Σg, we have that

Σg ∧Σc : X × L2(T, D1 ×D2)→ L2(T, Z)

or

Σg ∧Σc : L2(T, D1 ×D2)→ L2(T, Z).
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d1, d2 e

Σg

Σc

ẑ y

(a) Estimator design problem reformulated as

controller design problem for a generalized plant

Σg .

ẽ d̃1, d̃2

Σ∗g

Σ∗c

ỹ ˆ̃z

(b) Controller design problem for the dual system

of the generalized plant Σ∗g

Figure 5.4: Reformulations of the estimator design problem using a generalized plant

and dualization of the problem.

This interconnection is shown in Figure 5.4a. Similarly, Σ∗g ∧ Σ∗c defines a mapping
L2(T, Z)→ X×L2(D1×D2) or L2(T, Z)→ L2(T, D1×D2) depending on whether the
initial condition x(0) = x0 in Σg is known or unknown, respectively. This interconnection

is shown in Figure 5.4b.

We introduce the following lemma, which states basically that the operations of inter-

connection of Σg and Σc and dualization of Σg and Σc commute.

Lemma 5.4.9

Let Σg be given by (5.7) and let the LTI map Σc : L2(T, Y )→ L2(T, Z) be linear and

causal. Then with either of the interpretations

Σg ∧Σc : X × L2(T, D1 ×D2)→ L2(T, Z)

or

Σg ∧Σc : L2(T, D1 ×D2)→ L2(T, Z),

we have that:

(Σg ∧Σc)∗ = Σ∗g ∧Σ∗c .

Proof. The equality can be derived by a straightforward calculation of (Σg ∧ Σc)∗ and
Σ∗g ∧Σ∗c using their state space representations.

Now suppose that Σc = Σe(M) is defined by the estimator given by Equation (5.2).

Then the dual of the estimator Σc , i.e. Σ
∗
c = Σ

∗
e : L2(T, Z)→ L2(T, Y ) is represented

by:

Σ∗e(M) : ỹ(t) =

∫ te

t

M∗(τ, t)z̃(τ)dτ, (5.16)

We infer that Σ∗g ∧Σ∗e is represented by the Equations (5.19) below, in the sense that

(Σ∗g ∧Σ∗e)ẽ = (pcl(0), d̃1, d̃2) (5.17)

in the case of unknown initial conditions and

(Σ∗g ∧Σ∗e)ẽ = (d̃1, d̃2) (5.18)
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Σg

Σ∗g

Σe

Σ∗e

Dualization

Synthesis

Dualization

Synthesis

Figure 5.5: Direct design path and alternative design path for the design of estimator

Σe .

in the case of known initial conditions (x0 = 0). Here,

pcl(t) =

∫ te

t

T ∗(τ − t)
[
H∗ C∗

]
[

ẽ(τ)

−
∫ te
τ M

∗(σ, τ)ẽ(σ)dσ

]

dτ, (5.19a)

[
d̃1(t)

d̃2(t)

]

=

[
G∗

0

]

pcl(t) +

[
0 0

0 S∗

] [
ẽ(t)

−
∫ te
t M

∗(τ, t)ẽ(τ)dτ

]

. (5.19b)

5.4.3 Implications optimal estimation vs. optimal control

Note that by Lemma 5.3.1, we have that Σp∧Σe(M) = Σg∧Σc whenever Σc = Σe(M).
The system Σ∗e(M) plays the role of Σ

∗
c in Lemma 5.4.9 and is a controller for Σ

∗
g. As

such, the system Σc = Σ
∗
e(M) can be interpreted as an output feedback regulator for

Σ∗g.

We are now in the position to present the relation between estimator design and con-

troller design. We will show that the estimator design Problems 5.1, 5.2, 5.3, and 5.4

can be formulated as regulator design problem for the dual system, interconnected as

in Figure 5.4b. The aim of this approach is to solve the estimator design problem via

reformulation of the estimation problem by dualization as control problem, then obtain

the solutions to the resulting control problem and obtain the solutions for the estimation

problem from the latter by dualization. This approach is shown in Figure 5.5.

The following two theorems show that this is possible.

Theorem 5.4.10

Consider Σp given by (5.1) , Σg given by (5.7) and Σ
∗
g given by (5.15). Let Σc = Σe(M)

with M ∈M. Then:

i. J02,2(M) := ||Σp∧Σe(M)||02,2 = ||Σg∧Σc ||02,2 = ||(Σg∧Σc)∗||2,02 = ||Σ∗g∧Σ∗c ||2,02,
ii. J2,2(M) := ||Σp ∧Σe(M)||2,2 = ||Σg ∧Σc ||2,2 = ||(Σg ∧Σc)∗||2,2 = ||Σ∗g ∧Σ∗c ||2,2,
iii. JHS(M) := ||Σp ∧Σe(M)||HS = ||Σg ∧Σc ||HS = ||(Σg ∧Σc)∗||HS = ||Σ∗g ∧Σ∗c ||HS.

where || · ||2,02 denotes the induced norm for operators in the class L2(T, Z) → X ×
L2(T, D1 ×D2).
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Proof. We prove i . The equality of ||Σp ∧Σe(M)||02,2 and ||Σg ∧Σc ||02,2 follows from
Lemma 5.3.1. The equality of ||Σg ∧Σc ||02,2 and ||(Σg ∧Σc)∗||2,02 follows from Corol-
lary 5.4.6. The equality of ||(Σg∧Σc)∗||2,02 and ||Σ∗g∧Σ∗c ||2,02 follows from Lemma 5.4.9.
The proof of (i i) and (i i i) follows identically by application of Corollary 5.4.8.

From this theorem the following important corollary follows.

Corollary 5.4.11

Let Σ∗c : L2(T, Z)→ L2(T, Y ) be given by

Σ∗c(M) : ỹ(t) =

∫ te

t

M∗(τ, t)z̃(τ)dτ,

with M ∈M. Then:
i. M ∈M minimizes J02,2(·) if and only if M minimizes ||Σ∗g ∧Σ∗c(·)||2,02.
ii. M ∈M minimizes J2,2(·) if and only if M minimizes ||Σ∗g ∧Σ∗c(·)||2,2.
iii. M ∈M minimizes JHS(·) if and only if M minimizes ||Σ∗g ∧Σ∗c(·)||HS.

The proof of this corollary follows directly from Theorem 5.4.10 by the quality of the

norms ||Σp ∧Σe(M)|| and ||Σ∗g ∧Σ∗c(M)||.
Corollary 5.4.11 shows how estimation problems and control problems are related. The

norms which we have introduced, the induced norm and the Hilbert-Schmidt norm, do

satisfy the property ||Σ|| = ||Σ∗||, which we have shown in the Lemmas 5.4.2, and 5.4.1,
respectively. Therefore, Corollary 5.4.11 can be used to solve the estimator design

problem for these norms. In the following sections we will employ the duality result to

derive the solutions to the Problems 5.1, 5.2, 5.3, and 5.4 for the design estimators for

the case of the Hilbert-Schmidt norm and the induced L2,2 norm. It will turn out that

due to the specific structure of the equivalent regulator design problems, these problems

admits an insightful solution based on a completion of the squares argument.

5.5 Optimal Hilbert-Schmidt norm estimator design

For distributed parameter systems, the solution of the optimal state estimation problem

has been solved in a stochastic setting, for instance in [Curtain and Pritchard, 1978].

In this section we present a complete solution to the design of a deterministic optimal

Hilbert-Schmidt norm output estimator for linear distributed parameter systems. The

approach avoids stochastic interpretations of variables and is based on methods from

functional analysis. For the finite dimensional H2-estimator design problem on a infinite

time horizon it is known that the problem is dual to the linear quadratic optimal control

problem. We will generalize this result to the estimator design problem in an infinite

dimensional setting on a finite time horizon. The result is a generalization of a result

for finite dimensional systems presented in [Mutsaers and Weiland, 2009] and is based

on [Curtain and Zwart, 1995]. In the first section we give a precise formulation of the

optimal Hilbert-Schmidt norm estimator design problem. Subsequently, we introduce an

equivalent dual linear quadratic (LQ) control problem and show that this problem can
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be solved by using a completion of the squares argument. Finally the solution of the

LQ-control problem is used to derive the optimal HS-estimator. It will be shown that

the 2-norm criterion leads to a generalization of the well known Kalman estimator.

5.5.1 Formulation of the estimator design problem

In this section we consider the design of an optimal estimator, based on minimization

of the Hilbert-Schmidt norm of the system Σg ∧Σe(M) obtained after interconnection
of the plant with the estimator.

As design criterion we consider the functional J :M→ R which represents the Hilbert-
Schmidt norm of the interconnected systems Σg and Σe(M):

JHS(M) = ||Σg ∧Σe(M)||HS. (5.20)

For this criterion we consider the Problems 5.1, 5.2, 5.3, and 5.4 stated in section 5.2.

In the following section we will use the theory of duality from section 5.4.1 to introduce

a regulator design problem that can be solved by a completion of the square argument.

5.5.2 Formulation of the dual control problem

In this section we will derive an optimal controller Σ∗c(M) for Σ
∗
g which will be shown to

be equivalent to the problem of minimization of JHS in (5.20) over M ∈M.

Theorem 5.4.10 shows that the criterion (5.20) can be reformulated as:

JHS(M) =||Σ∗g ∧Σ∗e(M)||HS. (5.21)

Then Corollary 5.4.11 states that it is possible to design a linear controller Σ∗c :
L2(T, Z) → L2(T, Y ) that minimizes ||Σ∗g ∧ Σ∗c ||HS and obtain the solution for the
estimator design problem by dualization of this controller by the following equivalence:

JHS(M) =||Σg ∧Σe(M)||HS = ||Σ∗g ∧Σ∗e(M)||HS (5.22)

In this section the estimator design problem will be solved by minimization of (5.21) with

respect to M ∈ M. In order to characterize the Hilbert-Schmidt norm of the system
Σ∗g ∧ Σ∗e(M), i.e. ||Σ∗g ∧ Σ∗e(M)||HS the integral operator associated to the system
Σ∗g ∧Σ∗e(M) will be obtained in the following theorem.
Theorem 5.5.1

Consider the system Σ∗g ∧Σ∗e(M) as given by (5.18). The system Σ∗g ∧Σ∗e(M) can be
represented as integral operator K with the realization:

[
d̃1(t)

d̃2(t)

]

= (Kẽ)(t)=

∫

T

[
KM(t, s)

LM(t, s)

]

ẽ(s)ds, (5.23)
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where KM and LM are given by:

KM(t, s)=

{

G∗
[
T ∗(s − t)H∗ −

∫ s

t T
∗(σ − t)C∗M∗(s, σ)dσ

]
for 0 ≤ t ≤ s,

0 s < t ≤ te ,
(5.24a)

LM(t, s) =

{

−S∗M∗(s, t), for 0 ≤ t ≤ s
0 for s < t ≤ te .

(5.24b)

Proof. The proof follows by interchanging the integration order in Equation (5.19).

First, rewrite Equation (5.19a) to:

pcl(t) =

∫ te

t

T ∗(τ − t)H∗ẽ(τ)dτ −
∫ te

t

∫ te

τ

T ∗(τ − t)C∗M∗(σ, τ)ẽ(σ)dσdτ.

Then the order of integration in the second integral is interchanged. Here is has been

used that the integration domain represented by the inequalities τ ≤ σ ≤ te and t ≤ τ ≤
te is equivalent to the domain of integration represented by the inequalities t ≤ τ ≤ σ
and t ≤ σ ≤ te , to obtain:

pcl(t) =

∫ te

t

T ∗(τ − t)H∗ẽ(τ)dτ −
∫ te

t

∫ σ

t

T ∗(τ − t)C∗M∗(σ, τ)dτẽ(σ)dσ

Finally, the latter equation is rewritten as single integral.

pcl(t) =

∫ te

t

[

T ∗(τ − t)H∗ −
∫ τ

t

T ∗(σ − t)C∗M∗(τ, σ)dσ
]

ẽ(τ)dτ

By use of this representation of pcl(t) in (5.19b) it follows that Σ
∗
g ∧Σ∗e can be repre-

sented by:
[
d̃1(t)

d̃2(t)

]

=

∫ te

t

[
G∗
[
T ∗(τ − t)H∗ −

∫ τ

t T
∗(σ − t)C∗M∗(τ, σ)dσ

]

−S∗M∗(τ, t)

]

ẽ(τ)dτ,

from shows (5.23), such that KM and LM follow. It has been demanded that the

estimator Σe is causal (i.e. M(t, s) = 0 for s > t). From this it follows that M∗(s, t) =
0 for s < t. Therefore LM(t, s) = 0 for s < t ≤ te , which completes the proof.

From Definition 5.2.4 it follows that the Hilbert-Schmidt norm of the integral operator

K which implements Σ∗g ∧Σ∗e(M) can now be computed by evaluation of the following:

JHS(M) = ||Σ∗g ∧Σ∗e(M)||HS =
(
∫

T

∫

T

∥
∥
∥
∥

[
KM(t, s)

LM(t, s)

]∥
∥
∥
∥

2

2

dt ds

) 1
2

Since KM(t, s) = 0 and LM(t, s) = 0 for s < t ≤ te , the latter is equal to:

JHS(M) =||Σ∗g ∧Σ∗e(M)||HS =
(
∫

T

∫ s

0

∥
∥
∥
∥

[
KM(t, s)

LM(t, s)

]∥
∥
∥
∥

2

2

dt ds

) 1
2

. (5.25)

In the next section we will consider the problem of estimator design for the situation

Z = R. We will solve the estimator design problem for this assumption and then

generalize the solution to Z = Rn.
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5.5.3 Dual optimal control problem for n = 1

In this section we present a solution to the problem of minimization of the functional

JHS(M) for the situation of estimation of a single output variable. That is Z = R, or

n = 1. We assume that the operator H is defined by Hx = 〈h, x〉 with h ∈ X. We
will introduce an artificial linear infinite dimensional system and will show the relation

between this system and the operators KM and LM for Z = R. We will show that

there is a relation between the estimator design problem and a linear quadratic regulator

design problem for the artificial system. The solution of the linear quadratic regulator

design problem for infinite dimensional systems is widely known and can be found in,

for instance [Curtain and Zwart, 1995]. We will indicate how the solution of the LQR

design problem can be used to solve the estimator design problem, which we will do in

the next section.

Consider the following system:

Σ′ :







dξ
dt (t, s) = −A∗ξ(t, s)− C∗w(t, s),
κ(t, s) = G∗ξ(t, s),

λ(t, s) = S∗w(t, s),

(5.26)

with end-point condition ξ(te , s) = ξte and w ∈ L2(T × T, Y ) and t ∈ [0, te ]. In this
section the variable s will be considered to be fixed in the interval T and as such s will

be interpreted as a parameter of the system Σ′. The following lemma shows how the
solution to this system can be characterized.

Lemma 5.5.2

Consider the system Σ′ with end-point condition ξ(te , s) = ξte ,s and w ∈ L2(T×T, Y ),
s ∈ [0, te ] and t ∈ [0, te ]. Then the solution ξ(t, s) to Equations (5.26) is given by:

ξ(t, s) =T ∗(te − t)ξte +
∫ te

t

T ∗(τ − t)C∗w(τ, s)dτ. (5.27)

Proof. We differentiate the right-hand side of (5.27) with respect to t to obtain:

dξ
dt (t, s) =− A∗T ∗(te − t)ξte +

∫ te

t

AT ∗(τ − t)C∗w(τ, s)dτ − T ∗(t − t)C∗w(t, s),

=− A∗ξ(t, s)− C∗w(t, s),

where T ∗(te − t) is the mild evolution operator with infinitesimal generator −A∗. This
shows that (5.27) satisfies the equations (5.26) and concludes the proof.

Please note that the solutions of the system are only well defined for t < te since the

semigroup operator T ∗(t) is only defined for t > 0.

The following Theorem shows the relation between KM(t, s) and LM(t, s) and the

system Σ′ defined by equations (5.26).

Theorem 5.5.3

Consider the system Σ′ given by equations (5.25) and fix s ∈ T. Let M ∈ M, let
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w(t, s) = −M∗(s, t), w(t, s) = 0 for s < t < te and let ξ(s, s) = ξs = h. Let κ(t, s)

and λ(t, s) be the outputs of the system (5.26). Then the following holds:

KM(t, s) = κ(t, s) and LM(t, s) = λ(t, s), for t ∈ [0, s].

Proof. It follows from Lemma 5.4.5 that since w(t, s) = −M∗(s, t) and ξ(s, s) = h,

the state ξ(t, s) satisfies:

ξ(t, s) =T ∗(s − t)h −
∫ s

t

T ∗(τ − t)C∗M∗(s, τ)dτ, for t ∈ [0, s],

Then it follows from Lemma 5.5.2 that κ(t, s) and λ(t, s) satisfy:

κ(t, s) =G∗T ∗(s − t)h − G∗
∫ s

t

T ∗(τ − t)C∗M∗(s, τ), dτ for t ∈ [0, s],

λ(t, s) =S∗M∗(s, t).

By Theorem 5.5.1, and the observation that H∗ = h it follows that KM(t, s) = κ(t, s)
and LM(t, s) = λ(t, s) for t ∈ [0, s].

It now follows that the optimization criterion JHS(M) can be related to the system (5.26)

in the following way.

Corollary 5.5.4

LetM ∈M and let κ(t, s) and λ(t, s) be the output of the system (5.26) with end-point
condition ξ(s, s) = ξs = h and input w(t, s) = −M∗(s, t). Then JHS(M) equals:

JHS(M) =

(∫

T

∫ s

0

||κ(t, s)||22 + ||λ(t, s)||22 dt ds
) 1
2

. (5.28)

This result follows immediately from Theorem 5.5.3 since KM(t, s) = κ(t, s) and

LM(t, s) = λ(t, s) for 0 < t < s under the conditions which have been assumed.

Theorem 5.5.5

Let M ∈ M and let ξ be the state of the system (5.26) with end-point condition

ξ(t, s) = ξs,s = h and input w(t, s) = −M∗(s, t). Then J2HS can be rewritten as
follows:

J2HS(M)=

∫ te

0

[

〈h,Π(s)h〉+
∫ s

0

|| − (SS∗)
1
2M∗(s, t) + (SS∗)−

1
2CΠ(t)ξ(t, s)||22 dt

]

ds

where the operator Π(t) : X → X with t ∈ T is defined as the unique self-adjoint
solution to the Riccati differential equation:

〈ξn, Π̇ξm〉 =〈ξn,ΠA∗ξm〉+ 〈ΠA∗ξn, ξm〉+ 〈G∗ξn, G∗ξm〉 − 〈(SS∗)−1CΠξm, CΠξn〉,
(5.29)

for all ξm, ξn ∈ D(A∗) with boundary condition Π(0) = 0.
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Before this theorem will be proved, a general LQR design problem for the system (5.26)

will be introduced. The solution of the linear quadratic regulator design problem for the

system (5.26) will be presented and this solution will be used to prove Theorem 5.5.5

and to find the minimizer of the functional JHS(M).

Lemma 5.5.6

Consider the system (5.26) with end-point condition ξ(s, s) = ξs ∈ X and input

w(·, s) := ws where s ∈ T. Moreover, consider the criterion J ′(ws , ξs), defined by:

J ′(ws , ξs) =

(∫ s

0

||κ(t, s)||22 + ||λ(t, s)||22dt
) 1
2

. (5.30)

Let ws,opt ∈ L2(T, Y ) be the minimizer of J ′(ws , ξs) i.e.:

ws,opt = arg inf
ws∈L2(T,Y )

J ′(ws , ξs).

Then, ws,opt(t) is unique and satisfies:

ws,opt(t) = −(SS∗)−1CΠ(t)ξ(t, s), (5.31)

where the operator Π(t) : X → X is defined as the unique self-adjoint solution to the

Riccati differential equation (5.29) on the interval t ∈ [0, s]. Moreover, the value of
infimum of J ′(ws , ξs) is given by:

J ′(ws,opt , ξs) = (〈ξs ,Π(s)ξs〉 − 〈ξ(0, s),Π(0)ξ(0, s)〉)
1
2 .

Proof. We introduce the functional V (ξ) = 〈ξ,Πξ〉 and differentiate the functional
V (ξ(t, s)) with respect to t:

dV (ξ(t, s))

dt
= 〈ξ̇(t, s),Πξ(t, s)〉+ 〈Πξ(t, s), ξ̇(t, s)〉+ 〈ξ(t, s), Π̇ξ(t, s)〉.

Then we use that Π solves the Riccati equation for all ξ ∈ D(A∗), and we evaluate
dV (ξ(t,s))
dt at ξ(t, s) that satisfy the Equations (5.26). We omit the time indices for

brevity and rewrite V̇ as follows:

dV (ξ)

dt
=〈−A∗ξ − C∗w,Πξ〉+ 〈Πξ,−A∗ξ − C∗w〉+ 〈ξ,ΠA∗ξ〉+ 〈ΠA∗ξ, ξ〉

+ 〈G∗ξ, G∗ξ〉 − 〈(SS∗)−1CΠξ, CΠξ〉

=− 〈C∗w,Πξ〉 − 〈Πξ, C∗w〉+ 〈G∗ξ, G∗ξ〉 − 〈(SS∗)−
1
2 CΠξ, (SS∗)−

1
2 CΠξ〉

=+ 〈G∗ξ, G∗ξ〉 − 〈(SS∗)
1
2w, (SS∗)−

1
2 CΠξ〉

− 〈(SS∗)−
1
2 CΠξ, (SS∗)

1
2w〉 − 〈(SS∗)−

1
2 CΠξ, (SS∗)−

1
2 CΠξ〉

=+ 〈G∗ξ, G∗ξ〉+ 〈(SS∗)
1
2w, (SS∗)

1
2w〉−

〈(SS∗)
1
2w + (SS∗)−

1
2 CΠξ, (SS∗)

1
2w + (SS∗)−

1
2 CΠξ〉

=+ ||G∗ξ||22 + ||(SS∗)
1
2w ||22 − ||(SS∗)

1
2w + (SS∗)−

1
2 CΠξ||22
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Hence, after integration of V̇ over the index t in the interval [0, s] and substitution of

G∗ξ = κ and S∗w = λ it follows that:

〈ξ(s, s),Π(s)ξ(s, s)〉 − 〈ξ(0, s),Π(0)ξ(0, s)〉 =
∫ s

0

||κ(τ, s)||22 + ||λ(τ, s)||22 − ||(SS∗)
1
2w(τ, s) + (SS∗)−

1
2CΠ(τ)ξ(τ, s)||22dτ.

Rearrangement of the latter equation shows that:

J ′2(ws , ξs) = 〈ξ(s, s),Π(s)ξ(s, s)〉 − 〈ξ(0),Π(0)ξ(0)〉

+

∫ s

0

||(SS∗)
1
2w(τ, s) + (SS∗)−

1
2CΠ(τ)ξ(τ, s)||22dτ. (5.32)

The term 〈ξ(s, s),Π(s)ξ(s, s)〉 − 〈ξ(0, s),Π(0)ξ(0, s)〉 is independent of ws(t). There-
fore, J ′(ws , ξs) is minimized if

∫ s

0

||(SS∗)
1
2w(τ, s) + (SS∗)−

1
2CΠ(τ)ξ(τ, s)||22dτ = 0.

The integrand is a norm and therefore non-negative. We conclude that the integral is

minimized if and only if the intergrand is zero for all t ∈ [0, s]. From this it follows that
the minimizer of J ′(ws , ξs) is unique and given by:

ws,opt(t) = −(SS∗)−1CΠ(t)ξ(t, s) for t < s.

Substitution of w(s, t) = wopt(s, t) = ws,opt(t) in Equation (5.32) shows the infimum

value of J ′.

From the structure of ws,opt it follows that the optimal input can be realized as a linear

time dependent state feedback law, with a structure which is independent of the endpoint

condition ξs and the value of s. The optimal control ws,opt can also be represented as

output of the autonomous closed loop system.

Lemma 5.5.7

The minimizer ws,opt of J
′ given by Equation (5.30) and end-point condition ξs , can be

expressed as:

ws,opt(t) = −(SS∗)−1CΠ(t)W̃ (t, s)ξs for t < s.

where Π(t) is the solution of (5.29) with Π(0) = 0. and W̃ (t, s) : X → X for t ∈ T is
the mild evolution operator with the infinitesimal generator −A∗+C∗(SS∗)−1CΠ(t) on
the interval 0 ≤ t ≤ s.

Proof. First remark that the structure of the Riccati equation (5.29) and the boundary

condition on Π(0) is independent of the values of s. The state and output trajectories

which are the result of the optimal control in state feedback form, can be found by

substitution of the optimal feedback law ws,opt into the system dynamics (5.26). The

closed loop system is defined for t < s and is given by Σ′cl :

Σ′cl =

{

ξ̇cl(t, s) = (−A∗ + C∗(SS∗)−1CΠ(t))ξcl(t, s),
ws,opt(t) = −(SS∗)−1CΠ(t)ξcl(t, s),

(5.33)
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where ξcl(s, s) = ξs and t < s.

It follows that −A∗+C∗(SS∗)−1CΠ(t) is the infinitesimal generator of a mild evolution
operator W (t, s) on the interval t ∈ [0, s], i.e. W (t, s) : X → X is such that:

(−A∗ + C∗(SS∗)−1CΠ(t))ξ = lim
h→0

[W̃ (t − h, s)− W̃ (t, s)]ξ
h

for any ξ ∈ D(−A∗), 0 ≤ t ≤ s and s ∈ T. The closed loop system (5.33) is autonomous
and the state trajectory of the system only depends on the boundary condition ξs . The

trajectories satisfy:

ξcl(t, s) = W̃ (t, s)ξs for t < s.

By substitution of the latter into (5.31), ws,opt(t) can be written into closed loop form

and completes the proof.

We are now in the position to present the proof to Theorem 5.5.5.

Proof of Theorem 5.5.5. The assertion in Theorem 5.5.5 now follows from the ob-

servation that the theorem is a special case of Lemma 5.5.6 with ξ(s, s) = h and

w(t, s) = −M∗(t, s). In particular we have by, Theorem 5.5.3, that

JHS(M)
2 =

∫ te

0

∫ s

0

||κ(τ, s)||22 + ||λ(τ, s)||22dτ ds,

where κ and λ satisfy (5.26) with ξ(s, s) = h. First, rewrite the inner integral as done

in Lemma 5.5.6, to:

JHS(M)
2 =

∫ te

0

[

〈ξ(s, s),Π(s)ξ(s, s)〉

+

∫ s

0

||(SS∗)
1
2w(τ, s) + (SS∗)−

1
2CΠ(τ)ξ(τ, s)||22dτ

]

ds.

where the operator Π(t) : X → X with t ∈ T is defined as the unique self-adjoint
solution to the Riccati differential equation:

〈ξn, Π̇ξm〉 =〈ξn,ΠA∗ξm〉+ 〈ΠA∗ξn, ξm〉+ 〈G∗ξn, G∗ξm〉 − 〈(SS∗)−1CΠξm, CΠξn〉,
(5.34)

for all ξm, ξn ∈ X and with boundary condition Π(0) = Π0 where Π0 is self-adjoint and
positive semi-definite on D(A∗). Then, by substitution of w(t, s) = −M∗(t, s) and
ξ(s, s) = h it follows that

JHS(M)
2 =

∫ te

0

[

〈h,Π(s)h〉

+

∫ s

0

|| − (SS∗)
1
2M∗(s, τ) + (SS∗)−

1
2CΠ(τ)ξ(τ, s)||22dτ

]

ds.
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We are now in the position to solve the problem of minimization ofJHS for n = 1, i.e.

Z = R. We will show that when Z = R and Hx = 〈h, x〉, a solution to minimization
of the functional J ′ given by Equation (5.30) with ξs = h provides a solution for the

minimization of JHS(M).

Theorem 5.5.8

Consider the functional JHS(M) given by (5.20). The unique minimizer M ∈ M of

JHS(M) = ||Σ∗g ∧Σ∗e(M)||HS is uniquely defined by:

M∗opt(s, t) =

{

(SS∗)−1CΠ(t)ξ(t, s) for 0 ≤ t ≤ s,
0 for s < t ≤ te ,

where ξ(t, s) satisfies (5.26) with boundary condition ξ(s, s) = h and input w(t, s) =

−M∗opt(s, t). The operator Π(t) : X → X with t ∈ T is defined as the unique self-adjoint
solution to the Riccati differential equation (5.34). The minimum value of JHS(M) is

given by:

JHS(Mopt) =

(∫ te

0

〈h,Π(s)h〉ds
) 1
2

.

Proof. Let M ∈M and let ξ be the state of the system (5.26) with end-point condition
ξ(s, s) = ξs = h and input w(t, s) = −M∗(s, t). Then it follows from Theorem 5.5.5
that the criterion JHS(M) can be written as:

JHS(M)
2 =

∫ te

0

〈h,Π(s)h〉

+

∫ s

0

|| − (SS∗)
1
2M∗(s, t) + (SS∗)−

1
2CΠ(τ)ξ(τ, s)||22 dτ ds. (5.35)

where ξ(t, s) satisfies (5.26) with ξ(s, s) = h and w(t, s) = −M∗(s, t) and where
the operator Π(t) : X → X with t ∈ T be defined as the unique self-adjoint solution
to the Riccati differential equation (5.34). It follows that the integrand is zero if and

only if M∗(t, s) = (SS∗)−
1
2CΠ(t)ξ(t, s). The contribution of 〈h,Π(s)h〉 to JHS(M)2

is independent of the choice of M such that it must be concluded that M∗opt is unique

and is given by M∗opt(t, s) = (SS
∗)−

1
2CΠ(t)ξ(t, s). The value of JHS(Mopt) follows by

substitution of Mopt in (5.35).

We are now in the position to solve the optimal estimator design problems by minimiza-

tion of JHS(M) for Z = R. First the design problem for a single to-be-estimated signal

will be solved and then it will be generalized to the solution for Z = Rn.

Theorem 5.5.9

Let Z = R and Hx = 〈h, x〉 and consider problem 5.2 for JHS(M) given by (5.20). The
unique minimizer M ∈M of JHS(M) is given by:

Mopt(t, s) =

{

HU(t, s)Π(s)C∗(SS∗)−1 for 0 ≤ s ≤ t
0 for t < s ≤ te
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where the operator Π(t) : X → X with t ∈ T is defined as the unique self-adjoint
solution to the Riccati differential equation:

〈ξn, Π̇ξm〉 =〈ξn,ΠA∗ξm〉+ 〈ΠA∗ξn, ξm〉
+ 〈G∗ξn, G∗ξm〉 − 〈(SS∗)−1CΠξm, CΠξn〉, for all ξm, ξn ∈ X

(5.36)

with boundary condition Π(0) = 0 and U(t, s) is the evolution operator with infinitesimal

generator A− Π(t)C∗(S∗S)−1C.

Proof. Theorem 5.5.8 shows that the unique minimizer of ||Σ∗g ∧Σ∗e(M)|| is given by

M∗opt(s, t) = (SS
∗)−1CΠ(t)ξ(t, s) for t < s,

where ξ(t, s) satisfies Equation (5.26) with ξ(s, s) = h, w(t, s) = −M∗opt(t, s) and
where the operator Π(t) : X → X with t ∈ T is defined as the unique self-adjoint
solution to the Riccati differential equation (5.34). By Lemma 5.5.7, it follows that

M∗opt(s, t) can also be represented by the closed loop representation:

M∗opt(s, t) = (SS
∗)−1CΠ(t)W̃ (t, s)h for 0 < t < s,

where W̃ (t, s) is the mild evolution operator with infinitesimal generator

−A∗ + C∗(SS∗)−1CΠ(t). Since it has been demanded that Mopt represents a causal
estimator, it follows thatM∗opt(s, t) = 0 on the interval s < t ≤ te . Therefor,M∗opt(s, t)
is now defined on the rectangular interval T× T and is given by:

M∗opt(s, t) =

{

(SS∗)−1CΠ(t)W̃ (t, s)h for 0 ≤ t ≤ s,
0 for s < t ≤ te

We conclude that controller Σ∗c that minimizes ||Σ∗g ∧Σ∗c ||HS is given by:

(Σ∗c ẽ)(t) =

∫ te

t

M∗opt(s, t)ẽ(s)ds =

∫ te

t

(SS∗)−1CΠ(t)W̃ (t, s)hẽ(s)ds

and we conclude that Σ∗e(M) = Σ
∗
c .

By Corollary 5.4.11 it now follows that the estimator Σe(Mopt) = [Σe(Mopt)
∗]∗ is the

unique minimizer of JHS(M) = ||Σg ∧ Σe(M)||. Therefore, Mopt can be obtained by
dualization of Σ∗c and is given by:

Mopt(t, s) = HU(t, s)Π(s)C(SS
∗)−1, for s < t.

where U(t, s) : X → X is the evolution operator with infinitesimal generator A −
Π(t)C∗(S∗S)−1C

By Corrolary 5.4.11 it now follows that for Z = R the solution to the optimal estimator

design problem has an input/output map that can be represented by:

Σe(Mopt) : ẑ(t) =

∫ t

0

Mopt(t, s)y(s)ds, (5.37)
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with Mopt(t, s) = HU(t)Π(t)C(SS
∗)−1.

Therefore, the optimal estimator for Z = R is represented by the mapping:

Σe(Mopt) : ẑ(t) =

∫ t

0

HU(t, s)Π(s)C∗(S∗S)−1y(τ)dτ. (5.38)

5.5.4 Realization of the optimal estimator

Given the optimal convolution kernel of the optimal estimator as in Theorem 5.5.9 and

the structure of the causal input output map (5.2) of the estimator, the input output

map of the optimal estimator is known. The optimal estimator for Z = R is realized by

the following state space system:

Theorem 5.5.10

Let Z = R. The optimal estimator Σe(Mopt) which minimizes the norm

||Σp ∧Σe(M)||HS over all M ∈M, and solves the estimator design problem 5.2 for the
Hilbert-Schmidt norm is given by:

Σe(Mopt) :

{

α̇(t) = (A− Π(t)C∗(SS∗)−1C)α(t) + Π(t)C∗(S∗S)−1y(t),
ẑ(t) = Hα(t),

(5.39)

with initial condition α(0) = 0.

Proof. Assume that (A − Π(t)C∗(S∗S)−1C) is the generator of evolution operator
U(t, s). Then the unique solution of this system is given by:

ẑ(t) =

∫ t

0

HU(t, s)Π(s)C(S∗S)−1y(s)ds =

∫ t

0

Mopt(t, s)y(s)ds,

from, which it follows that Mopt(t, s) = HU(t, s)Π(s)C(S∗S)−1, such that the sys-
tem (5.39) is a realization of the optimal estimator.

It follows from the structure of realization of the optimal estimator, that state evolution

of the optimal estimator does not depend on the operator H. This can be specifically

seen by the absence of H in the state-evolution by Equation (5.39) and the Riccati

differential equation (5.29). As such the estimator Σe(Mopt) can be called a state

estimator. Moreover the readout map of the optimal estimator is equal the to readout

map of the system under study. Therefore generalization of the optimal estimator for

one estimated output to an optimal estimator for system with a higher dimensional

output, i.e. Z = Rn, is straightforward. One can solve the optimal estimation problem

for each output individually and combine these estimators. This results into an estimator

with a n-dimensional readout map that equals the operator H of the original system Σp.

Theorem 5.5.11

Let Z = Rn and Hx =
∑n
i=1〈hi , x〉ei where hi ∈ X and {ei}ni=1 is the canonical basis

in Rn. The optimal estimator Σe(Mopt) which minimizes ||Σp ∧ Σe(M)||HS over all
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M ∈ M, and solves the estimator design problem 5.2 for the Hilbert-Schmidt norm is
given by:

Σe(Mopt) =

{

α̇ = (A− Π(t)C∗(SS∗)−1C)α+Π(t)C∗(S∗S)−1y ,
ẑ = Hα.

(5.40)

With initial condition α(0) = 0. Moreover, J(Mopt) = (
∑n
i=1

∫

T
〈hi ,Π(s)hi 〉ds)

1
2 .

Proof. Consider for i ∈ 1, ..., n the problem to minimize JHS(M) with zi = 〈hi , x〉. By
Theorem 5.5.10 the solution is given by Equation (5.39) with ẑi := ẑi = 〈hi , α〉. Observe
that for every i ∈ 1, ..., n the evolution of α does not depend on hi . Therefore we infer
that:

Σe(Mopt) =







α̇ = (A− Π(t)C∗(SS∗)−1C)α+Π(t)C∗(S∗S)−1y ,






ẑ1
...

ẑn






=







〈h1, α〉
...

〈hn, α〉






= Hα,

(5.41)

is the estimator that solves the estimator design problem for Z = Rn.

By Theorem 5.5.11 as solution to the estimator design Problems 5.1 and 5.2 have been

provided. The analysis also provides a solution to Problem 5.3, since by the applied

completion of the squares argument it follows immediately that the optimal estimator

is unique.

5.6 Optimal induced L2-gain estimator design

In this section we consider the design of estimators, where we use the induced L2-gain

between the disturbance sources d1 and d2 and the estimation error e as design criterion.

The L2-gain can be interpreted as the worst case energy gain of signals, in which one

compares the ratio of energy of signal at d1 resp. d2 and e for all possible signals d1,d2
with a finite amount of energy on the interval T.

Optimal L2-gain estimators arise in finite time estimation problems and are analogues to

H∞ estimators, which involve infinite time horizons of the to be estimated signals. The
optimal L2-gain estimator design problem is of relevance, since its solution enables the

design of estimators in a robust estimation setting. In this way estimators for uncertain

systems can be designed.

In the work of Van Keulen and Curtain, see for instance [Van Keulen, 1993], the design

of H∞-optimal output feedback controllers has been studied in an infinite dimensional
setting. This work presents methods for coupled estimator and controller design, which

are inherent in the H∞ framework. Estimator design in the absence of a controller can
be treated as a special case of the approach in [Van Keulen, 1993] and the resulting

estimator will coincide with the estimator derived in this work. However, the derivation
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of a complete solution to the optimal L2-gain estimator design problem presented here is

of independent interest as we consider this problem from different perspectives, including

a game theoretic analysis.

The solution that is presented provides an intuitive interpretation to the problem, since

it is based on a completion of the squares argument. This method has been used

in [Bensoussan and Bernhard, 1992] to solve the optimal H∞ regulator design problem
for distributed parameter systems. The section is organized as follows. Firstly, we for-

malize the optimal L2-gain estimator design problem for distributed parameter systems.

Then we introduce an L2-gain regulator design problem for a dual system and show

the equivalence of the L2-gain estimator design problem and the previously mentioned

regulator design problem. Subsequently, we will provide a solution to the regulator de-

sign problem which is based on game theory and a completion of the squares argument.

Using this result, an explicit state space realization of an optimal L2-gain estimator is

given. In the last section conclusions of the presented estimator design procedure are

drawn.

5.6.1 Formulation of the design problem

In this section we study the Problems 5.1, 5.2, 5.3 and 5.4 for the design of estimators

for system Σp (given by Equation (5.1)) in which we use the induced L2,2-norm of

the system Σp ∧ Σe(M) as the design criterion J(M). For completeness, we repeat
that we will actually consider the design problem for the generalized plant Σg, given

by Equation (5.7). In the context of unknown initial condition, we consider as design

criterion J02,2(M) the induced L2-gain of the system Σg ∧Σe , given by:

J02,2(M) := ||Σg ∧Σe(M)||02,2 = sup
d1∈L2(T,D1)
d2∈L2(T,D2)

x0∈X

||e||2
√

||x0||22 + ||d1||22 + ||d2||22
,

where e satisfies Equation (5.3a). In the context of known initial conditions we set

x0 = 0, we consider as design criterion J2,2(M) the L2-gain of the system Σg ∧ Σe ,
given by:

J2,2(M) := ||Σg ∧Σe(M)||2,2 = sup
d1∈L2(T,D1)
d2∈L2(T,D2)

||e||2
√

||d1||22 + ||d2||22
,

where e satisfies Equation (5.3a) for x0 = 0 and we set x0 = 0 in Equation (5.7).

In the remainder of this section we will study the design problem in the context of

unknown initial condition, (i.e. minimization of J02,2(M)) and will derive the solution

for known initial conditions (i.e. minimization of J2,2(M)) as special case of the latter.

In the next subsection we will introduce our main result for L2 estimator design, which

relates the estimator design problem to the controller design problem.
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5.6.2 Main results

The main result of this section will be to show the relation between four problems

associated to Σg given by (5.7), Σ
∗
g given by (5.15) and a two player zero sum differential

game. We will show that for one of the problems a solution can be found, which can be

used to solve the related problems and finally provide a solution to the estimator design

problems defined in the Problems 5.1, 5.2, 5.3 and 5.4. Associated to Σ∗g (given by
Equation (5.15)), we introduce the functional Jγ(ỹ , ẽ, pte ), which is, for fixed γ > 0,

defined as:

Jγ(ỹ , ẽ, pte ) = ||p(0)||22 + ||d̃1||22 + ||d̃2||22 − γ2||ẽ||22
and where (d̃1, d̃2, ẽ) satisfy the system evolution of Σ

∗
g, given by the differential equation

in (5.15) with p(te) = pte . We define the classes Yf and Zf of signals which can be
realized by a causal feedback of the state of Σ∗g as follows:

Yf := {y ∈ L2(T, Y )| ∃πy (t) : L2(T, X)→ L2(T, Y ) such that for all t ∈ T :
y(t) = (πy (t)p)(t) = (πy (t)σtp)(t)},

Zf := {e ∈ L2(T, Z)| ∃πe(t) : L2(T, X)→ L2(T, Z) such that for all t ∈ T :
e(t) = (πe(t)p)(t) = (πe(t)σtp)(t)}.

We introduce the following problems:

P1 Find an estimator Σe : L2(T, Y ) → L2(T, Z) for Σg such that the L2-gain of the

interconnection is less than γ, as shown in Figure 5.4a, i.e. ||Σg∧Σe(M)||2,2 < γ.

P2 Find an output feedback regulator Σc : L2(T, Z)→ L2(T, Y ) such that the L2-gain

of the interconnection of Σ∗g and Σc , as shown in Figure 5.4b, is less than γ, i.e.
||Σ∗g ∧Σc ||2,2 < γ.

P3 Find a causal state feedback regulator Σs : L2(T, X)→ L2(T, Y ), that it implements

the map p 7→ ys such that ys ∈ Yf with ys(t) = (πy (t)p)(t) = F (t)p(t), such that
the L2-gain of the interconnection of Σ

∗
g and Σs is less than γ, i.e. ||Σ∗g∧Σs ||2,2 <

γ.

P4 Two-player zero-sum differential game with full state information feedback and value

function Jγ(ỹ , ẽ, pte ). Find a strategy yN ∈ Yf , eN ∈ Zf such that a Nash equilib-
rium is established. This is characterized by:

Jγ(yN , ẽ, pte ) ≤ Jγ(yN , eN , pte ) ≤ Jγ(ỹ , eN , pte ),

for all ỹ ∈ L2(T, Y ) and ẽ ∈ L2(T, Z).
In the remainder of this section we will show that the solution of problem P4 provides

a solution to all of the problems stated above. We will show in the following theorems

that the solution to problem P4 provides a solution to P1 since P4 solves P3, P3 solves

P2 and P2 solves P1. In the next subsection the solution of problem P1 will be derived

by use of the solution of P4 and the relation between the problems. First the relation

between problem P1 and problem P2 is expressed by the following theorem.

Theorem 5.6.1 (relation P1 and P2)

The estimator Σe solves problem P1 if and only if the controller Σc = Σ
∗
e solves problem

P2.
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Proof. Let the solution to problem P1 be given by Σe . Then the system Σg ∧ Σe is
defined by the interconnection of Σg with Σe and satisfies ||Σg ∧Σe ||2,2 ≤ γ. We define
Σ∗e : L2(T, Z) → L2(T, Y ) as the dual system of Σe . From Lemma 5.4.2 it follows

that ||(Σg ∧ Σe)∗||2,2 ≤ γ. Moreover, from lemma 5.4.9 it follows that (Σg ∧ Σe)∗ =
(Σ∗g ∧ Σ∗e), thus it follows that ||(Σ∗g ∧ Σ∗e)||2,2 ≤ γ. Therefore Σc = Σ

∗
e provides a

solution to problem P2. The converse holds on the basis of the same arguments.

Due to the special structure of the generalized plant, a solution to the state feedback

regulator design problem P3 provides a solution to the output feedback regulator design

problem P2.

Theorem 5.6.2 (Relation between P3 and P2)

Suppose that the state feedback regulator Σs implements a feedback law ys(t) =

F (t)p(t) such that it solves P3. Then the system Σo ,

Σo :

{

ξ̇(t) = (−A∗ − C∗F (t))ξ(t) +H∗ ˜̂z(t) with: ξ(te) = 0,
ỹ(t) = F (t)ξ(t),

(5.42)

provides a solution to problem P2.

Proof. Let the regulator Σs : ys(t) = F (t)p(t) solve problem P3 and let Σo be as

in (5.42). After interconnection of Σ∗g with Σs the system Σ
∗
g ∧Σs admits the following

representation:

Σ∗g ∧Σs =







ṗs(t) = (−A∗ − C∗F (t))ps(t)−H∗ẽ(t) with: p(te) = 0,
d̃1,s(t) = G∗ps(t),

d̃2,s(t) = S∗F (t)ps(t),

and ||Σ∗g ∧Σs || < γ. The interconnected system Σ∗g ∧Σo has the representation:

Σ∗g ∧Σo :







ṗo(t) = −A∗po(t)− C∗F (t)ξ(t)−H∗ẽ(t) with: po(te) = 0
ξ̇(t) = (−A∗ − C∗F (t))ξ(t)−H∗ẽ(t) with: ξ(te) = 0,
d̃1,o(t) = G∗po(t),

d̃2,o(t) = S∗F (t)ξ(t).

It easily follows that ddt (po−ξ) = −A∗(po−ξ). Therefore, if po(te) = ξ(te) then po(t) =
ξ(t) for all t ∈ T and every ẽ ∈ L2(T, Z). From this it follows that if po(te) = ξ(te) then
po(t) = ps(t) for all t ∈ T. We conclude that if po(te) = ξ(te) then, d̃1,s(t) = d̃1,o(t)
and d̃2,s(t) = d̃2,o(t) for every ẽ ∈ L2(T, Z), such that ||Σ∗g ∧Σo || = ||Σ∗g ∧Σs ||. Since
Σs solve problems P3 it follows that the interconnection Σ

∗
g ∧Σs has L2-gain less than

γ. Thus we infer that ||Σ∗g ∧Σo || < γ and that Σo solves problem P2.

Next, we state the relation between problem P4 and problem P3. It will turn out that

a Nash equilibrium strategy (yN , en) with yN ∈ Yf and eN ∈ Zf , provides a solution to
the state feedback regulator design problem.
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Theorem 5.6.3 (Relation between P4 and P3)

Suppose the strategy (yN , eN) establishes a Nash equilibrium for Jγ(y , e, pte ) and that

yN ∈ Yf . The causal operator πy that maps that state p to yN , is a state feedback
regulator which solves P3.

Before we proceed with the proof of the theorems above, a two lemmas regarding the

solution of P4 will be introduced.

We show that under full information feedback the two player zero sum differential game

has an unique Nash-equilibrium. To do so, we first show that the value function Jγ can

be rewritten in a more convenient form.

Lemma 5.6.4

Suppose there exists a symmetric operator P (t), which is a solution of the differential

equation:

〈p1, Ṗ p2〉 = 〈PA∗p1, p2〉+ 〈p1, PA∗p2〉
+ 〈G∗p1, G∗p2〉 − 〈P (C∗(SS∗)−1C − γ−2H∗H)Pp1, p2〉, (5.43)

for all p1, p2 ∈ D(A∗) with P (0) = I. Then for all (d̃1, d̃2, ẽ, ỹ , ˜̂z) that satisfy (5.15)

with p(te) = pte we have:

Jγ(ỹ , ẽ, p(te))=〈pte , P (te)pte 〉+ ||(SS∗)
1
2 ỹ + (SS∗)−

1
2CPp||22 − ||γẽ − γ−1HPp||22

(5.44)

Proof. For p ∈ X, we introduce the identity V (p) = 〈p, Pp〉 and differentiate the map
t 7→ V (p(t)) with respect to t.

dV (p(t))

dt
= 〈p(t), P (t)ṗ(t)〉+ 〈ṗ(t), P (t)p(t)〉+ 〈p(t), Ṗ (t)p(t)〉.

Then we substitute the dynamics of Σ∗g for ṗ. Given that P solves the Riccati equation

for all p ∈ D(A∗), substitute Ṗ (t) with the Riccati equation with p1 = p2 = p. We omit
the time index for brevity.

dV (p)

dt
=〈Pp, (−A∗p − C∗ỹ −H∗ẽ)〉+ 〈−A∗p − C∗ỹ −H∗ẽ, P p〉

+ 〈PA∗p, p〉+ 〈p, PA∗p〉+ 〈G∗p, G∗p〉+ γ−2〈HPp,HPp〉 − 〈(SS∗)−1CPp, CPp〉
=〈G∗p, G∗p〉+ 〈−ẽ, HPp〉+ 〈HPp,−ẽ〉+ γ−2〈HPp,HPp〉

− 〈CPp, ỹ〉 − 〈ỹ , CPp〉 − 〈(SS∗)−
1
2 CPp, (SS∗)−

1
2 CPp〉)

Subsequently, one can reformulate this using a completion of the squares argument:

dV (p)

dt
=〈G∗p, G∗p〉+ 〈−γẽ + γ−1HPp,−ẽγ + γ−1HPp〉 − γ2〈ẽ, ẽ〉

− 〈(SS∗)
1
2 ỹ + (SS∗)−

1
2 CPp, (SS∗)

1
2 ỹ + (SS∗)−

1
2 CPp〉+ 〈(SS∗)

1
2 ỹ , (SS∗)

1
2 ỹ〉

We use d1 = G
∗p and d2 = S∗y and rearrange:

||d̃1||22 + ||d̃2||22 − γ2||ẽ||22 =
dV (p)

dt
+ ||(SS∗)

1
2 ỹ + (SS∗)−

1
2 CPp||22 − || − γẽ + γ−1HPp||22
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After integration of the right- and left-hand side from t = 0 to t = te one obtains an
expression that equals the definition of Jγ(ỹ , ẽ, pte ):

Jγ(ỹ , ẽ, pte ) = 〈p(0), P (0)p(0)〉+
∫ te

0
||d̃1(t)||22 + ||d̃2(t)||22 − γ2||ẽ(t)||22dt =

〈pte , P (te)pte )〉+
∫ te

0
||(SS∗)−

1
2 CP (t)p(t)+(SS∗)

1
2 ỹ(t)||22−||γẽ(t)−γ−1HP (t)p(t)||22 dt.

This concludes the proof.

From the result above, a Nash equilibrium strategy that provides a solution to P4 follows

immediately.

Lemma 5.6.5 (Solution to problem P4.)

The strategy (yN , eN) which is defined as:

eN(t) = + γ
−2HP (t)p(t) (5.45a)

yN(t) =− (SS∗)−1CP (t)p(t). (5.45b)

establishes a unique Nash equilibrium. The value of the game under the equilibrium

strategy is Jγ(yN , eN , pte ) = 〈pte , P (te)pte 〉. Under the Nash equilibrium strategy the
closed loop dynamics is given by:

ṗN(t) = (−A∗ + (C∗(SS∗)−1C − γ−2H∗H)P (t))pN(t), with pN(te) = pte .

(5.46)

Proof. The closed loop dynamics follows immediately by substitution of the Nash equilib-

rium strategy into (5.15). Using Lemma 5.6.4 we rewrite the value function Jγ(y ,e,p(te))

as in Equation (5.44). When the value function is evaluated at (5.45) the quadratic

terms vanish. By convexity of the norms, uniqueness of the Nash equilibrium strat-

egy follows and we have that Jγ(yN , eN , pte ) ≤ Jγ(y , eN , pte ) resp. Jγ(yN , e, pte ) ≤
Jγ(yN , eN , pte ). Therefore, the following inequality holds for all y ∈ L2(T,R

y ) and

e ∈ L2(T,Rz)

Jγ(yN , e, pte ) ≤ Jγ(yN , eN , pte ) ≤ Jγ(y , eN , pte ),

which shows that yN , eN establishes a Nash equilibrium. The value at the equilib-

rium follows by evaluation of Jγ(yN , eN , pte ). From Equation (5.44) we infer that

Jγ(yN , eN , pte ) = 〈pte , P (te)pte 〉.
Corollary 5.6.6

The unique Nash equilibrium strategy (yN , eN) can be realized by a static state feedback.

Therefore it follows as result that yN ∈ Yf and eN ∈ Zf with mappings πy (t) =
−(SS∗)−1CP (t) and πe(t) = γ−2HP (t).

We are now in the position to present the proof of Theorem 5.6.3.

Proof of Theorem 5.6.3. The relation between P4 and P3. Let (yN , eN) be a Nash equi-

librium strategy for the functional Jγ . In Lemma 5.6.5 it has been shown that the

equilibrium strategy is unique and thus we infer that yN and eN satisfy (5.45), a repre-

sentation that is independent of pte . Following corollary (5.6.6) the mappings πy (t) =
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and πe(t) are causal operators on p and independent of pte . Define Σsp := πy (t)p,

then Σs is a state feedback controller for the system Σ
∗
g. When Σs is interconnected

with the system Σ∗g, the output of the controller Σs is equal to πy (t)p = yN .

In Lemma 5.6.5 is has been shown that:

Jγ(yN , eN , pte ) = 〈pte , P (te)pte 〉

The pair (yN , eN) establish a Nash equilibrium and therefore it follows that for all e ∈
L2(T, Z)

Jγ(yN , e, pte ) ≤ Jγ(yN , eN , pte )

From this we infer that that for all e ∈ L2(T, Z)

Jγ(yN , e, pte ) ≤ 〈pte , P (te)pte 〉.

Specifically we find that Jγ(yN , e, 0) ≤ 0 for all e ∈ L2(T, X) or equivalently:

Jγ(yN , e, 0) = ||p(0)||22 + ||d̃1||22 + ||d̃2||22 − γ2||ẽ||22 < 0 for all e ∈ L2(T, X),

where p(0), d1, d2 satisfy the evolution of (5.15) with p(te) = 0.

Therefore when the feedback controller Σsp := πy (t)p is interconnected to the system

Σ∗g, ||p(0)||22 + ||d̃1||22 + ||d̃2||22 − γ2||ẽ||22 ≤ 0 for all ẽ ∈ L2(T, X). This is equivalent to:

||p(0)||22 + ||d̃1||22 + ||d̃2||22
||ẽ||22

≤ γ2. for all ẽ ∈ L2(T, X)

We take the square root on both sides and evaluate the supremum over ẽ ∈ L2(T, Z)
to find:

sup
e∈L2(T,Z)

√

||p(0)||22 + ||d̃1||22 + ||d̃2||22
||ẽ||2

≤ γ.

Therefore we conclude that if the system Σ∗g is driven with ỹ = yN = πy (t)p, the

L2-gain of the system is less or equal to γ, which concludes the proof.

In this section we have shown the equivalence between the problems P1 and P2 and

the relationship between the problems P2 and P3, problem P3 and P4 This enables to

solves the optimal L2-gain estimator design problem. The solution to this problem will

presented in the next section.

5.6.3 Solution to estimator design problem.

In this section we will derive the solution to the optimal L2-gain estimator design problem

with use of the relations between the problems as established in the previous section.

In Section 5.6.2 it has been shown that solution yN ∈ Yf , eN ∈ Zf to problem P4

enables to solve problem P3, that solutions to problem P3 enable to solve P2 and that
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the problem P1 and problem P2 are equivalent. An estimator which solves problem

P1 can be obtained from dualization of the regulator Σc which solves problem P2 by

Theorem 5.6.1. We will therefore show the existence of an regulator that solves P2 and

obtain Σe by dualization in the following two theorems. First we derive a solution to

problem P2.

Theorem 5.6.7

Consider the system Σ∗g given by 5.15 and problem P2 associated to it. The output

feedback regulator Σc which solves P2 has the following realization:

Σc :

{

ṗ(t) = (−A∗ + C∗(SS∗)−1CP (t))p(t) +H∗ ˜̂z(t), with p(te) = 0,

ỹ(t) = −(SS∗)−1CP (t)p(t).
(5.47)

In this realization, P (t) is the positive solution of the operator Riccati equation (5.49)

and satisfies the boundary condition P (0) = I.

Proof. Lemma 5.6.5 shows that a Nash equilibrium strategy yN ∈ Yf , eN ∈ Zf which
solves P4 for the system Σ∗g is given by (5.45), i.e:

eN(t) =πe(t)p(t) = γ
−2HP (t)p(t) (5.48a)

yN(t) =πy (t)p(t) = −(SS∗)−1CP (t)p(t) (5.48b)

where P (t) is the positive solution of the operator Riccati equation (5.49) with the

boundary condition P (0) = I. By Theorem (5.6.3) it follows that the state feedback

controller Σs : y(t) = −(SS∗)−1CPp(t) is a controller such that ||Σ∗g ∧ Σs ||2,2 ≤
γ and therefore that Σs solves problem P3. Therefore, by Theorem 5.6.2 we infer

that an output feedback regulator Σc which solves P2 has the realization given by

Equation (5.47).

We are now in the position to solve the estimator design problem P1.

Theorem 5.6.8 (Solution to estimator design problem P1)

Given the plant Σg and let γ ∈ R+ be such there exists a symmetric operator P (t),
which is for all p1, p2 ∈ D(A∗) a solution of the differential equation:

〈p1, Ṗ p2〉 =〈PA∗p1, p2〉+ 〈p1, PA∗p2〉+ 〈G∗p1, G∗p2〉 (5.49)

− 〈P (C∗(SS∗)−1C − γ−2H∗H)Pp1, p2〉.

with P (0) = I. Let the estimator Σe have the realization:

Σe :

{

ξ̇ = (A− PC∗(S∗S)−1C)ξ + PC∗(SS∗)−1y , with ξ(0) = 0,

ẑ = Hξ,
(5.50)

where P (t) is the solution to Riccati equation given by Equation (5.49). The estimator

Σe solves problem P1, i.e. the L2-gain of the interconnection Σg ∧ Σe , (as shown in
Figure 5.4a) is less than γ, i.e. ||Σg ∧ Σe ||2,2 < γ. Moreover, the estimator solving

problem P1 is given by the input/output mapping:

ẑ(t) =

∫ t

0

HTP (t)C(S∗S)−1C∗(t − τ)P (t)C∗(SS∗)−1y(τ)dτ,
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where t ∈ T and TP (t)C(S∗S)−1C∗ is the mild evolution operator with infinitesimal generator
A− P (t)C(S∗S)−1C∗.

Proof. Theorem 5.6.1 shows that an estimator Σe which solves P1 for Σg can be

obtained from a controller Σc that solves P2 for Σ
∗
g. The controller Σc and estimator

Σe are related as follows Σe = Σ
∗
c . Let Σc be the controller that solves problem P2 as

given by equation(5.47) in Theorem 5.6.7. By dualization of Σc we obtain:

Σe :

{

ξ̇ = (A− PC∗(S∗S)−1C)ξ + PC∗(SS∗)−1y , with ξ(0) = 0,

ẑ = Hξ.
(5.51)

The system obtained after interconnection of the estimator Σe and the plant Σg, i.e.

Σg ∧Σe = Σg ∧Σ∗c , has L2-gain equal the system Σ∗g ∧Σc by lemma 5.4.9, such that
we infer that ||Σg ∧Σe ||2,2 = ||Σ∗g ∧Σc ||2,2 ≤ γ.
Remark 5.6.1. In this section we have solved the problem P1, in which the value of γ is

predefined. The solution for the original optimal estimator design problem, as defined by

the Problems 5.1 and 5.2 can now be derived by minimization of the value γ. Typically

this is done by use of the binary search algorithm.

Remark 5.6.2. The solution to the problems of minimization J2,2 proceeds along identical

lines. That, when the initial conditions are known (we set x0 = 0) it follows that

the solution to Problem 5.2 is equal to (5.50) with the initial condition to differential

equation (5.43) set to P (0) = 0. It is interesting to see that in this situation for small t

the contribution of the measured signal to the state evolution is negligible and that for

small t the estimate is produced on the basis of the knowledge of the initial condition

on the state of the system.

5.7 Infinite horizon estimation problems

The estimators that have been developed in this chapter are designed for estimation

problems on finite time horizon. Note that our results for estimator designs derived in

the Sections 5.5 and 5.6 are valid for any te , such that 0 < te < ∞ and from the
analysis it follows that for any te ∈ [0,∞) the optimal estimator is time variant.
In this section the design problem for time invariant causal estimators on the infinite

time intervals will be discussed. That is, we are interested in causal and time invariant

estimators that have a realization as integral operator:

Σe(M) : ẑ(t) =

∫

T

M(t, τ)y(τ)dτ.

From the demand for causality it follows that M must be such that M(t, τ) = 0 for

τ > t. From the demand for time-invariance it follows thatM must such thatM(t, τ) =

M(t − τ, 0) for all t, τ ∈ T. It is well known that integration kernels of linear time
invariant systems are defined by the impulse response g of the system. Let the class of

time invariant causal impulse responses be defined by:

GLT I = {g ∈ L2(T,Rn×m) | g(t) = 0 for t < 0}.
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Then, the class of linear time invariant causal integration kernels is given byMLT I :

MLT I = {M(t, τ) | ∃ g ∈ GLT I such that M(t, τ) = g(t − τ)}.
We will use some abuse of notation by refering to the impulse response as M(t) =

M(t, 0) = g(t).

In this section, we consider the estimator design Problems 5.1 and 5.2 for estimators

with an integration kernel in the classMLT I . Often we will be interested in estimators

which have a causal linear time invariant (LTI) realization, since their implementation and

analysis is less complex than the implementation and analysis of time variant systems.

In this section the estimation problem on the interval T = [0,∞) will be considered.
The Hilbert-Schmidt norm is not a suitable norm in the context of linear time invariant

systems on infinite time intervals. It follows that the norm is unbounded for any time

invariant system on infinite time intervals.

Lemma 5.7.1

Let K be an integral operator L2(T, U)→ L2(T, Y ) defined on the interval T = [0,∞),
with integration kernel k ∈MLT I defined by the impulse response g with g 6= 0. Then:

||K||HS =
∫

T

∫

T

||k(t, s)||22dtds =∞.

Proof. The unboundedness of the integral follows from the definition of MLT I . Since

k(t, s) = g(t − s) and that g(t) = 0 for t < 0, it follows that:
∫

T

∫

T

||k(t, s)||22dtds =
∫ ∞

0

∫ ∞

0

||g(t − s)||22dtds =
∫ ∞

0

∫ ∞

−s
||g(t)||22dtds

= lim
s→∞

[

s

∫ ∞

0

||g(t)||22dt
]

.

In this section we introduce the impulse response norm and L2,2-norm for systems oper-

ating on signals defined on T = [0,∞). For a time invariant integral operator as defined
by definition 5.2.2, that is defined by k(t, τ) = g(t − τ) with g ∈ GLT I , these norms are
defined by:

||Σ||imp = lim
te→∞

(∫ te

0

||g(t)||22dt
) 1
2

(5.52)

||Σ||2,2 = lim
te→∞

sup
u∈L2([0,te),U)

||Ku||L2
||u||L2

(5.53)

We remark that the impulse response norm can be shown to be equivalent to the well

known H2-norm. The impulse response norm of an system Σ and the impulse response
norm of the dual system Σ∗ are equal, which will be shown in the following lemma.

Lemma 5.7.2

Let K be an intergral operator defined by impulse response g ∈ GLT I and let || · ||imp be
the impulse response norm. Then:

||K||imp = ||K∗||imp
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Proof. K∗ is well defined for any operator K and can be realized by
(K∗y)(t) =

∫

T
g∗(s − t)y(s)ds, where g∗ is the adjoint kernel. The property follows

from the definition of ||K||imp:

||K||2imp :=
∫

T

||g(t)||22dt =
∫

T

||g∗(t)||22dt = ||K∗||2imp.

The latter lemma is equivalent to Lemma 5.4.1 for the Hilbert-Schmidt norm and

Lemma 5.4.2 for the induced norm. Therefore, Theorem 5.4.10 remains valid for a

criterion based on the impulse response norm and the optimal estimator design problem

for a criterion based on the impulse response norm can be solved in the same manner.

This section is an extension of the Sections 5.5 ans 5.6. Therefore the results will be

presented in a brief manner. Before we proceed with the results and proofs we make a

technical remark. In the proofs we will apply a limit argument to bring the problem to

the infinite time interval, i.e te → ∞. This introduces some technical problems if we
proceed the proofs exactly along the same line as in finite horizon case i.e T = [0, te ]. By

dualization we have obtained systems (for instance Σ′ and Σ∗g) with endpoint conditions
at t = te . Therefore it is not possible to conduct the limit argument immediately and

we will chose to redefine for the dual systems T to T = [−te , 0], such that the end point
condition is given at t = 0. Since the systems under consideration are time invariant,

this does not pose any problem since the redefinition of T is a time shift.

In case that the impulse response norm is used as design criterion, the optimization

criterion will be denoted by Jimp and is given by:

Jimp(M) = ||Σp ∧Σe(M)||imp.

The following result solves the estimator design problem for the criterion Jimp(M) for

M ∈MLT I .

Theorem 5.7.3 (Optimal impulse response norm LTI estimator design for infinite hori-

zon estimation.)

Consider the plant Σp defined by the Equation (5.1) and the estimator Σe with realiza-

tion

Σe(Mopt,LT I) :

{

ξ̇ = (A− Π∞C∗(S∗S)−1C)ξ +Π∞C∗(SS∗)−1y ,
ẑ = Hξ.

(5.54)

with ξ(0) = 0, where for all ξn, ξm ∈ D(A∗) and Π∞ is the solution of the implicit
Riccati equation

〈ξn,Π∞A∗ξm〉+ 〈Π∞A∗ξn, ξm〉+ 〈G∗ξn, G∗ξm〉 − 〈(SS∗)−1CΠ∞ξm, CΠ∞ξn〉 = 0.

The estimator Σe(Mopt,LT I) is the unique minimizer of Jimp(M) = ||Σp ∧ Σe(M)||imp
with M ∈MLT I and provides the unique solution to the estimator design Problems 5.2

restricted to the class of time invariant estimators.
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The proof of this theorem follows the same line of reasoning as the proof of Theo-

rem 5.5.10 and Theorem 5.5.11.

Based on the arguments in the proof of Theorem 5.5.11 we consider the case with

n = 1, i.e. H = 〈h, x〉 with h ∈ X. Before we proceed with the proof of Theorem 5.7.3
we introduce the following lemma, that is analogous to Lemma 5.5.6 for the finite time

horizon case.

Lemma 5.7.4

Consider the system Σ′ given by

Σ′ :







ξ̇(t) = −A∗ξ(t)− C∗w(t),
κ(t) = G∗ξ(t),

λ(t) = S∗w(t),

(5.55)

with end-point condition ξ(0) = ξ0 and w ∈ L2(T, Y ) and t ∈ T = [−te , 0]. The
outputs κ(t) and λ(t) are uniquely defined for t ∈ T. Moreover, consider the following
functional:

J ′(w, ξ0)
2 := lim

te→∞

∫ 0

−te
||κ(t)||22 + ||λ(t)||22dt. (5.56)

The feedback w(t) = −(SS∗)−1CΠ∞ξ(t) is the unique minimizer of J ′(w, ξ0)2 in the
class of static feedback laws, where Π∞ is for all ξn, ξm ∈ D(A∗) the solution of:

〈ξn,Π∞A∗ξm〉+ 〈Π∞A∗ξn, ξm〉+ 〈G∗ξn, G∗ξm〉 − 〈(SS∗)−1CΠ∞ξm, CΠ∞ξn〉 = 0.
(5.57)

Therefore, the minimizer wopt of J
′(w, ξ0) is given by wopt(t) = −(SS∗)−1CΠ∞ξ(t)

and wopt admits the representation wopt(t) = −(SS∗)−1CΠ∞W̃ (t)ξ0 where W̃ (t) is
the mild evolution operator with infinitesimal generator −A∗ + C∗(SS∗)−1CΠ∞.

Proof. We apply the completion of the square argument. Define V (ξ) = 〈ξ,Π∞ξ〉.
Then:

dV (ξ(t))

dt
= 〈ξ̇(t),Π∞ξ(t)〉+ 〈Π∞ξ(t), ξ̇(t)〉.

We apply the completion of the squares argument and integrate, exactly such as done

in the proof of Lemma 5.5.6. It follows that J ′2(w, ξ0) given by (5.56) can be written
as:

J ′(w, ξ0)
2 = lim

te→∞
〈ξ(0),Π∞ξ(0)〉 − lim

te→∞
〈ξ(−te),Π∞ξ(−te)〉

+ lim
te→∞

∫ 0

−te
||(SS∗)

1
2w(τ) + (SS∗)−

1
2CΠ∞ξ(τ)||22dτ.

We assume that limte→∞ ξ(−te) = 0. Since 〈ξ0,Π∞ξ0〉 is independent of w , it follows
that w(t) is the minimizer of J ′(w, ξ0)2 if and only if

||(SS∗)
1
2w(t) + (SS∗)−

1
2CΠ∞ξ(t)||2 = 0.
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The closed loop representation of wopt follows analogously as in Lemma 5.5.7. Next

we will prove that limte→∞ ξ(−te) = 0. We show that −A∗ + C∗(SS∗)−1CΠ∞ is the
infinitesimal generator of the anti-stable evolution operator W̃ (t). We will show that

V (ξ) is a Lyapunov function for the system and evaluate dV (ξ)dt along trajectories of the

system, i.e. ξ(t) = W̃ (t)ξ0. It follows that:

dV (ξ(t))

dt
=〈(−A∗ + C∗(SS∗)−1CΠ∞)ξ(t),Π∞ξ(t)〉

+ 〈ξ(t),Π∞(−A∗ + C∗(SS∗)−1CΠ∞)ξ(t)〉
=〈ξ(t),Π∞C∗(SS∗)−1CΠ∞ξ(t)〉+ 〈G∗ξ(t), G∗ξ(t)〉

It follows that dV (ξ(t))dt ≥ 0 and therefore that the W̃ (t) is anti-stable.

Proof of Theorem 5.7.3. Theorem 5.7.3 can now be proved along the same line as

Theorem 5.5.10 and Theorem 5.5.11. Let Π∞ denote the solution of Riccati equa-
tion (5.57). Based on Lemma 5.7.4 it follows that for n = 1 the criterion Jimp(M) can

be written as:

Jimp(M)
2 = lim

te→∞
〈h,Π∞h〉+

∫ te

0

|| − (S∗S)
1
2M∗(τ) + (S∗S)−

1
2CΠ∞ξ(τ)||2dτ

Therefore, it follows that for n = 1 the optimal estimator has the impulse response

Mopt,LT I(t) = HU(t)Π∞C∗(SS∗)−1 where U(t) : X → X is the semigroup opera-

tor with infinitesimal generator A − Π∞C∗(S∗S)−1C. The estimator given by (5.54)
implements the input output map:

ẑ(t) =

∫ t

0

HU(t − τ)Π∞C∗(S∗S)−1y(τ)dτ =
∫ t

0

Mopt,LT I(t − τ)y(τ)dτ,

such that it follows that (5.54) is a realization of an estimator that minimizes the

criterion Jimp(M) = ||Σg ∧ Σe(M)||imp. The extension to the case n > 1 follows along
the same line as presented for the case of the time variant estimator.

In case that the induced L2 norm is used as design criterion we have the following result.

Theorem 5.7.5 (Optimal induced L2 norm LTI estimator design for infinite horizon

estimation.)

Consider the estimator design problem with known initial condition. Assume that there

exists a positive operator P∞ : X → X, which is for every p1, p2 ∈ D(A∗) a solution of
the Riccati equation:

〈P∞A∗p1, p2〉+ 〈p1, P∞A∗p2〉+ 〈G∗p1, G∗p2〉
− 〈P∞(C∗(SS∗)−1C − γ−2H∗H)P∞p1, p2〉 = 0. (5.58)

and is such that A − P∞(C∗(S∗S)−1C − γ−2H∗H) is the infinitesimal generator of a
exponentially stable semigroup.

Then, the estimator Σe , given by:

Σe :

{
ξ̇ = (A− P∞C∗(S∗S)−1C)ξ + P∞C∗(SS∗)−1y , with ξ(0) = 0, (5.59a)

ẑ = Hξ, (5.59b)

is an estimator for the system Σg and is such that ||Σg ∧Σe ||2,2 ≤ γ.
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Before we proceed with the proof of Theorem (5.7.5) we introduce the following lemma.

Lemma 5.7.6

Consider the system Σ∗g given by

Σ∗g :







ṗ(t) = −A∗p(t)− C∗ỹ(t)−H∗ẽ(t), (5.60a)

d̃1(t) = G
∗p(t), (5.60b)

d̃2(t) = S
∗ẽ(t), (5.60c)

z̃(t) = −ẽ(t) (5.60d)

with end-point condition p(0) = p0 and t ∈ T = [−te , 0]. The outputs d1(t) and d2(t)
are uniquely defined for t ∈ T. Moreover, consider the functional:

J∞γ (ỹ , ẽ, p0) = lim
te→∞

〈p0, P∞p0〉+
∫ 0

−te
||d̃1(t)||22 + ||d̃2(t)||22 − γ2||ẽ(t)||22dt,

and assume that there exists a positive operator P∞ : X → X, which is for every

p1, p2 ∈ D(A∗) a solution of the Riccati equation:

〈P∞A∗p1, p2〉+ 〈p1, P∞A∗p2〉+ 〈G∗p1, G∗p2〉
− 〈P∞(C∗(SS∗)−1C − γ−2H∗H)P∞p1, p2〉 = 0. (5.61)

and is such that A − P∞(C∗(S∗S)−1C − γ−2H∗H) is the infinitesimal generator of a
exponentially stable semigroup.

Then the strategy (yN,∞, eN,∞) establishes a Nash equilibrium for the value function Jγ ,
where:

eN,∞(t) = + γ
−2HP∞p(t), (5.62a)

yN,∞(t) =− (SS∗)−1CP∞p(t). (5.62b)

The value of the game under the equilibrium strategy is Jγ(yN,∞, eN,∞, p0) = 0. Under
the Nash equilibrium strategy the closed loop dynamics is given by:

ṗN(t) = (−A∗ + (C∗(SS∗)−1C − γ−2H∗H)P∞)pN(t), with pN(0) = p0.

(5.63)

Proof. The proof of this lemma follows the same line of reasoning as the proof of

Lemma 5.6.5. Analogously as in the proof of Lemma 5.6.4, Jγ can be rewritten to:

J∞γ (ỹ , ẽ, p0) = lim
te→∞

∫ 0

−te
||(SS∗)

1
2 ỹ(t) + (SS∗)−

1
2CP∞p(t)||22

− ||γẽ(t) − γ−1HP∞p(t)||22dt (5.64)

where we have used that limte→∞ p(−te) = 0, due to anti stability of−A∗+(C∗(SS∗)−1C−
γ−2H∗H)P∞. When the value function is evaluated at (5.62) the quadratic terms
vanish. By convexity of the norms, uniqueness of the Nash equilibrium strategy fol-

lows and we have that J∞γ (yN,∞, eN,∞, p0) ≤ J∞γ (y , eN,∞, p0) resp. J
∞
γ (yN,∞, e, p0) ≤
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J∞γ (yN,∞, eN,∞, p0). Therefore, the following inequality holds for all y ∈ L2(T,Ry ) and
e ∈ L2(T,Rz)

J∞γ (y
∞
N , e, p0) ≤ J∞γ (y∞N , e∞N , p0) ≤ J∞γ (y , e∞N , p0),

which shows that (y∞N , e
∞
N ) establishes a Nash equilibrium. The value at the equi-

librium follows by evaluation of Jγ(yN , eN , p0). From Equation (5.64) we infer that

Jγ(y
∞
N , e

∞
N , p0) = 0.

Lemma 5.7.7

Consider the system Σ∗g, defined by the Equations (5.60). The output feedback regu-
lator Σc given by the realization:

Σc :

{

ṗ(t) = (−A∗ + C∗(SS∗)−1CP∞)p(t) +H∗ ˜̂z(t), with p(0) = 0,

ỹ(t) = −(SS∗)−1CP∞p(t).

is a regulator for the system Σ∗g such that ||Σ∗g ∧Σc ||2,2 ≤ γ.

Proof. The proof of the lemma follows the same line of reasoning as the proof of

Theorem 5.6.7. First we show that the state feedback controller Σs

Σs : y
∞
N (t) = −(SS∗)−1CP∞p(t)

anti-stabilizes the system Σ∗g. When the state feedback controller Σs is interconnected
with Σ∗g the dynamics of Σ

∗
g ∧Σs are given by:

Σ∗g ∧Σs :







ṗ(t) = (−A∗ + C∗(SS∗)−1CP∞)p(t)−H∗ẽ(t), with p(0) = 0,

d̃1(t) = G
∗p(t),

d̃2(t) = S
∗ẽ(t),

z̃(t) = −ẽ(t)
(5.65)

We prove that the system Σ∗g ∧ Σs is anti-stable. To do so, we show that V (p) :=
〈P∞p, p〉 is a Lyapunov function for the system Σ∗g ∧ Σs . That is, we differentiate
V (p) := 〈P∞p, p〉 and evaluate dV (p(t))dt along trajectories of Σ∗g ∧Σs :

dV (p(t))

dt
=〈P∞ṗ(t), p(t)〉+ 〈P∞p(t), ṗ(t)〉 (5.66)

=〈P∞(−A∗ + C∗(SS∗)−1CP∞)p(t), p(t)〉
+ 〈P∞p(t), (−A∗ + C∗(SS∗)−1CP∞)p(t)〉 (5.67)

By substitution of the Riccati equation 5.58 it now follows that:

dV (p(t))

dt
=+ 〈G∗p, G∗p〉+ 〈P∞(C∗(SS∗)−1C + γ−2H∗H)P∞p(t), p(t)〉 ≥ 0

(5.68)

Since dV (p(t))dt ≥ 0 it follows that the system Σ∗g ∧ Σs is anti-stable. Since the system
Σ∗g ∧Σs is anti-stable, it follows that p(t) ∈ L2((−te , 0], X) for all input signals ẽ(t) ∈
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L2((−te , 0], X) and it follows that limte→∞ p(−te) = 0. Therefore, when the controller
Σs is connected to Σ

∗
g the value of the function J

∞
γ is less than zero, i.e. J

∞
γ < 0. This

is equivalent to ||Σ∗g ∧ Σs ||2,2 < γ. Following the line of reasoning in Theorem 5.6.2 it

now follows that the controller Σc is a controller such that ||Σ∗g ∧Σc || < γ.

Proof of Theorem 5.7.5. We are now in the position to prove Theorem 5.7.5. Let Σc
be as defined in Lemma 5.7.7. Then, simple calculation shows that Σc = Σ

∗
e . By

Lemma 5.7.7 we have that ||Σ∗g ∧ Σc ||2,2 < γ. Moreover, we have by Theorem 5.4.10

that ||Σg∧Σe ||2,2 = ||Σ∗g∧Σ∗e ||2,2, from which it now follows that ||Σg∧Σe ||2,2 < γ.

5.8 Conclusion and Recommendations

In this chapter the design of estimators for infinite dimensional systems has been studied

in a deterministic setting.

5.8.1 Conclusions

For the design we have introduced the two distinct error criteria, which are the Hilbert-

Schmidt norm and the induced L2-norm of the system that represents the transfer

between the disturbance inputs and the estimation error. We have defined optimal

estimators as the estimators which minimize the Hilbert-Schmidt norm and the induced

L2-norm of the system that represents the transfer between the disturbance inputs and

the estimation error. We distinguish the cases in which the initial condition of the system

under consideration is known and in which the initial condition is not known.

In Section 5.4 we have shown that estimator design problems are related to optimal

control problems and that the solutions to the optimal estimator design problem can be

inferred from the solution of these optimal control problems. The relation between the

optimal estimator design problem and optimal control problems is known as duality and it

has been shown that this has an interpretation in terms of Hilbert adjoints of operators.

In Section 5.4.3 is has been shown how the duality relationship can be established.

We have shown that the estimator design problems can be interpreted as optimization

problems and we have presented solutions for both problems on a finite time interval.

The solution of the optimal Hilbert-Schmidt norm estimator design problem has been

discussed in Section 5.5. In this section it has been shown that the design of a optimal

Hilbert-Schmidt output estimator for distributed parameter systems with finite dimen-

sional outputs can be done by optimization of the design criterion over the convolution

kernel of the input output map of the estimator to be designed. It has been shown that

the estimator design problem is dual to the linear quadratic optimal control problem

of an artificial system. Due to the specific structure of the optimal control problem,

this problem can be solved elegantly by use of a ”‘completion of the square”’-argument

applied on the cost criterion that is used for optimization in the optimal control problem.

It has been shown that the solution of the dual control problem can be used to calculate

the convolution kernel of the input/output map of the optimal output estimator. The
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solution to the optimal estimator has been presented in terms of the its convolution

kernel as well as its state space realization. By use of a completion of the squares ar-

gument on the design criterion, it has been shown that the optimal estimators are time

invariant estimators for every finite time interval T ∈ [0, te ] with te ∈ [0,∞).
The solution of the optimal induced L2-norm estimator design problem has been dis-

cussed and solved in Section 5.6. The method is based on duality theory for distributed

parameter systems with finite dimensional input and outputs. It has been shown that

there exist a two player differential game problem for which the value function is quadratic

in its decision variables. The quadratic structure enables one to apply a completion of

the squares argument to obtain the equilibrium strategy for the game. It has been shown

that the equilibrium strategy provides a solution to the equivalent optimal L2-gain regu-

lator design problem and indirectly enables to solve the optimal L2-gain estimator design

problem. Also in this case, by use of the completion a completion of the squares ar-

gument on the design criterion has been shown that the optimal estimators are time

invariant estimators for every finite time interval T ∈ [0, te ] with te ∈ [0,∞).
In Section 5.6 it has been shown that for the case of optimal L2-norm estimator design,

there is a clear interpretation of the initial condition on the Riccati equation involved in

the estimator design in terms of the availability of information on the initial condition

of the system under consideration.

The design of linear time invariant estimators for problems with infinite time horizon

has been studied in Section 5.7. The solution for the optimal Hilbert Schmidt norm

estimator design problem and the optimal induced L2-norm estimator design problem

has been given. The results are based on the analysis of estimator design problems on

finite time interval given.

5.8.2 Recommendations

The estimator design problems in the stochastic setting, such as the Kalman Filter,

are able to consider the situation where the initial conditions is unknown. The current

formulation of Hilbert-Schmidt norm type problem for the situation that the initial con-

dition is unknown is not able to deal with this situation. It would be interesting to be

able to deal with unknown initial conditions in the deterministic setting and this might

be a topic of future research.

For both the optimal Hilbert-Schmidt norm and the optimal induced L2-norm estima-

tor design problems it follows from the analysis that the optimal estimators are infinite

dimensional systems. Since, in practical situations, estimators often need to be imple-

mented in simulation environments it is important to study methods to obtain finite

dimensional estimators for infinite dimensional systems. In the next chapter, Chapter 6

we will study this problem.
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CHAPTER 6

Approximation and implementation of estimators

Abstract

In Chapter 5 it has been shown that optimal impulse response and optimal

L2-gain estimators for distributed parameter systems are infinite dimensional

systems. Moreover, the estimator gain of these estimators has been defined

in terms of the solution of the operator Riccati equation. Therefore, the

optimal estimators cannot directly be implemented and used in practical

applications. In this chapter methods for implementation and approximation

of the optimal estimators are studied.

6.1 Introduction

In Chapter 5 the design of the optimal impulse response estimator and the optimal L2-

gain estimator for infinite dimensional systems has been studied. There are two severe

issues with the designed optimal estimators in Theorem 5.5.11 and Theorem 5.6.8,

which hamper the application of this type of estimators to practical situations. These

issues are:

• The optimal estimators are infinite dimensional systems. In order to implement
such an estimator in a digital computer, a finite dimensional approximation has to

be obtained.

143
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• In order to obtain an explicit formulation of the optimal estimators, the estimator
gains have to be available in explicit form. For this purpose the Riccati equations

with solutions defined as operators on infinite dimensional Hilbert spaces need to

be solved. Explicit solutions are only known in very specific cases. For the general

case explicit solution methods are not known.

In order to limit the (mathematical) complexity of the estimators, only the approximation

of time invariant estimators for estimation problems on infinite time horizon will be

considered in this chapter. The desing of time invariant estimators for infinite horizon

problems are discussed in Section 5.7.

In this chapter methods to deal with these implementation problems are analyzed. In

the remainder of the introduction possible approaches to resolve the mentioned issues

will be identified and discussed. In Section 6.2.1 a general approximation framework

for systems will be introduced. In Section 6.2.3 the approximation of estimators will be

discussed. In Section 6.3 we will discuss convergence of approximations of systems in

general. In Section 6.4.1 we will discuss results which are known on the approximation

of the solution of Riccati equations in the context of control problems for linear infinite

dimensional systems. We will show how these results can be used to analyze conver-

gence of approximations of the optimal impulse response estimator. In Section 6.5 two

examples show the applicability of the approximation method to engineering problems.

For completeness the main result on estimator design of Chapter 5 based on the norm

of the impulse response (H2-norm) and the induced L2-gain of the error system are
restated below. Consider the system Σp given by:

Σp :







ẋ = Ax + Gd1

y = Cx + Sd2

z = Hx

(6.1)

with A : D(A) → X, X a Hilbert space, A the infinitesimal generator of the semigroup

T (t), C : X → Y , H : X → Z1, and G : D1 → X, S : Y → Y bounded linear operators

with D1 = R
d1 , Y = Rm, Z1 = R

n. We assume that T (t) is exponentially stable and

that the pair (A,C) is detectable.

Both, the optimal impulse response norm and the optimal L2-gain estimators Σe for the

system Σp, have the realization:

Σe :

{
˙̂x = (A− ΠC∗(SS∗)−1C)x̂ +ΠC∗(SS∗)−1y
ẑ = Hx̂

(6.2)

where, in the case of the impulse response norm criterion, Π : X → X is a symmetric

operator, which is for all x1, x2 ∈ D(A∗) a solution of the Riccati equation:

〈ΠA∗x1, x2〉+ 〈x1,ΠA∗x2〉+ 〈G∗x1, G∗x2〉 − 〈Π(C∗(SS∗)−1C)Πx1, x2〉 =0.
(6.3)

Similarly, in the case of the L2 optimal estimator which achieves attenuation level γ,

Π : X → X is a symmetric operator, which is for all x1, x2 ∈ D(A∗) a solution of the
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Riccati equation:

〈ΠA∗x1, x2〉+ 〈x1,ΠA∗x2〉+ 〈G∗x1, G∗x2〉 − 〈Π(C∗(SS∗)−1C − γ−2H∗H)Πx1, x2〉 = 0.
(6.4)

Since these estimators are not suitable for implementation due to the mentioned reasons,

it is interesting and natural to consider the problem of finite dimensional estimator design

for infinite dimensional systems. That is:

Problem 6.1 (Estimator design problem)

Let N > 0 and Σ̃(M) be an estimator for the system Σp. Consider the criterion

J(M) = ||Σp ∧ Σ̃e(M)||,

where || · || is the norm of the impulse response or induced L2-norm. Find, the time
invariant estimator Σ̃e(M) with M of the form M(t, τ) = h(t − τ) with the realization

h(t) =

{

Cee
AetBe for t ≥ 0

0 else

for suitable matrices Ae ∈ RN×N , Be ∈ RN×m, Ce ∈ Rn×N and N the order of Σ̃e , such
that J(M) = ||Σp ∧ Σ̃e(M)|| is minimal.

This problem is hard to solve since the problem amounts to finding estimators with

predefined complexity, which has not been solved. Therefore, we consider an alternative

approach and study a method to approximate the optimal infinite dimensional estimator

by finite dimensional ones.

The optimal estimators have been designed in such a way that they minimize the impulse

response norm or the L2-gain of the error system respectively. It therefore makes sense

to address the question to what extent approximations and implementations of the

estimators compromise performance as measured in these design criteria. Moreover, it

makes sense to address the question whether the approximated estimator ΣNe achieves a

performance that will converge to the performance of the optimal estimator if the order

N of the approximation will be increased.

Problem 6.2 (Estimator approximation problem)

Let Σe be an optimal estimator for the system Σp. Determine a finite dimensional

estimator ΣNe of order N that either converges to Σe in the sense that:

lim
N→∞

||Σe −ΣNe || = 0,

or that achieves convergence of the estimated (or error) system in the sense that per-

formance converges

lim
N→∞

||Σp ∧ΣNe −Σp ∧Σe || = 0.

Here, Σp ∧ Σe is the system illustrated in Figure 5.3 and || · || is the norm used for
optimal estimator design of Σe .
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Approximation

Σe

(Σe)
N(Σae)

N

Σp

Approximation of Π

Approximation

(Σg)
N Optimal design

Optimal design

Σae Approximation

ΣNe
S3

S2 S1

Figure 6.1: Visual representation of possible estimator design and approximation paths.

The idea behind Problem 6.2 is that the performance which could be achieved if Σe would

be implementable can be approximated arbitrarily close by the implementable estimator

ΣNe .

Three approaches to obtain finite dimensional approximations of the optimal estimator

have been identified and are shown in Figure 6.1. The diagram shows the following three

paths:

S1. The system Σp is approximated by a finite dimensional linear time invariant system

ΣNp with state dimension N. An optimal estimator Σ
N
e for the system Σ

N
p is

designed that minimizes either of the norms defined in Chapter 5.

S2. The infinite dimensional optimal estimator Σe given by (6.2) is approximated by a

linear time invariant finite dimensional estimator (Σe)
N with state dimension N.

S3. The solution Π : X → X of the Riccati Equation (6.3) or (6.4) is approximated by

a finite rank solution Π̃ : X → X with rank(Π̃) ≤ N and subsequently substituted
for Π in (6.2). This defines the estimator Σae . Hereafter, the estimator Σ

a
e is

approximated by a linear time invariant finite dimensional estimator (Σe)
N with

state dimension N.

It is not a-priori clear which approach is most valuable in practical situations. Clearly,

there is a lot of freedom in the scenarios. For instance, there is a choice in the approx-

imation method that will be used. Moreover, we recognize that, it might be possible

that other interesting scenarios for approximation exist. In order to identify the most

valuable approach we analyze the three scenarios and compare the estimators in this

chapter

In the context of approximation of the linear quadratic regulator It has been observed

that care has to be taken with the approximation methods and that convergence of

system properties and performance is not trivial and inherent. We name a number of

cases where problems have been identified:

• Popular methods for finite element discretization [Wesseling, 2001; LeVeque,
2002] for linear convection dominated problems do employ non-linear flux limiters

such as the Van Leer or Korens flux limiters [Gunawan et al., 2004; Mesbah et al.,
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2009]. In these methods, the linear infinite dimensional system is approximated

by a nonlinear finite dimensional system. In [Liu and Sandu, 2008] it has been

observed that adjoints of linearization of approximated operators may lose con-

sistency (i.e. do approximate the adjoint of an operator well) especially when

approximation schemes with flux limiter methods are employed.

• In [Borggaard et al., 2004] it is conjectured that dual convergence is necessary for
strong convergence of the solution of Riccati equations and for the convergence

of the gains that need to be calculated in linear quadratic controller design for

non-normal distributed parameter systems.

• In [Banks and Fabiano, 1997] an example is given in which the semigroup operator
converges but the adjoint semigroup does not converge, and only weak conver-

gence of the Riccati equation is observed.

The topic of approximation of systems, the approximation of controllers and the syn-

thesis of controllers of finite order for systems of infinite dimension is a very wide area

that cannot be covered here. In this chapter we will focus on the finite dimensional

approximation of estimators for distributed parameter systems by a specific method,

the Galerkin projection. We will analyze the convergence of approximations of opti-

mal impulse response norm estimators by use of the results which are known from the

context of Linear Quadratic Regulator problems. The analysis of the convergence of

approximations of optimal L2-gain estimators will be left for future research.

The approximation of controllers for infinite dimensional systems has been a topic of

research for a very long period of time already. Important results can be found in the

survey book Chapter [Morris, 2010].

6.2 Estimator approximation

In this section we will introduce a mathematical framework to formalize the approxi-

mation of systems. This framework is found in literature and provides a useful stan-

dardization of notation for approximation problems. This will be used to formalize the

approximation scenarios S1, S2 and S3, which have been introduced in Section 6.1.

6.2.1 A system approximation framework

In many cases there is a compelling reason to approximate a system by another system,

with different properties. For instance, in case the original system is infinite dimensional,

approximations of such a system by a finite dimensional one is in general necessary to

allow for implementations on computational platforms. In such a case, one is interested

in how close (in a well defined measure) the solutions of the approximating system are

to the solutions of the original system and whether the approximation error vanishes for

approximations of increasing complexity. In general such questions are hard to answer.

In this section we describe a framework for approximation of systems. This framework

is based on the work described in [Ito and Kappel, 1998] and [Ito and Kappel, 2002,

Section 4.1].
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We introduce the following situation. Assume that Z is a Banach space with norm || · ||
and assume that X is a closed linear subspace of Z. In many cases Z equals X, but

this is not assumed beforehand. We assume that the operator A : D(A) → X in (6.1)

is the generator of a C0-semigroup T (t) on X and that the following evolution equation

is well posed on X and has a unique solution for any initial condition x(0) = x0 ∈ X:
ẋ =Ax. (6.5)

This solution is given by x(t) = T (t)x0. Then we introduce the following situation,

which we will call situation A. Suppose XN is, for every N = 1, 2, ... a Banach space

with norm || · ||XN . Moreover we define the following linear mappings between Z and XN
PN : Z → XN ,

EN : XN → Z.

In Figure 6.2 a visual representation of the spaces Z,X,XN and the operators EN , PN
is given.

We assume that the operator AN : D(AN)→ XN with D(AN) ⊆ XN is the generator of
a C0-semigroup TN(t) on XN and that the following evolution equation is well posed on

XN and has a unique solution for xN(0) = xN,0 ∈ XN :
ẋN =ANxN . (6.6)

This solution is given by xN(t) = TN(t)xN,0. In order to approximate solutions x to (6.5)

with solutions xN of the system (6.6) we consider the question how close the solutions

to (6.5) with initial condition x0 are to those of (6.6) with initial condition xN,0 = PNx0.

For this, we consider the measure

||T (t)x0 − ENTN(t)PNx0|| for t ∈ T.
Moreover, one might be interested to know if the approximation gets better if ones

increases the order N of the approximation. It is common to make the following as-

sumptions on the mappings PN and EN , following [Ito and Kappel, 1998]:

A1 There exists M1,M2 ∈ R independent of N, such that ||PN || ≤ M1, ||EN || ≤ M2.
A2 The operator PN and EN satisfy the property limN→∞ ||ENPNx − x || = 0 for all

x ∈ X
A3 The operator PN and EN satisfy the property PNEN = IN , where IN is the identity

operator on XN .

In general, (i.e. without special assumptions) there is no relation between the semi

groups TN(t) and T (t). However, we have the following lemma [Ito and Kappel, 2002,

Section 4.1]:

Lemma 6.2.1

Assume that the conditions A1, A2 and A3 hold and TN(t) is defined as above. If the

operator T0, defined by

T0(t)x := lim
N→∞

ENTN(t)PNx

exists for all x ∈ X and is uniform for all t in bounded intervals with t ≥ 0, then T0(t)
is a C0-semigroup.
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Proof. For the proof we refer to [Ito and Kappel, 2002, p117].

Definition 6.2.1 (Approximation of a system)

We will call the system (6.6) an approximation of the system (6.5) if

||T (t)x − ENTN(t)PNx || <∞ for all t ∈ [0,∞) and for all x ∈ X.

Moreover, a convergent approximation is an approximation such that T (t) = T0(t).

In the same manner as we did for XN , we can introduce a slightly different setting,

which we call setting B. We introduce ZN as follows. Suppose that ZN is, for every

N = 1, 2, ..., a subspace of Z with the norm || · ||, which is the norm on Z.
We introduce the canonical projection πN and canonical injection iN .

πN : Z → ZN

iN : ZN → Z

In Figure 6.2 a visual representation of the spaces ZN and the operators πN , iN is given.

We introduce the following assumptions on πN :

B1 There exists a M̃ ∈ R independent of N, such that ||πN || ≤ M̃,
B2 The operator πN satisfy the property limN→∞ ||πNz − z || = 0 for all z ∈ X,
and assume that the operator ÃN : D(ÃN) → ZN with D(ÃN) is the generator of a

semigroup T̃N(t) on ZN with the evolution equation:

˙̃xN = ÃN x̃N . (6.7)

In fact the two situations A and B are identical. Starting from XN one obtains situation

B from A, i.e. ZN and πN by setting ZN = range(EN) and πN = ENPN . The conditions

B1 and B2 are automatically satisfied if PN and EN satisfy A1, A2 and A3. Conversely,

starting from ZN one obtains situation A from B, i.e. XN , PN and EN by setting

XN = ZN , PN = πN and EN = iN . The conditions A1, A2 and A3 are automatically

satisfied if πN satisfies B1 and B2.

For our application, we will be mainly interested in the situation where spaces XN and ZN
are finite dimensional of dimension N and isomorphic. Then there exists an isomorphic

mapping pN : ZN → XN . In this case we have that:

PNx =pNπNx for x ∈ ZN (6.8)

ENxN =iNp
−1
N xN for xN ∈ XN (6.9)

The situation A is useful in the context of implementation. With XN finite dimensional

the system defined by (6.6) represents a finite system of ordinary differential equations

which is suitable for implementation in todays standard software tools such as Matlab.

In this case TN(t) = exp(ANt).

In Figure 6.2 a visual representation of the spaces Z,X,ZN and XN and the operators

EN , PN , pN , iN and πN is given.
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Z

X

Zn

Xn

Pn

En

πn

pn

in

T (t)

Tn(t)
T̃n(t)

Figure 6.2: Graphical representation of relevant spaces, subspaces, and mappings.

We remark that, until now, we did not specify how to obtain the approximating systems

(i.e. either AN or TN(t)) from the original system (i.e. either A or T (t)). The procedure

to obtain the approximation, the approximation method, depends from system to system.

The following shows an example of how the spaces ZN and XN can be chosen.

Example 6.2.1

Let Z = X be a Hilbert space with norm || · || and with a countable orthonormal basis
{φi}∞i=1. Let ZN = span{φi}Ni=1 and XN = RN with canonical basis {ei}Ni=1. We define:

PN :Z → XN , EN :XN → Z,

as follows:

PNx =

N∑

i=1

〈x, φi 〉ei ,

ENxN =

N∑

i=1

〈xN , ei〉φi .

The operators PN and EN satisfy the conditions A1, A2, A3. Indeed,

A1 Boundedness of EN and PN follows from Bessel’s inequality, for M1 = 1, M2 = 1

we have ||PN || ≤ M1, ||EN || ≤ M2. This follows when we set x =
∑∞
i=1 aiφi and

calculate:

||PN || = sup
x∈Z

||PNx ||
||x || = supx∈Z

||a1, ..., aN ||
||a|| = 1 for all n

||EN || = sup
xN∈XN

||ENx ||
||x || = 1 for all N
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A2 ||ENPNx − x || → 0 as N →∞ for all x ∈ X, which follows from:

||ENPNx − x || =||
N∑

i=1

〈PNx, ei 〉φi − x || = ||
N∑

i=1

〈x, φi 〉φi −
∞∑

i=1

〈x, φi 〉φi ||

= ||
∞∑

i=N+1

〈x, φi 〉φi || ≤
∞∑

i=N+1

|〈x, φi 〉|2

A3 PNEN = IN , where IN is the identity operator on XN , which follows from:

PNENx =

N∑

i=1

〈
N∑

j=1

〈x, ej 〉φj , φi 〉ei =
N∑

i=1

〈x, ei 〉ei = x

The operator πNx = ENPNx is now given by πNx =
∑N
i=1〈x, φi 〉φi . Moreover, it follows

that E∗N = PN :

〈xN , E∗Nx〉XN := 〈ENxN , x〉ZN for all xN ∈ XN , x ∈ Z

= 〈
N∑

i=1

〈xN , ei 〉φi , x〉ZN =
N∑

i=1

〈xN , ei 〉〈φi , x〉ZN

= 〈xN ,
N∑

i=1

〈x, φi 〉ZNei 〉 = 〈x, PNx〉

The latter property will be of use later in the chapter.

6.2.2 System approximation by Galerkin projection

A popular method for system approximation is the Galerkin projection method. In this

section we will introduce the Galerkin projection. We will show in two examples how the

Galerkin projection can be used to obtain approximations of the convection equation

and diffusion equation. Consider the system Σ.

Σ :

{

ẋ = Ax + Bu,

y = Cx,

with x(t) ∈ X and A : D(A)→ X, D(A) ⊂ X. Define EN : XN → X and PN : X → XN
with the properties that πN = ENPN is a projection on X and E

∗
NPN = IN .

The Galerkin projection of the system Σ is defined as follows:

Definition 6.2.2 (Galerkin projection [Antoulas, 2005])

Let PN and EN satisfy assumptions A1, A2, A3. The Galerkin projection of the system

Σ, is defined by ΣN

ΣN :

{

ẋN = ANxN + BNu,

y = CNxN ,

with AN := PNAEN , CN := CEN and BN := PNB and xN,0 = PNx0.

Note that ΣN has order N if and only if XN is N dimensional.
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6.2.3 Approximation of estimators

In this section the approximation scenarios S1, S2 and S3 which have been introduced

in Section 6.1 will be formalized by use of the framework introduced in Section 6.2.1.

In order to do so, it has been assumed that XN = R
N and that operators EN and PN

are as defined in Section 6.1.

Scenario S1

In this section the scenario S1 is discussed. That is, the system Σp is approximated by a

finite dimensional linear time invariant system ΣNp with state dimension N. This system

is represented by:

ΣNp :







ẋN = ANxN + GNd1,

y = CNxN + Sd2,

z = HNxN ,

with xN(t) ∈ RN . Subsequently, an optimal estimator ΣNe for the system ΣNp is designed
that minimizes either of the norms defined in Chapter 5. This estimator is given by:

ΣNe :

{
˙̂x = (AN − ΠNC∗N(SS∗)−1CN)x̂ + PNΠNC∗N(SS∗)−1y
ẑ = HN x̂

(6.10)

with x̂(t) ∈ RN . In the case of optimal H2-norm estimator design, ΠN is the solution
of the Algebraic Riccati Equation:

ΠNA
∗
N + ANΠN + GNG

∗
N − ΠN(C∗N(SS∗)−1CN)ΠN = 0, (6.11)

In the case of optimal L2 gain estimator design, ΠN is the solution of the Algebraic

Riccati Equation for x1, x2 ∈ RN :

ΠNA
∗
N + ANΠN + GNG

∗
N − ΠN(C∗N(SS∗)−1CN − γ−2H∗NHN)ΠN = 0. (6.12)

In practical applications we will consider the interconnection of Σp with Σ
N
e , and we will

be interested in the system

Σg ∧ΣNe : L2(D1 ×D2,T)→ L2(T, Z),

where Σg is as introduced in Section 5.3.

A representation of Σg ∧ ΣNe can be obtained from Equations (5.5) and (5.6) and is
given by:

(Σg ∧ΣNe
[
d1
d2

]

)(t) =

∫

T

kN(t, τ)

[
d1(τ)

d2(τ)

]

dτ,

with

kN(t, τ) =
[

HT (t − τ)G +
∫ t

τ MN(t, σ)CT (σ − t)Gdσ MN(t, τ)S
]
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where MN(t, τ) = hN(t − τ), with hN(t) = HNSN(t)ΠNC∗N(SS∗)−1 where SN(t) is the
semigroup operator with infinitesimal generator AN − ΠNC∗N(SS∗)−1CN , i.e.

SN(t) = exp((AN − ΠNC∗N(SS∗)−1CN)t).

We have the following theorems:

Theorem 6.2.2

Consider the systems Σg, Σe and Σ
N
e . If

lim
N→∞

||Σe −ΣNe ||imp = 0 then lim
N→∞

||Σp ∧Σe −Σp ∧ΣNe ||imp = 0.

Proof. We recall that:

(Σg ∧Σe
[
d1
d2

]

)(t) =

∫

T

k(t, τ)

[
d1(τ)

d2(τ)

]

dτ,

where k follows from Equation (5.6):

k(t, τ) =
[

HT (t − τ)G +
∫ t

τ M(t, σ)CT (σ − t)Gdσ M(t, τ)S
]

with M(t, τ) = h(t − τ), h(t) = HS(t)ΠC∗(SS∗)−1 and where S(t) is the semigroup
operator with infinitesimal generator A− ΠC∗(SS∗)−1C.
By definition of the norm of the impulse response it follows that:

||Σp ∧Σe −Σp ∧ΣNe ||imp = ||k(·, 0)− kN(·, 0)||2 =
||
[∫ ·
0(h(· − σ)− hN(· − σ))CT (σ − ·)Gdσ (h(·)− hN(·))S

]
||2

Using the Cauchy-Schwarz inequality it follows that:

||Σp ∧Σe −Σp ∧ΣNe ||imp

≤
∫ ·

0

||h(· − σ)− hN(· − σ)||2||CT (σ − ·)G||2dσ + ||h(·)− hN(·)S||2

From definition of the impulse response norm and the assumption that limN→∞ ||Σe −
ΣNe ||imp it follows:

lim
N→∞

||h − hN ||2 = 0,

from which it can be concluded that limN→∞ ||Σp ∧Σe −Σp ∧ΣNe ||imp = 0.

The following theorem shows that it is possible to obtain, under some assumptions,

convergence in the impulse response norm of the system ΣNe to Σe .

Theorem 6.2.3

Consider the systems Σp, Σe and Σ
N
e . Assume that:

lim
N→∞

||(H −HNPN)x || = 0, lim
N→∞

||(H∗ − ENH∗N)z || = 0,

lim
N→∞

||(C − CNPN)x || = 0, lim
N→∞

||(C∗ − ENC∗N)y || = 0,

lim
N→∞

||(S(t)− ENSN(t)PN)x)|| = 0, lim
N→∞

||(S∗(t)− ENS∗N(t)PN)x)|| = 0,

lim
N→∞

||(Π− ΠNPN)x || = 0,
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for all t ∈ T, x ∈ X, y ∈ Y and z ∈ Z and where Π is the solution of (6.3) and S(t)
is the semigroup operator with infinitesimal generator A − ΠC∗(SS∗)−1C. Then the
following holds:

lim
N→∞

||Σe −ΣNe ||imp = 0.

Proof. Let h(t), hN(t) ∈ Rm×n be defined by

h(t) = HS(t)ΠC∗(SS∗)−1 and hN(t) = HNSN(t)ΠNC
∗
N(SS

∗)−1.

From the assumptions it follows that:

lim
N→∞

||(h(t)− hN(t))y ||Y = 0 and lim
N→∞

||(h∗(t)− h∗N(t))z ||Z = 0,
(6.13)

for all t ∈ T, y ∈ Y , z ∈ Z. Let {λN,i(t)}mi=1 be the eigenvalues of
(h(t)− hN(t))∗(h(t)− hN(t)). From the Equations (6.13) it follows that for all t ∈ T,
limN→∞ λN,i(t) = 0 for i = 1, ..., m. Since m is finite it follows from the definition of
the trace operator that for all t ∈ T limN→∞

∑m
i=1 λN,i(t) = 0. Therefore it follows

that:
∫∞
0

∑m
i=1 λN,i(t)dt = 0. This proofs the claim, since from the definition of the

impulse response norm it now follows that:

lim
N→∞

||Σe −ΣNe ||imp = lim
N→∞

||h − hN ||2

= lim
N→∞

∫ ∞

0

tr (h(t)− hN(t))∗(h(t)− hN(t))dt

= lim
N→∞

∫ ∞

0

m∑

i=1

λi(t)dt = 0

Scenario S2

In this section we study the scenario S2. That is, the infinite dimensional optimal

estimator Σe given by (6.2) is approximated by a linear time invariant finite dimensional

estimator (Σe)
N with state dimension N. Define (Σe)

N by:

(Σe)
N :

{
˙̂x = PN(A− ΠC∗(SS∗)−1C)EN x̂ + PNΠC∗(SS∗)−1y
ẑ = HEN x̂

(6.14)

with in the case we minimize the impulse response norm, Π is for all x1, x2 ∈ D(A∗) the
solution of the Riccati equation:

〈ΠA∗x1, x2〉+ 〈x1,ΠA∗x2〉+ 〈G∗x1, G∗x2〉 − 〈Π(C∗(SS∗)−1C)Πx1, x2〉 =0, (6.15)

and with in the case we minimize the L2 norm, Π is for all x1, x2 ∈ D(A∗) the solution
of the Riccati equation:

〈ΠA∗x1, x2〉+ 〈x1,ΠA∗x2〉+ 〈G∗x1, G∗x2〉 − 〈Π(C∗(SS∗)−1C − γ−2H∗H)Πx1, x2〉 = 0.
(6.16)
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Note that this is the Galerkin projection of the optimal estimator Σe , given by Equa-

tion 6.2. Unfortunately, this scenario is not realistic since the associated implicit Riccati

equations need to be solved in this approach. However, for theoretical purposes it might

be interesting to study if we have convergence in the sense that:

lim
N→∞

||Σe − (Σe)N || = 0.

For the optimal impulse response estimators this problem amounts to convergence of

the convolution kernels of the system (Σe)
N and (Σe) and might be studied by use

of the Kato-Trotter Theorem, which will be introduced in Section 6.3. Unfortunately,

convergence results for this problem are not available in this thesis.

Scenario S3

In this section we study the scenario S3. That is, the solution Π : X → X of the

Riccati equation (6.3) or (6.4) is approximated by a finite rank solution Π̃ : X → X with

rank(Π̃) ≤ N and subsequently substituted for Π in (6.2). This defines the estimator Σae .
Hereafter, the estimator Σae is approximated by a linear time invariant finite dimensional

estimator (Σe)
N with state dimension N. This gives

(Σae) :

{
˙̂x = (A− Π̃C∗(SS∗)−1C)x̂ + Π̃C∗(SS∗)−1y
ẑ = Hx̂

(6.17)

with rankΠ̃ ≤ N and the approximate finite dimensional system

(Σae)
N :

{
˙̂x = PN(A− Π̃C∗(SS∗)−1C)EN x̂ + PNΠ̃C∗(SS∗)−1y
ẑ = HEN x̂

(6.18)

In general the properties of (Σae)
N will depend on the choice of the method to compute Π̃

and the method to obtain (Σae)
N . We remark that (in theory) this setting enables to use

methods for computation of Π̃ and approximation of the system which are not related.

The question, whether or not this freedom is beneficial with respect to performance

of the estimator when (Σae)
N interconnected to original plant Σp will be left for future

research.

Let ΠN ∈ RN×N be the solution of either (6.11) or (6.12). We have the following result
for the case in which Π̃ is obtained from ΠN by setting Π̃ = ENΠNPN .

Theorem 6.2.4

Consider the situation where PN and EN satisfy the conditions A1, A2 and A3 and

suppose the estimators ΣNe and (Σ
a
e)
N are obtained according to scenario’s S1 and S3,

where AN , GN , CN and HN are obtained by the Galerkin projection, i.e.:

AN =PNAEN GN =PNG CN =CEN HN =HEN

Moreover assume that ΠN ∈ RN×N be the solution of either (6.11) or (6.12) and let
Π̃ be computed by Π̃ = ENΠNPN .

In this situation, the estimators ΣNe = (Σ
a
e)
N if CP ∗N = CEN .
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Proof. Given that CP ∗N = CEN and Π̃ = ENΠNPN it follows that:

PNΠ̃C
∗(SS∗)−1 = ΠN(CP

∗
N)
∗(SS∗)−1 = ΠNC

∗
N(SS

∗)−1.

Therefore, (Σae)
N can be rewritten to,

(Σae)
N :

{
˙̂x = (AN − ΠNC∗N(SS∗)−1CN)x̂ +ΠNC∗N(SS∗)−1y
ẑ = HEN x̂

(6.19)

and it follows from comparison the latter representation of (Σae)
N with (6.14), that the

systems (Σae)
N and ΣNe are equal.

6.3 Convergence of approximations

Approximations of systems can be obtained by the approximation methods described

in Section 6.2.1. It is important to know if and eventually at what rate the quality of

approximations improves if N increases. This property is called convergence. In this

section we provide an introduction to the most imporant convergence results and shown

how these results can be used for a special class of systems.

In order to facilitate the discussions we introduce two different types of convergence.

Definition 6.3.1 (Strong convergence)

A series of points xN in a Hilbert Space H is said to converge strongly, or converge in

the norm, if there exist an x ∈ H such that:

lim
N→∞

||xN − x ||H = 0.

This type of convergence is also known as convergence in the norm or convergence in

the strong topology and is generally denoted by xN → x .

Definition 6.3.2 (Weak convergence)

A series of points xN in a Hilbert Space H is said to converge weakly, if there exist an

x ∈ H, such that for all φ ∈ H∗

lim
N→∞

|〈xN , φ〉 − 〈x, φ〉| = 0.

This type of convergence is also known as convergence in the weak topology and denoted

by xN
w→ x . Strong convergence implies weak convergence, the converse is in general

not true.

We will be interested in the conditions under which the semigroup operators converge

stongly, i.e. TN(t)x → T (t)x for any x ∈ X. A theorem that establishes a necessary
and sufficient condition for strong convergence is the Trotter-Kato Theorem, which can

be found (in various formulation) in for instance [Ito and Kappel, 1998] or [Pazy, 1983].
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Theorem 6.3.1 (Trotter-Kato theorem in framework of Kappel and Ito.)

Assume that A1, A2, A3 are satisfied. Let A resp. AN be the generator of a C0 semigroup

T (t) on X resp. TN(t) on XN , with ||TN(t)|| ≤ Meωt and ||T (t)|| ≤ Meωt and

M,ω independent of N. Let ρ(A) denote the resolvent set1 of A. Then the following

statements are equivalent

a There exist a λ0 ∈ ρ(A) ∩
⋂∞
N=1 ρ(AN), such that for all x ∈ X

lim
N→∞

||EN(λ0IN − AN)−1PNx − (λ0I − A)−1x || = 0

b For every x ∈ X and t ≥ 0

lim
N→∞

||ENTN(t)PNx − T (t)x || = 0

uniformly on bounded t-intervals.

Moreover: If (a) or (b) is true, then (a) holds for all λ0 with Re(λ0) > ω.

For the proof we refer to the proof of Theorem 2.1 in [Ito and Kappel, 1998]. In

general, the conditions in the Kato Trotter theorem are hard to verify in practice. The

following theorem enables to substitute the condition (a) of the Kato-Trotter theorem,

as formulated in [Ito and Kappel, 1998].

Theorem 6.3.2

Let the assumptions made in Theorem 6.3.1 hold. Statement (a) is equivalent to the

following conditions:

C0 limN→∞ ||ENPNx − x || = 0 for all x ∈ X.
C1 There exists a λ0 > ω and a subset D ⊂ D(A) such that its closure D̄ = X and
(λ0I − A)D = X.

C2 For all u ∈ D there exists a sequence (ūN)N∈N with ūN ∈ domAN such that

lim
N→∞

||EN ūN − u|| and lim
N→∞

||ENAN ūN − u||.

Proof. For the proof we refer to the proof of Proposition 3.1 in [Ito and Kappel, 1998].

A drawback of the Trotter-Kato Theorem is the technicality of the conditions. There-

fore, it is useful to search for classes of systems for which convergence can be checked

more easily. We will now show a special class of systems, for which convergence can be

proved with less technical conditions.

Definition 6.3.3 (Semigroup of contractions, [Curtain and Zwart, 1995, Def 2.2.1])

T (t) is a contraction semigroup if it is a C0-semigroup that satisfies ||T (t)|| ≤ 1 for all
t ≥ 0.

The following theorem provides a sufficient condition to validate if a linear operator A

generates a C0 semigroup.

1The resolvent R(λ,A) is defined by R(λ,A) = (λI − A)−1. The resolvent set ρ(A) is defined as
ρ(A) = {λ ∈ C | (λI − A)x 6= 0 for all x ∈ D(A)}
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Lemma 6.3.3 ([Curtain and Zwart, 1995, Corollary 2.2.3])

If A is a densely defined closed operator on a Hilbert Space and

Re(〈Az, z〉) ≤ ω||z ||2 for z ∈ D(A)
Re(〈A∗z, z〉) ≤ ω||z ||2 for z ∈ D(A∗)

then A is the infinitesimal generator of a C0 semigroup with ||T (t)|| ≤ eωt .

Note that if ω ≤ 0 the semigroup is a semigroup of contractions. The contraction semi
groups are closely related to dissipative operators by the Lumer-Phillips theorem. We

introduce the definition of a dissipative operator.

Definition 6.3.4 (Dissipative Operator ([Pazy, 1983]))

A linear operator A on a Hilbert space. A is dissipative if for every x ∈ D(A), Re〈Ax, x〉 ≤
0.

Therefore, a special case (ω ≤ 0) of Lemma 6.3.3 is often found in literature in the
context of dissipative operators, which we introduce for completeness.

Corollary 6.3.4 ([Pazy, 1983, Corollary 4.4])

If A is a densely defined closed operator on a Hilbert space and A and A∗ are dissipative
then, A is the generator of a semigroup of contractions.

The Lumer-Phillips theorem provides a sufficient condition for a linear operator to be

the generator of a semigroup of contractions.

Theorem 6.3.5 (Lumer-Phillips ([Pazy, 1983]))

Let A be a linear operator with the dense domain D(A) in X. The following statements

are equivalent.

• A is dissipative and there is an λ0 > 0 such that im(λ0I + A) = X.
• A is the generator of a C0 semigroup of contractions.

Moreover, if A is dissipative and there is an λ0 such that im(λ0I + A) = X, then

im(λI + A) = X for all λ > 0

By combination of the Lumer-Phillips Theorem 6.3.5 and Lemma 6.3.3 and Theo-

rem 6.4.3 one can derive straight-forward conditions to guarantee convergence of ap-

proximations.

Theorem 6.3.6 (Convergence of semigroup generated by dissipative operators)

Let A be a densely defined closed operator on a Hilbert space and be such that:

Re(〈Ax, x〉) ≤ γ||x ||2 for x ∈ D(A),
Re(〈A∗x, x〉) ≤ γ||x ||2 for x ∈ D(A∗),

with γ ≤ 0.

Let XN be a finite dimensional Hilbert space of dimension N, PN : X → XN and

EN : XN → X be operators for which A1,A2 and A3 hold and assume that E∗N = PN .
Let approximations AN of A be given by AN := PNAEN . Let TN(t), T (t) be the
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semi-groups associated with AN and A respectively. Then the following holds.

lim
N→∞

||ENTN(t)PNx − T (t)x || = 0 for all t ≥ 0, x ∈ X

lim
N→∞

||ENT ∗N(t)PNx − T ∗(t)x || = 0 for all t ≥ 0, x ∈ X

Moreover, the semi groups TN(t) and T
∗
N(t) are uniformly exponentially stable, i.e.

||TN(t)|| ≤ eγt and ||T ∗N(t)|| ≤ eγt for all t ≥ 0.

Proof. We will show that the assumptions in this Theorem imply that the conditions

C0, C1 and C2 in Theorem 6.4.3 hold for A to prove convergence of TN(t) to T (t).

Validation of

C0: Holds since C0 is equal to assumption A2.

C1: By Lemma 6.3.3 it follows that: ||T (t)|| ≤ 1 for all t ≥ 0. Therefore, A is the
generator of a semigroup of contractions. By the Lumer-Phillips Theorem 6.3.5

it follows that im(λI + A) = X for all λ > 0. Therefore condition C1 holds for

D = D(A) and λ > 0.

C2: To prove consistency of the approximation of A, we show that condition C2 holds.

We choose x̄N ∈ XN by x̄N = PNx and it follows that:
lim
N→∞

||EN x̄N − x || = lim
N→∞

||EN x̄N − x || = lim
N→∞

||(ENPN − I)x || = 0

lim
N→∞

||ENAN x̄N − Ax || = lim
N→∞

||ENPNAENPNx − Ax ||

= lim
N→∞

||(ENPN − I)AENPNx + A(ENPN − I)x || = 0

It follows that TN(t) convergences to T (t). Moreover, we have that

〈ANxN , xN〉 = 〈P ∗NAENxN , xN〉 = 〈AENxN , P ∗NxN〉〈AENxN , ENxN〉 ≤ γ,
from which ||TN(t)|| ≤ eγt follows by Lemma 6.3.3.
It follows that A∗N = (PNAEN)

∗ = E∗NA
∗P ∗N . We will show that our assumptions imply

that the conditions C0, C1 and C2 in Theorem 6.4.3 hold for A∗ to prove convergence
of T ∗N(t) to T

∗(t).
Validation of

C0: Holds since C0 is equal to assumption A2.

C1: By Lemma 6.3.3 it follows that: ||T ∗(t)|| ≤ 1 for all t ≥ 0. Therefore, A∗ is the
generator of a semigroup of contractions. By Lumer-Phillips theorem it follows

that im(λI+A∗) = X for all λ > 0. Therefore condition C1 holds for D = D(A∗)
and λ > 0.

C2: To prove consistency of the approximation of A∗, we test condition C2. We again
choose x̄N = PNx and it follows that:

lim
N→∞

||ENA∗N x̄N − A∗x || = lim
N→∞

||ENE∗NA∗P ∗NPNx − A∗x ||

= lim
N→∞

||ENPNA∗ENPNx − A∗x ||

= lim
N→∞

||(ENPN − I)A∗ENPNx + A∗(ENPN − I)x ||

= 0.
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Here we have used that limN→∞ ||(ENPN − I)xN || = 0 for all xN ∈ XN .

It follows that T ∗N(t) convergences to T
∗(t). Moreover, we have that

〈A∗NxN , xN〉 = 〈E∗NA∗P ∗NxN , xN〉 = 〈A∗ENxN , ENxN〉 ≤ γ,

from which ||T ∗N(t)|| ≤ eγt follows by Lemma 6.3.3.

Theorem 6.3.6 is strongly related to the work done in the context of approximation

of parabolic systems such as in [Banks and Kunisch, 1984] and systems in which the

infinitesimal generators are sectorial operator, such as in [Ito and Kappel, 2002, Section

4.4].

Alternative to the condition E∗N = PN , we can use a weaker condition to show conver-
gence of the semigroup operators.

Corollary 6.3.7

Consider the assumptions of Theorem 6.3.6. And assume:

lim
N→∞

||(EN − P ∗N)xN ||xN = 0 for all xN ∈ XN ,

lim
N→∞

||(PN − E∗N)x ||x = 0 for all x ∈ X

Then the following holds.

lim
N→∞

||ENTN(t)PNx − T (t)x || = 0 for all t ≥ 0, x ∈ X

lim
N→∞

||ENT ∗N(t)PNx − T ∗(t)x || = 0 for all t ≥ 0, x ∈ X

Proof. The proof almost identical to the proof of Theorem 6.3.6. In this situation

validation of condition C0 and C1 are equal and validation of C2 for A∗ follows when
we study the convergence of (AN)

∗. We have:

lim
N→∞

||(EN(AN)∗PN − A∗)x || ≤ lim
N→∞

sup
y∈X

||(EN(AN)∗PN − A∗)y ||
||y || ||x ||

We use that for an arbitrary operator B : X → X we have that ||B|| = ||B∗||, to obtain:

lim
N→∞

||(EN(AN)∗PN − A∗)x ||

≤ lim
N→∞

sup
y∈X

||(P ∗NANE∗N − A)y ||
||y || ||x ||

= lim
N→∞

sup
y∈X

||(ENANPN − A)y + (EN − P ∗N)ANPNy + P ∗NAN(PN − E∗N)y ||
||y || ||x ||

Now we use the triangle inequality for the numerator and it follows that limN→∞ ||(A∗−
EN(AN)

∗PN)x || = 0 for all x ∈ X. The uniform exponential stability of TN(t) and T ∗N(t)
cannot be shown analogously for this case.
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6.4 Approximation of Riccati equations

In this section we will study the approximation of Riccati equations involved in the optimal

impulse response estimator design problem. In Theorem 6.2.3 it has been shown that

convergence of approximations of the optimal impulse response estimator can be proved

under the assumptions which are stated in the theorem. From these assumptions, the

following three are influenced by the optimal estimator design procedure:

lim
N→∞

||(S(t)− ENSN(t)PN)x)|| = 0, (6.20a)

lim
N→∞

||(S∗(t)− ENS∗N(t)PN)x)|| = 0, (6.20b)

lim
N→∞

||(Π− ENΠNPN)x || = 0 (6.20c)

In this chapter, we will study conditions for which it can be shown that the assumptions

given by Equations (6.20a), (6.20b) and (6.20c) hold. In Chapter 5, we have shown

that the estimator design problem and the Linear Quadratic Regulator design problem

are related by duality. The convergence of approximations of Riccati equations which

are used in the context of the Linear Quadratic Regulator (LQR) problem is researched

extensively. In this section we will how these results can be used to derive conditions for

convergences of the approximations of Riccati equations which are used in the optimal

impulse response estimator design problem. In the first part of this section we will

review the results known for the Linear Quadratic Regulator problem. In the second

part of this section we will show how these results can be applied in the context of

the approximations of solutions of Riccati equations used in the design of the optimal

impulse response estimator. In this section we will assume that operators EN and PN
are as introduced in Section 6.2.1 and satisfy the conditions A1, A2 and A3.

6.4.1 Approximation of the LQR problem

In this section we introduce the approximation theory of Banks and Ito. Research on

the approximation of the solution to the LQR problem for infinite dimensional systems

has a long history. The most well known results on the convergence of algebraic Riccati

equations can be found in [Banks and Kunisch, 1984]. The proof of this result is based

on the results on approximations of integral Riccati equations in [Gibson, 1979]. An

improvement of this result can be found in [Ito, 1987]. Generalization to strongly stabi-

lizable systems can be found in [Oostveen, 2000]. An overview of results on controller

design for distributed parameter systems can be found in [Morris, 2010]. We state some

key results.

Consider the systems

Σ :

{

ẋ = Ax + Bu,

y = Cx
ΣN :

{

ẋN = ANxN + BNu,

yN = CNxN

with X and XN Hilbert spaces, Y and U finite dimensional Euclidean spaces, x(t) ∈ X,
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xN(t) ∈ XN , y(t) ∈ Y ,yN(t) ∈ Y ,u(t) ∈ U, and
A :X → X, AN :XN → XN ,

B :U → X, BN :U → XN ,

C :X → Y, CN :XN → Y.

Let TN(t) : XN → XN and T (t) : X → X be semigroup operators with generators AN
and A respectively. We assume that the system Σ is exponentially stabilizable.

Moreover, we introduce Q : X → X and QN : XN → XN with Q > 0 and QN > 0 and

we introduce the following two Algebraic Riccati Equations, associated with the systems

Σ and ΣN respectively:

A∗NΨN +ΨNAN −ΨNB∗NQ−1N BNΨN + C∗NCN = 0, (6.21)

〈A∗Ψx1, x2〉+ 〈ΨAx1, x2〉 − 〈ΨB∗Q−1BΨx1, x2〉+ 〈C∗Cx1, x2〉 = 0, (6.22)

for x1, x2 ∈ D(A).
The Riccati equations (6.22) and (6.21) play an important role in the Linear Quadratic

Regulator design problem for the system Σ and ΣN . We will be interested in the

convergence of the solutions of the Riccati equations (6.22) and (6.21), i.e.

lim
N→∞

||ENΨNPN −Ψ|| = 0.

We will introduce two theorems which are well known in the literature, that can used to

prove convergence of ΨN to Ψ. First, we introduce the assumptions H1, H2 and H3,

which will be used in the following theorems.

H1 - Converge of semigroup and dual semigroup:

1. For each x ∈ X, limN→∞ ||T (t)x − ENTN(t)PNx || = 0 for all t ≥ 0.
2. For each x ∈ X, limN→∞ ||T ∗(t)x − ENT ∗N(t)PNx || = 0 for all t ≥ 0.

H2 - Convergence of input and output operators:

1. For each u ∈ U, limN→∞ ||Bu − ENBNu|| = 0.
For each x ∈ X, limN→∞ ||B∗x − B∗NPNx || = 0.

2. For each x ∈ X, limN→∞ ||Cx − CNPNx || = 0.
For each y ∈ Y , limN→∞ ||C∗y − ENC∗Ny || = 0.

H3 - Uniform Stabilizability and Uniform Detectability:

1. The family of pairs (AN , BN) is uniformly stabilizable. That is, there exist

numbers M1 ≥ 1 and ω1 > 0 and a sequence of operators KN : XN → U,

with ||KN || <∞ such that:
||e(AN−BNKN)tPNx || ≤ M1e−ω1t ||x || for t ≥ 0 and x ∈ X.

2. The family of pairs (AN , CN) is uniformly detectable. That is, there exists

numbers M2 ≥ 1 and ω2 > 0 and a sequence of operators LN : Y → XN ,

with ||LN || <∞ such that:
||e(AN−LNCN)tPNx || ≤ M2e−ω2t ||x || for t ≥ 0 and x ∈ X.
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The following theorem is well known [Banks and Kunisch, 1984, Theorem 2.2] and

can be used to analyze the convergence of the solution of Riccati equations (6.22)

and (6.21).

Theorem 6.4.1 (Convergence of solutions Riccati equations.)

Suppose that the assumptions H1 and H2 hold and let Q : X → X be such that Q > 0.

Let ΨN denote the non negative self adjoint solution of the finite dimensional Algebraic

Riccati Equation (6.21). Assume that Ψ is the non-negative self adjoint solution of the

infinite dimensional Algebraic Riccati Equation (6.22). Let S(t) and SN(t) be closed

loop semigroup operators with generators A− BQ−1B∗Ψ and AN − BNQ−1B∗NΨN and
assume there are positive constants MS, MΨ and ω independent of N satisfying:

||SN(t)||XN ≤MSe−ωt for all t ≥ 0, for all N (6.23)

||ΨN ||XN ≤MΨ for all N. (6.24)

Then the following holds:

1. The solutions of the Riccati equations converge in strong sense:

lim
N→∞

||ENΨNPNx −Ψx || = 0 for every x ∈ X. (6.25)

2. The closed loop semigroup operators SN(t) and S(t) converge in strong sense:

lim
N→∞

||ENSN(t)PNx − S(t)x || for every x ∈ X, (6.26)

3. The closed loop semigroup S(t) is exponentially bounded:

||S(t)|| ≤ MSe−ωt for t ≥ 0. (6.27)

For the proof of this theorem we refer to [Banks and Kunisch, 1984].

Moreover, we have the following corollary:

Corollary 6.4.2

From strong convergence of ΨN to Ψ it follows that:

||Ψ|| ≤ MΨ.

Proof. From Equation (6.25) states that Ψx = limN→∞ ENΨNPNx . It follows that
||Ψ|| = limN→∞ ||ENΨNPNx || ≤ MΨ||x ||.

A big hurdle for the application of Theorem 6.4.1 to practical situations is the condition

given by Equation (6.23), which is difficult to check in practice. The following theorem

enables to replace the condition on ΨN given by Equation (6.23) by a slightly more

practical condition.

Theorem 6.4.3 (Theorem 2.1 in [Ito, 1987])

Suppose H1, H2 and H3 are satisfied and let SN(t) := e
(AN−BNQ−1N B∗NΨN)t . Then for each

N the Riccati equation

A∗NΨN +ΨNAN −ΨNBNQ−1N B∗NΨN + C∗NCN = 0
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admits a unique non negative solution ΨN . Moreover, there exists a positive constant

M4 such that

||ΨN || ≤ M4 <∞

and there exists positive constants M3 ≥ 1, and ω3 > 0 (independent of N) such that
for all x ∈ X:

||ENSN(t)PNx || ≤ M3e−ω3t ||x || for t ≥ 0.

Proof. A correction to the original proof in[Ito, 1987] is given in Appendix D.1.

We obtain the following corollary which follows from the combination of the Theorems

6.4.3 and 6.4.1.

Corollary 6.4.4

Suppose that the pair (A,B) is exponentially stabilizable and the pair (A,C) is exponen-

tially detectable and that the conditions H1, H2, H3 hold. Let M3 and M4 be constants

and defined as in Theorem 6.4.3. Then ||Ψ|| ≤ M4 and
1. The solutions of the Riccati equations (6.21) and (6.22) converge in strong sense:

lim
N→∞

||ENΨNPNx −Ψx || = 0 for every x ∈ X.

2. The closed loop semi groups operators SN(t) and S(t) converge in strong sense:

lim
N→∞

||ENSN(t)PNx − S(t)x || for every x ∈ X,

3. The closed loop semi groups S(t) is exponentially bounded:

||S(t)|| ≤ M3e−ωt for t ≥ 0.

We also show that the dual of SN(t) converges to the dual semigroup of S(t). First we

introduce a technical Theorem.

Theorem 6.4.5

Let the operator A : D(A) → X be the generator of semigroup T (t) and let W :

X → X be bounded operator and let A +W be the generator of semigroup S(t). Let

AN : XN → XN be the generator of semigroup TN(t) and let WN : XN → XN be a

bounded operator. Moreover, let AN +WN be the generator of semigroup SN(t) and

assume that limN→∞ ||(ENPN − I)x ||=0 for all x ∈ X. If the following holds:

lim
N→∞

||TN(t)x − T (t)x || = 0 for all x ∈ Xand t ≥ 0, (6.28)

lim
N→∞

||WNx −Wx || = 0 for all x ∈ X, (6.29)

then the following holds:

lim
N→∞

||SN(t)x − S(t)x || = 0.

Before we proceed with the proof, we will introduce an additional Lemma.



i

i

“thesis” — 2012/9/3 — 21:29 — page 165 — #179
i

i

i

i

i

i

6.4 Approximation of Riccati equations 165

Lemma 6.4.6 (Variation of parameters equation)

Let A be the generator of semigroup T (t) and let W : X → X be bounded operator.

Then A+W is the generator of semigroup S(t) which satisfies:

S(t)x = T (t)x +

∫ t

0

T (t − τ)WS(τ)xdτ.

For the proof we refer to [Engel and Nagel, 2000, Corollary 1.7].

By use of Lemma 6.4.6 we can now proof Theorem 6.4.5.

Proof of Theorem 6.4.5. It follows from Lemma 6.4.6 that [SN(t) − S(t)]x can be
represented as:

[SN(t)− S(t)]x=[TN(t)− T (t)]x +
∫ t

0

[TN(t − τ)− T (t − τ)]WS(τ)x

+ TN(t − τ)[WN −W ]S(τ)x + TN(t − τ)WN [SN(τ)− S(τ)]xdτ.

We calculate limN→∞ ||SN(t)x − S(t)x || and find:

lim
N→∞

||SN(t)x − S(t)x || = lim
N→∞

∫ t

0

TN(t − τ)BN [SN(τ)− S(τ)]xdτ.

Since SN(0) = I and S(0) = I, we have that limN→∞ ||[ENSN(0)PN −S(0)]x || = 0 and
it follows that limN→∞ ||[SN(t)− S(t)]x || = 0 for all t > 0.

The convergence of the adjoint of SN(t) to adjoint of S(t) follows directly from Theo-

rem 6.4.5.

Corollary 6.4.7

Suppose that the pair (A,B) is exponentially stabilizable and the pair (A,C) is exponen-

tially detectable and that the conditions H1, H2, H3 hold. Let M3 and M4 be constants

and defined as in Theorem 6.4.3. Let S(t) and SN(t) be the semigroup operators with

infinitesimal generators A−BQ−1B∗Ψ and AN−BNQ−1N B∗NΨN and let S∗(t) and S∗N(t)
be the adjoint of S∗(t) and S∗N(t) respectively. The following holds:

lim
N→∞

||ENS∗N(t)PNx − S∗(t)x || for every x ∈ X,

Proof. It is well known that the semigroup operators S∗(t) and S∗N(t) have the infinites-
imal generators A∗ − ΨB∗Q−1B and A∗N − ΨnB∗NQ−1N BN . We will use Theorem 6.4.5
to prove convergence, were we will set W = −ΨB∗Q−1B and WN = −ΨNB∗NQ−1N BN .
From application of Theorem 6.4.4 it follows that ||ΨN || ≤ M4 and ||Ψ|| ≤ M4 and

therefore boundedness of W and WN follows. From assumption H1.2 and by application

of Theorem 6.4.5 the result follows.

6.4.2 Approximation of optimal impulse response estimators

In this section we will use the results from Section 6.4.1 to derive sufficient conditions

such that it can be shown that the assumptions (6.20a), (6.20b), (6.20c) hold and
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thus can be used for Theorem 6.2.3. In essence we will reformulate the result on the

convergence for Linear Quadratic estimator design by use of the duality results derived

in Chapter 5. Consider the systems

Σp :







ẋ = Ax + Gd1,

y = Cx + Sd2,

z = Hx

Σp,N :







ẋN = ANxN + GNd1,

yN = CNxN + Sd2,

zN = HNxN

with X and XN Hilbert spaces and the operators defined by:

A :X → X, AN :XN → XN ,

G :D1 → X, GN :D1 → XN ,

C :X → Y, CN :XN → Y,

H :X → Z, HN :XN → Z,

S :D2 → Y.

Let TN(t) : XN → XN and T (t) : X → X be semigroup operators with generators AN
and A respectively. We assume that the system Σ is exponentially detectable.

Moreover, we introduce the following two Algebraic Riccati Equations, associated with

the estimation problem for the systems Σp and Σp,N respectively:

ANΠN +ΠNA
∗
N − ΠNC∗N(SS∗)−1CNΠN + G∗NGN = 0, (6.30)

〈AΠx1, x2〉+ 〈ΠA∗x1, x2〉 − 〈ΠC∗(SS∗)−1CΠx1, x2〉+ 〈G∗Gx1, x2〉 = 0, (6.31)

for x1, x2 ∈ D(A∗).
We will be interested in the convergence of the solutions of the Riccati equations (6.31)

and (6.30), i.e. limN→∞ ||ENΠNPNx − Πx || for all x ∈ X. We will introduce a theorem
that can be used to prove convergence. First,we introduce the following assumptions:

E1 - Converge of semigroup and dual semigroup:

1. For each x ∈ X, limN→∞ ||T (t)x − ENTN(t)PNx || = 0 for all t ≥ 0.
2. For each x ∈ X, limN→∞ ||T ∗(t)x − ENT ∗N(t)PNx || = 0 for all t ≥ 0.

E2 - Convergence of input and output operators:

1. For each d ∈ D1, limN→∞ ||Gd1 − ENGNd1|| = 0.
For each x ∈ X, limN→∞ ||G∗x − G∗NPNx || = 0.

2. For each x ∈ X, limN→∞ ||Cx − CNPNx || = 0.
For each y ∈ Y , limN→∞ ||C∗y − ENC∗Ny || = 0.

3. For each x ∈ X, limN→∞ ||Hx −HNPNx || = 0.
For each z ∈ Z, limN→∞ ||H∗z − ENH∗Nz || = 0.

E3 - Uniform Stabilizability and Uniform Detectability:

1. The family of pairs (AN , GN) is uniformly stabilizable. That is, there exist

numbers M1 ≥ 1 and ω1 > 0 and a sequence of operators KN : XN → D1,

with ||KN || <∞ such that:
||e(AN−GNKN)tPNx || ≤ M1e−ω1t ||x || for t ≥ 0 and x ∈ X.
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2. The family of pairs (AN , CN) is uniformly detectable. That is, there exists

numbers M2 ≥ 1 and ω2 > 0 and a sequence of operators LN : Y → XN ,

with ||LN || <∞ such that:

||e(AN−LNCN)tPNx || ≤ M2e−ω2t ||x || for t ≥ 0 and x ∈ X.

The following theorem is analogous to Theorem 6.4.1, but now for the Riccati equa-

tions (6.30) and (6.31).

Theorem 6.4.8 (Convergence of solutions of estimator Riccati equations)

Suppose that the assumptions E1 and E2 hold. Let ΠN denote the non-negative self-

adjoint solution of the finite dimensional Algebraic Riccati Equation (6.30). Assume that

Π is the non-negative selfadjoint solution of the infinite dimensional Algebraic Riccati

Equation (6.31). Let S(t) and SN(t) be closed loop semigroup operators with generators

A−ΠC∗(SS∗)−1C and AN −ΠNC∗N(SS∗)−1CN and assume there are positive constants
MT , MΠ independent of N and ω independent of N satisfying:

||SN(t)||XN ≤MT e−ωt for allt ≥ 0, (6.32)

(6.33)

||ΠN ||XN ≤MΠ for all N. (6.34)

Then the following holds:

1. The solutions of the Riccati equations converge in strong sense:

lim
N→∞

||ENΠNPNx − Πx || = 0 for every x ∈ X.

2. The closed loop semigroup operators SN(t) and S(t) converge in strong sense:

lim
N→∞

||ENSN(t)PNx − S(t)x || for every x ∈ X,

3. The closed loop semigroup S(t) is exponentially bounded:

||S(t)|| ≤ MT e−ωt for t ≥ 0.

Proof. By use of the duality results derived in Chapter 5, it follows that the optimal

linear time invariant optimal estimator design problem based on the impulse response of

the error system, for the plant Σp (c.q. Σ
N
p ) is related to the Linear Quadratic controller

design problem. We introduce the systems Σ̃p and Σ̃p,N :

Σ̃p :







ξ̇ = A∗ξ + C∗ỹ ,

d̃1 = G
∗ξ̃,

d̃2 = S
∗ỹ ,

Σ̃p,N :







ξ̇N = A
∗
NξN + C

∗
N ỹ ,

d̃1 = G
∗
N ξ̃,

d̃2 = S
∗ỹ ,

with initial conditions ξ(0) = ξ0 and ξN(0) = ξN,0. It follows that the Riccati equa-

tions (6.30) and (6.31) correspond to the Riccati equations involved in the Linear

Quadratic Regulator design problem for the systems Σ̃p and Σ̃p,N . We will show that

the assumptions E1, E2 on the systems Σp and Σp,N imply that the conditions H1, H2

and H3 for the systems Σ̃p and Σ̃p,N hold.
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Assumption E1 implies that assumption H1 holds, since E1.1 = H1.2 and E1.2 = H1.1.

By comparison of Σ̃p with Σ it follows that and assumption E2 implies that assumption

H2 holds. Moreover, from ||S∗N(t)|| = ||S∗N(t)|| it follows that:

||S∗N(t)||XN ≤ MT e−ωt for allt ≥ 0.

Now, we can analyse the convergence of the solution of Equations (6.30) and (6.31)

in the context of the LQR problem for the plants Σ̃p,N and Σ̃p. Since the assumption

that H1, H2 hold and the assumptions (6.24) and (6.23), strong convergence of ΠN to

Π follows by direct application of Theorem 6.4.1. That is, it follows that:

lim
N→∞

||ENΠNPNx − Πx || = 0.

Moreover it follows as a result of Theorem 6.4.1 that the semigroup operators S∗(t)
with infinitesimal generator A∗ − C(S∗S)−1C∗Π is exponentially bounded, i.e.:

||S∗(t)|| ≤ MT e−ωt for t ≥ 0.

Since ||S(t)|| = ||S∗(t)||, we have that ||S(t)|| ≤ MT e−ωt for t ≥ 0. By application
of Theorem 6.4.5 in combination with assumption H1 and H2 and the fact that ΠN
and Π are bounded operators it follows that the semigroup SN(t) converges strongly

the semigroup S(t), i.e:

lim
N→∞

||ENSN(t)PNx − S(t)x || for every x ∈ X,

Analogously as for the approximation of the solution of Riccati equations in the LQR-

problem, the assumption E3 can be used to replace the conditions (6.33) and (6.34).

That is, equivalent to Theorem 6.4.3, we have:

Theorem 6.4.9

Suppose E1, E2 and E3 are satisfied and let SN(t) := e(AN−ΠNC
∗
N(SS

∗)−1CN)t . Then for

each N the Riccati equation

ANΠN +ΠNA
∗
N − ΠNC∗N(SS∗)−1CNΠN + G∗NGN = 0, (6.35)

admits a unique non negative solution ΠN . Moreover, there exists a positive constant

M6 such that

||ΠN || ≤ M6 <∞

and there exists positive constants M5 ≥ 1, and ω4 > 0 (independent of N) such that
for all x ∈ X:

||ENSN(t)PNx || ≤ M5e−ω4t ||x || for t ≥ 0.

Proof. We interpret Theorem 6.4.3 in the context of the systems Σ̃p and Σ̃p,N . In

Theorem 6.4.8 is has been shown that E1 implies H1 and that E2 implies H2. From
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assumption E3.1 it follows that the pair A∗N , G
∗
N is uniformly exponentially detectable as

follows. E3.1 assumes that there is a sequence KN with ||KN || <∞ such that:

||e(AN−GNKN)tPNx || ≤ M1e−ω1t ||x || for t ≥ 0 and x ∈ X.

Therefore it follows that:

||e(A∗N−K∗NG∗N)tPNx || ≤ M1e−ω1t ||x || for t ≥ 0 and x ∈ X,

such that the sequence K∗N shows that A
∗
N , G

∗
N is uniformly exponentially detectable.

From assumption E3.2 it follows that family of pairs (A∗N , C
∗
N) is uniformly exponentially

stabilizable as follows. E3.2 assumes that there is a sequence LN with ||LN || <∞ such
that:

||e(AN−LNCN)tPNx || ≤ M2e−ω2t ||x || for t ≥ 0 and x ∈ X.

Therefore it follows that:

||e(A∗N−C∗NL∗N)tPNx || ≤ M2e−ω2t ||x || for t ≥ 0 and x ∈ X.

such that the sequence L∗N shows that A
∗
N , C

∗
N is uniformly exponentially stabilizable.

Therefore, from assumption E3 uniform exponential detectability and uniform exponen-

tially stabilizability for the system Σ̃p,N follows, i.e. assumption H3 for the system Σ̃p,N
holds. Therefore, the proof follows from application of Theorem 6.4.3 on the systems

Σ̃p and Σ̃p,N .

Finally, by combination of Theorem (6.4.8) and Theorem (6.4.9), convergence of the

solution of the Riccati equations (6.30) and (6.31) follows from the assumptions E1,

E2 and E3. This is reflected by the following corollary.

Corollary 6.4.10

Suppose that the pair (A,G) is exponentially stabilizable and the pair (A,C) is exponen-

tially detectable and that the conditions E1, E2, E3 hold. Let M5 and M6 be constants

and defined as in Theorem 6.4.9. Let SN(t) := e
(AN−ΠNC∗N(SS∗)−1CN)t and let S(t) be the

semigroup operator with infinitesimal generator A − ΠC∗(SS∗)−1C. Then ||Ψ|| ≤ M6
and

1. The solutions of the Riccati equations (6.30) and (6.31) converge in strong sense:

lim
N→∞

||ENΠNPNx − Πx || = 0 for every x ∈ X.

2. The closed loop semi groups operators SN(t) and S(t) converge in strong sense:

lim
N→∞

||ENSN(t)PNx − S(t)x || for every x ∈ X,

3. The closed loop semi groups S(t) is exponentially bounded:

||S(t)|| ≤ M5e−ωt for t ≥ 0.
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In this section it has been shown that the convergence approximation of the Riccati

equation involved in the optimal impulse response norm estimator design can be analyzed

on the basis of the result which are known for the convergence approximation of the

Riccati equation in linear quadratic regulator design. We have reformulated the results

in Theorem 6.4.9 and Theorem 6.4.8, such that the results can be used in the context

of optimal optimal impulse response estimator design problems. In the next section we

will introduce to examples of estimation problems and we will analyze the convergence

of the optimal estimators.

6.5 Examples on estimator design

In this section we will show the implementation of estimators for two systems via scenario

S1. We study a system with diffusion on the interval L = [0, 1] and a system with

convection on L = [0, 1], denoted by Σd and Σc respectively. For both systems a finite

dimensional approximation will be obtained by Galerkin projection.

For both systems we have X = L2(L) and we will assume that D1 = R
2 and Y = R3.

That is, we have two disturbance sources and three measurements. For both cases, we

will use the following disturbance operator G : D1 → X and measurement operators

C : X → Y , H : X → Z:

Gd1 =

2∑

i=1

gi 〈ei , d1〉,

Cx =

3∑

j=1

〈cj , x〉ej ,

Hx =x,

with gi ∈ X, cj ∈ X and {ei}i=1,n the canonical basis in Rn.
We choose disturbance sources and sensors which are centered around the points ℓg,i ∈ L
and ℓc,j ∈ L respectively and that can be represented by:

gi(ℓ) = w(ℓ− ℓg,i), i = 1, 2 (6.36)

cj(ℓ) = w(ℓ− ℓc,j), j = 1, 2, 3 (6.37)

where we use the weight function:

w(ℓ) =
1

√

2πσ2w
e
− ℓ

σ2w .

We will make the choice Σw = 1 ·10−2, {ℓg,1, ℓg,2} = {0.15, 0.5} and {ℓc,1, ℓc,2, ℓc,3} =
{0.25, 0.65, 0.8}, which results in a sensors and disturbance source configuration as
shown in Figure 6.3.

We will assume that the noise in the three measurements is uncorrelated, such that S =

diag(σd2,1 , σd2,2 , σd2,3). We will use the same approximation method for both examples
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Figure 6.3: Position of sensors and disturbance sources

systems. We will introduce the approximation space ZN and XN together with the

operators EN and PN as described in Section 6.2.1.

We will assume that a basis for Z is given by {φi}∞1 . Moreover, we define the subspace
ZN by ZN := span{φi}Ni=1 and define the Euclidean space XN = RN and use {ei}Ni=1 to
denote the canonical basis for RN . Note that both ZN and XN have dimension N. In this

section we define the operator EN : XN → Z and PN : Z → XN as in Example (6.2.1)

with:

ENxN =

N∑

i=1

〈xN , ei 〉φi PNx =

N∑

i=1

〈x, φi 〉ei (6.38)

In example 6.2.1 it has been shown that EN and PN satisfy the conditions A1, A2 and

A3 of the approximation framework, and that EN and PN satisfy EN = P
∗
N .

6.5.1 Approximation of an estimator for a heat diffusion system

In this example, we consider the system Σd , which is a system with diffusion. An example

of such a system is given in Example 5.1.2. For the system Σd , we will discuss the design
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and approximation of an estimator via the scenario S1. The system Σd is given by:

Σd :







∂x
∂t = Ax + Gd1

y = Cx + Sd2

z = Hx

(6.39)

with x ∈ L2(L,R), ℓ ∈ L = [0, 1], boundary conditions ∂x∂ℓ (0, t) = 0, ∂x∂ℓ (1, t) = 0, initial
condition x(ℓ, 0) = x0(ℓ) and with

Ax =
∂2x

∂ℓ2
− γx

with γ > 0 and D(A) = {x ∈ L2(0, 1)| ∂x∂ℓ absolutely continuous, ∂
2x
∂ℓ2 ∈ L2(0, 1).

Following scenario S1 we will first obtain an finite dimensional approximation ΣNd for

the system Σd and subsequently calculate a finite dimensional optimal impulse response

norm estimator for ΣNd . By the method of Galerkin projection, described in Section 6.2.2,

the system has been approximated. The approximation of the system Σd is given by:

ΣNd :







ẋN = ANxN + GNd1

yN = CNxN + Sd2

zN = HNxN

,

with: AN = PNAEN , GN = PNG, CN = CEN , HN = HEN . In this example we will use

φ1(ℓ) = 1 and φi(ℓ) =
√
2 cos(2πiℓ) for i ≥ 2.

Let Σd,e and Σ
N
d,e denote the optimal impulse response estimators for the systems Σd

and ΣNd . We will show that for this approximation scheme the estimator Σ
N
d,e will

converge to Σd,e .

Proposition 6.5.1

Consider the approximation scheme presented in this example. In this setting, the

estimators ΣNd,e converges to Σd,e in the impulse response norm, i.e.:

lim
N→∞

||Σd,e −ΣNd,e ||imp = 0.

Before we give the proof of this proposition, we introduce a Lemma.

Lemma 6.5.2

Let the operator A be as defined. The operator A satisfies:

Re(〈Ax, x〉) ≤ −γ||x ||2 for x ∈ D(A),
Re(〈A∗x, x〉) ≤ −γ||x ||2 for x ∈ D(A∗).

Proof. We calculate for φ1 and φi , i > 1:

Re(〈Aφ1, φ1〉) =Re(〈
∂2φ1
∂x2

− γφ1, φ1〉) ≤ −γ||φ1||2 (6.40)

Re(〈Aφi , φi 〉) =Re(〈
∂2φi
∂x2

− γφi , φi 〉) = −(k2π2 + γ)Re(〈φi , φi 〉) ≤ −γ||φi ||2.
(6.41)
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Therefore it follows that Re(〈Ax, x〉) ≤ −γ||x ||2 for x ∈ D(A). Since the operator

A is self adjoint, Re(〈A∗x, x〉) ≤ −γ||x ||2 immediately follows from Re(〈Ax, x〉) ≤
−γ||x ||2.

Proof of Proposition 6.5.1. We will show that the combination of the system and the

approximation scheme satisfies the conditions E1, E2 and E3 used in Corollary 6.4.10.

Therefore, it will follow by, Corollary 6.4.10, that optimal impulse response estimators

ΣNd,e for the system Σ
N
d will arbitrarily close approximate the optimal estimator Σd,e for

the system Σd if the order N increases. We validate the assumptions as follows:

Validation E1: By Lemma 6.5.2 it follows that the operators A and A∗ satisfy the condi-
tion stated in Theorem 6.3.6. Therefore the semigroups TN(t) converge to T (t)

and the semigroups T ∗N(t) converge to T
∗(t).

Validation E2: Since it is assumed that the operators G, C and H are compact the

assumption holds.

Validation E3: By Lemma 6.5.2 it follows that the operators A and A∗ satisfy the con-
dition stated in Theorem 6.3.6, therefore the semi groups TN(t) and T

∗N(t) are
uniformly exponentially stable. Uniform exponential stabilizability and exponential

detectability both follow from uniform exponential stability of the system.

By Corollary 6.4.10 we conclude that the solutions of the Riccati equations involved

in the optimal impulse response norm estimator design for the systems Σd and Σ
N
d

converge, i.e. we have that:

lim
N→∞

||ENΠNPNx − Πx || = 0.

From Theorem 6.2.3 the convergence of the estimators follows.

An simulation with the plant ΣNd and estimator Σ
N
d,e has been implemented in Matlab

2011b. In the simulation we have set γ = 1 · 10−5 and σw = 1 · 10−2. In order to get
an impression of the convergence of ΠN , the distance between ΠN and Π150 has been

calculated. The distance has been measured in the spectral norm for N = {1, .., 149}. A
graph of the distance is shown in Figure 6.4. The figure shows an exponential decrease

of the distance. Note that the decrease of the distance is not monotone, which also

might not be expected by the theoretical results.

In order to investigate the performance of the estimator we interconnect the estimator

ΣNd,e with the plant Σ
N
d . The disturbance signals d1(t) and d2(t) have been generated

by a zero mean normally distributed white noise generator with variances σ2d1 = 1 and

σ2d2 = 1. In the simulation a 50-th order approximation has been used. Figure 6.5a

shows the state xN of the system Σd . Measurement by the sensors y1, y2 and y3 are

shown in Figure 6.5d. The state of the estimator is shown in Figure 6.5b, the difference

between the state of the plant and state of the estimator, i.e. the estimation error,

is shown in Figure 6.5c. The figure shows that the estimation error is largest at the

position of the error source and decays in the direction of the sensors. Moreover, the

error around disturbance source d1,2(t) is larger than the error around disturbance source

d1,1(t), which can be explained since the distance between disturbance source d1,2(t)

and the sensors is larger than the distance between the sensors and disturbance sources

d1,1(t).
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Figure 6.4: Distance between ΠN and Π150 for plant Σd , measured in ||ΠN − Π150||2.

6.5.2 Approximation of an estimator for a system with convection

In this example we will discuss the design and approximation of an estimator for a system

that models convection in a one dimensional fluid flow. We will follow Scenario 1 the

design and implementation of an estimator via the scenario S1. The example shows

large similarities with the previous example. The system Σc is given by

Σc :







∂x
∂t = Ax + Gd1

y = Cx + Sd2

z = Hx

(6.42)

with x ∈ L2, ℓ ∈ L = [0, 1], Ax = − ∂x∂ℓ , initial condition x(ℓ, 0) ∈ X, boundary condition
x(0, t) = 0 and:

Ax =− ∂x
∂ξ
− γx, with γ > 0

and:

D(A) ={x ∈ L2(0, 1)| Ax ∈ L2(0, 1), x(0) = 0, and x is absolutely continuous}.

Following scenario S1 we will first obtain an finite dimensional approximation ΣNc for

the system Σc and subsequently calculate a finite dimensional optimal impulse response



i

i

“thesis” — 2012/9/3 — 21:29 — page 175 — #189
i

i

i

i

i

i

6.5 Examples on estimator design 175

Original state

Time Position
0

0.5

1

0

2

4

6
−40

−20

0

20

(a) Real Temperature on slab

H2 observer output

Time Position
0

0.5

1

0

2

4

6
−40

−20

0

20

(b) Estimated

Error

Time Position
0

0.5

1

0

2

4

6
−40

−20

0

20

(c) Estimation Error

 

 

i=3

i=2

i=1

Time

Measured outputs

0 200 400 600 800 1000 1200
−2

−1.5

−1

−0.5

0

0.5

1

(d) Measured temperature by sensors c1, c2 and

c3.

Figure 6.5: Simulation results of plant Σ50d interconnected with estimator Σ
50
d,e .
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estimator ΣNc,e for Σ
N
c . By the method of Galerkin projection, described in 6.2.2 we

obtain ΣNc :

ΣNc :







ẋN = ANxN + GNd1

yN = CNxN + Sd2

zN = HNxN

,

with: AN = PNAEN , GN = PNG, CN = CEN , HN = HEN . In this example we will use

φ1(ℓ) = 1 and φi(ℓ) =
√
2 cos(π(i − 1)ℓ) for i ≥ 2, which is a basis for L2(0, 1), as

shown in for instance [Curtain and Zwart, 1995, Example A.2.33].

Let Σc,e and Σ
N
c,e denote the optimal impulse response estimators for the systems Σc and

ΣNc . We will show that for this approximation scheme the estimator Σ
N
c,e will converge

to Σc,e .

Proposition 6.5.3

Consider the approximation scheme presented in this example. In this setting, the

estimators ΣNc,e converges to Σc,e in the impulse response norm, i.e.:

lim
N→∞

||Σc,e −ΣNc,e ||imp = 0.

Before we give the proof of this proposition, we introduce a Lemma.

Lemma 6.5.4

Let the operator A be as defined. The operator A satisfies:

Re(〈Ax, x〉) ≤− γ||x ||2 for x ∈ D(A)
Re(〈A∗x, x〉) ≤− γ||x ||2 for x ∈ D(A∗)

Proof. From [Curtain and Zwart, 1995, example 2.2.4] is follows that the operator A∗,
the adjoint operator of A is given by A∗x = ∂x

∂ℓ − γx and that the domain of A∗ is given
by:

D(A∗) = {x ∈ L2(0, 1)| A∗x ∈ L2(0, 1), x(1) = 0, and x is absolutely continuous}.

By calculation it follows that:

Re(〈Ax, x〉) =Re(
∫ 1

0

−∂x
∂ℓ
(ℓ, t)x(ℓ, t)dℓ− γ||x ||2) (6.43)

=Re(−[x2(ℓ, t)]10 −
∫ 1

0

−x ∂x
∂ℓ
dℓ)− γ||x ||2 ≤ −γ||x ||2, (6.44)

and therefore we conclude that A is dissipative. Similarly, the operator A∗ is dissipative,
since it follows by calculation of Re(〈A∗x, x〉) that :

Re(〈A∗x, x〉) = − 12 [x2(0)]− γ||x ||2 ≤ −γ||x ||2.
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Figure 6.6: Distance between ΠN and Π50 for Σc , measured in ||ΠN − Π50||2.

Proof of Proposition 6.5.3 . The proof is almost identical to the proof of Proposition

6.5.1. Validation of the conditions E1, E2 and E3 used in Corollary 6.4.10 follows

in exactly the same way as in Proposition 6.5.1, where we now use Lemma 6.5.4 in

stead of Lemma 6.5.2. By Corollary 6.4.10 we conclude that the solutions of the

Riccati equations involved in the optimal impulse response norm estimator design for

the systems Σc and Σ
N
c converge, i.e. we have that:

lim
N→∞

||ENΠNPNx − Πx || = 0.

Moreover, it follows that the semigroup operators SN(t) and S(t) with infinitesimal

generators ANΠNC
∗
N(SS

∗)1CN and AΠC∗(SS∗)1C converge. From Theorem 6.2.3 the
convergence of the estimators follows.

A simulation with the plant ΣNc and estimator Σ
N
c,e has been implemented in Matlab. In

the simulation we have set γ = 1 ·10−5 and σw = 1 ·10−2. In order to get an impression
of the convergence of ΠN , the distance between ΠN and Π50 has been calculated. The

distance has been measured in the spectral norm for N = {1, .., 50}. A graph of the
distance is shown in Figure 6.6. The figure show a slower decrease for the convergence

of Π than in the case of the diffusion example. The reason for this is not known,

but it is expected to be related to the difference between the system properties of both

systems. Note that the decrease of the distance is not monotone, which, indeed, cannot

be expected from the theoretical results.

In order to investigate the performance of the estimator we interconnect the estimator
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ΣNc,e with the plant Σ
N
c . The disturbance signals d1(t) and d2(t) have been gener-

ated by a zero mean normally distributed white noise generator with standard deviation

(σd1,1 , σd1,2) = (0.1, 0.1) and (σd2,1 , σd2,2 , σd2,3) = (0.1, 1.0, 0.1). Note that measure-

ment 2 contains more noise than measurements 1 and 3. In the simulation a 50-th

order approximation of the system Σc has been used. Figure 6.7a shows the state xN
of the system ΣNc . In this figure the transport mechanism can be clearly observed from

the straight lines in the figure along which the wave is transported. Measurements by

the sensors y1, y2 and y3 are shown in Figure 6.7d. The state of the estimator Σ
N
c,e is

shown in Figure 6.7b, the difference between the state of the plant and state of the

estimator, i.e. the estimation error, is shown in Figure 6.7c. The figure shows that the

estimation error is large in the area at the left hand side between disturbance sources

and the sensors. This is expected behavior, since it might be expected that a sensor

cannot infer information about the state before the wave is transported to the sensor.

Moreover, the error around sensor y2 is larger than around the other sensors. This is

also expected behavior since σd2,2 is much larger than σd2,1 and σd2,3 .
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(a) Real state of the system (b) Estimated state of the system

(c) Estimation Error
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(d) Measured value by sensors c1, c2 and c3.

Figure 6.7: Simulation results of plant Σ50c interconnected with estimator Σ
50
c,e .
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6.6 Conclusions and Recommendations

In this chapter we have studied methods for the approximation and implementation of

optimal estimators for infinite dimensional systems. The analysis is necessary, since the

optimal estimators developed in Chapter 5 cannot be implemented directly.

6.6.1 Conclusions

We have proposed three different scenarios to analyze the performance and convergence

of approximations of the optimal estimators for a system with a finite number of dis-

turbances and measurements. With use of the framework of Ito and Kappel for system

approximation we have shown that under very specific conditions the finite dimensional

approximate estimators converge to the optimal estimator measured in strong sense

measured in the impulse response norm. Convergence of the approximation of the es-

timators to the optimal estimator measured in the L2-norm has not been studied. We

have shown two examples in which we approximate optimal estimators for a system

that models 1D diffusion and for a system that models 1D convection. We prove the

convergence of the approximations to the optimal estimators in the impulse response

norm. Simulation examples show that the approximate estimators can be implemented

in a software environment.

6.6.2 Recommendations

In this chapter it has been shown that under very specific conditions finite dimensional

estimators converge to the optimal estimators for systems with a finite number of dis-

turbances and measurements measured in the impulse response norm. The simulation

examples show that with the specific choice of system and approximation method, the

convergence of the solution of the Algebraic Riccati equation is not uniform in the

approximation order. It would be interesting to study the existence of schemes that

guarantee uniform convergence and to study the rate of convergence. The convergence

of approximations in the L2 norm has not been studied. Also, the convergence of approx-

imations of estimators to the optimal estimators for systems with infinite dimensional

input and output operators has not been studied and might be of interest for future

research.

The conditions that we stated in Section 6.2.3 to show convergence are very stringent

and technical. This certainly limits the scope of the results an causes the results to be

difficult to apply or verify in engineering applications. In order to be of value to engineers

working with dynamical systems in applications, it is import that users of the theory do

not have to be an expert, but can rely on general, easy verifiable conditions. One of the

problems with the approximation methods is that the conditions to be verified depend on

the combination of the approximation scheme as well as the system under consideration

and on how both of these conditions interact. Therefore, it is important to classify the

systems for which conditions are easy verifiable and to develop approximation methods

and schemes for which convergence properties are guaranteed. Moreover, it is important
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to study how the approximation schemes, especially the operators PN and EN , should

be constructed and what the influence on the convergence properties is.

In this chapter we have only studied the approximation of estimators which are linear

time invariant. It would also be interesting to study the approximation of time variant

estimators, for instance for implementation of the estimators that have been obtained

in Chapter 5 for the finite time horizon estimator design problems.
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CHAPTER 7

Estimator design and implementation for crystallization

Abstract

In this chapter an estimator for batch cooling crystallization processes will

be developed and implemented. The results on estimator design as obtained

in the Chapter 5 and Chapter 6 will be used and will be applied to a model

which is representative for a batch cooling crystallization process that could

be encountered in a practical application. Special attention will be paid

to the linearization of the process model and the implementation of the

estimator in the simulation environment Matlab. Simulations are carried out

to validate the performance of the estimator.

7.1 Estimator design for batch crystallizers

In this chapter an estimator for batch crystallization processes equipped with a specific

measurement of the population balance and the temperature has been developed. It

is assumed that the process can be modeled as introduced in Chapter 2, especially by

Equation (2.15). The modeling of the population balance measurement and the analysis

of observability properties of the process in this configuration have been discussed in

183
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Section 3.2.2. The model that will be used for estimator design is the following:

Σnl in :







∂n

∂t
= −∂G(c, T )n

∂ℓ
, (7.1a)

dT

dt
= α(Tj − T ), (7.1b)

y =

[
Fn

T

]

+

[
σF Ik 0

0 σT

] [
d2,n
d2,T

]

(7.1c)

Here, n(·, t) ∈ L2(0,∞) is the population balance, T (t) ∈ R the reactor temperature, c
is the concentration, Tj(t) ∈ R the jacket temperature, y(t) ∈ Rk the measured signal.
The growth rate G is assumed to be size independent and dependent on concentration

and temperature, i.e. G := G(c, T ). In Chapter 2, a detailed explanation of this model

is given. The input signals d2,n and d2,T represent the measurement noise in the particle

size measurement and the temperature measurement, respectively. In the analysis only

operation of the process in regimes of concentration and temperature pairs (c, T ) such

that G > 0 is considered. Therefore, the population balance Equation (7.1a) remains

well defined for all t ≥ 0, as explained in Chapter 2. Additional to the population balance
equation it has been assumed that the boundary condition n(0, t) = 0 holds. The initial

state (n(ℓ, 0), T (0)) is assumed to be given by (n0(ℓ), T0), where n0 ∈ L2(0,∞) and
T0 ∈ R.
The measurement of the particle population is modeled by the measurement operator

F which acts on the particle population n and is given by:

Fn =






f1
...

fk




 n with fin =

∫ ∞

0

wi(ℓ)n(ℓ)dℓ, i = 1, ..., k, (7.2)

where wi is a weight function corresponding to particles of class i . That is wi : [0,∞)→
R has compact support in the interval Li = [ℓ

−
i , ℓ

+
i ] where Li represent the particle size

class i . We assume that k disjoint particle classes are measured, that is Li ∩Lj = ∅ for
i 6= j . Together with the temperature measurement this gives:

y(t) =

[
Fn(·, t)
T (t)

]

+

[
σF Ik 0

0 σT

] [
d2,n(t)

d2,T (t)

]

, (7.3)

as measurement, where σf and σT are the standard deviation of the measurement noise

in the particle size and temperature measurement and d2,n ∈ L2(T,R
k) and d2,T ∈

L2(T,R) represent the noise signals present in the measurements.

It is assumed that the system is closed with respect to the mass balance. Therefore,

(as described in Section 2.2.4), the concentration of material in the liquid phase and

the mass of the particles in the solid phase are related via an algebraic relation due to

the mass balance. This means that the concentration can be expressed as function of

the population balance. By use of Equation (2.2), one obtains that the concentration

c(t) at time t is given by:

c(t) = c0 − V (n − n0)(t) = c0 + V (n0)− [V (n)](t),
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where c0 is the initial concentration, n0 is the population balance at time t = 0, n(·, t)
is the population balance at time t, and V : L2([0,∞),R) → R is the volume function
that assigns n 7→ V (n), the volume of all particles corresponding to the distribution n.

We assume that the volume of the particles linearly depends on the population n(ℓ, t),

i.e. V is a linear functional of n, as described by Equation (2.2). The model (7.1) can

be written in the form:

Σ :

{
ẋ = f (x, u, d), (7.4a)

y = h(x, u, d), (7.4b)

with the state x(t) = col(n(·, t), T (t)) ∈ L2(0,∞) × R, the output y(t) ∈ Rk+1
and the known input u(t) = Tj(t) ∈ U = R and the unknown disturbance d(t) =

col(d2,n(t), d2,T (t)) ∈ D = Rk+1. The functions f (x, u, d) and h(x, u, d) are given by:

f (x, u, d) =

[

− ∂G(c,T )n∂ℓ

α(Tj − T )

]

, h(x, u, d) =

[
Fn + σF Ikd2,n
T + σT d2,T

]

. (7.5)

The model is augmented with the equation for the to-be-estimated variable z :

z =g(x), (7.4c)

In this chapter we will assume one is interested in estimation of a finite dimensional

projection of the crystal size distribution and the temperature of the reactor. This

means that g(x) = [Mn, T ]⊤, where M is a projection operator M : X → XN and XN
is a subspace of X.

As stated in Chapter 2, the model for batch crystallization is nonlinear and infinite

dimensional. Therefore the results on estimator design and implementation obtained in

Chapter 5 and Chapter 6 are not directly applicable to this model. For that reason,

linear approximations of the model will be derived by linearization in an operating point.

Thereafter, a linear optimal impulse response estimator for the linearized (but still infinite

dimensional) model will be derived. The estimator will be a linear infinite dimensional

system itself and will be approximated and implemented by the method described in

Chapter 6. Since the estimator obtained in this way can (only) be expected to function

properly in a limited region around the operating point, the procedure of successive

linearization, finite dimensional approximation and estimator design is repeated after a

fixed time period. That is, for the system Σ given by Equation (7.4) Algorithm 7.1 has

been obtained. A graphical representation of the algorithm is shown in Figure 7.1.
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τ 2τ

b

b

X × U

ΣN,1l in,e

(xw , uw )
1

(xw , uw )
2

0

b
ΣN,0l in,e

time3τ

(xw , uw )
3

b

ΣN,2l in,e

ΣN,3l in,e

Figure 7.1: Graphical representation of estimation algorithm described in Algorithm 7.1.

Algorithm 7.1 (Time scheduled linear estimator)

[Initialize] Set k = 1 and choose a linearization interval τ > 0. Define (xw , uw )
1 ∈

X×U as initial operating points for the state and input. Define the order
of approximation N ∈ N+, the Euclidean space XN and the operators
EN : XN → X and PNX → XN such that they satisfy the assumptions

A1, A2 and A3 given in Section 6.2.1.

[Step 1] Linearize Σ at (xw , uw )
k to obtain the linear system Σkl in.

[Step 2] Approximate Σkl in by the N-th order system Σ
N,k
l in via Galerkin projection,

conform Definition 6.2.2.

[Step 3] Calculate for ΣN,kl in the L2 or H2 optimal estimator Σ
N,k
l in,e .

[Step 4] Define the time interval Tk = ((k −1)τ, kτ ]. Let x̂k denote the state of
the estimator ΣN,kl in,e . Initialize the estimator Σ

N,k
l in,e with initial condition

x̂k = PN(xw )
k . Obtain for t ∈ Tk the estimate ẑk(t) as for z(t), where

ẑk(t) is the output of the estimator Σ
N,k
l in,e .

[Step 5] Set xw,k+1 = EN x̂
k(kτ). Set uw,k+1 = u(kτ) where u(kτ) is the value

of the input u at time kτ . Set k = k + 1 and go to step 1.

The estimator obtained in this way shows large similarities with the continuous time

extended Kalman filter. This approach has been chosen since the complexity of the

approach followed in Algorithm 7.1 is limited and therefore it is possible to analyze the

method. It is possible to generalize the algorithm to the continuous time extended

Kalman filter. Since the presented approach is based on linearization of the process

model around the estimated state, the method is expected to have only a limited region

of validity in which the error dynamics will converge. This property is inherent to all

methods based on subsequent or scheduled linearization.

In the remainder of this chapter, the derivation and implementation of an estimator for

the batch cooling crystallization process will be described. In Section 7.2, the method

of linearization for infinite dimensional systems will be introduced and applied to the

population balance model given by the Equations (7.4). In Section 7.3 an estimator for

the the linearized infinite dimensional model will be designed. The implementation of

the estimator and the estimation algorithm in the simulation environment Matlab will

be discussed in Section 7.4. Simulation results will be presented in Section 7.5.
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7.2 Linearization of population balance model 187

7.2 Linearization of population balance model

The batch cooling crystallization process is described by a nonlinear infinite dimensional

system, as given in (7.1). The procedure for linearization of finite dimensional systems

is well known, however the state space of the system under condiseration is of infinite

dimension. A generalization of the Jacobian and the Taylor expansion of a mapping,

suitable for operators on Hilbert spaces, will be introduced. Then, the linearization of

a nonlinear infinite dimensional system will be derived. A linearization of the model for

batch cooling crystallization will be derived subsequently.

7.2.1 Linearization of infinite dimensional systems

The linearization of a infinite dimensional systems will be introduced for the following

system:
{
ẋ = f (x, u, d) (7.6a)

y = h(x, u, d) (7.6b)

where x(t) ∈ X, u(t) ∈ U, d(t) ∈ D, and X,U and D are Hilbert spaces. A linear
approximation to the model (7.6) can be obtained by linearization of the dynamics in an

operating point (xw , uw , dw ) ∈ X×U×D. That is, one neglects nonlinear contributions
in f (x, u, d) and h(x, u, d) due to changes in x , u or d with respect to the nominal value

(xw , uw , dw ) ∈ X × U ×D .
The following provides a definition of the Fréchet derivative.

Definition 7.2.1 (Fréchet derivative [Zeidler, 1995], p.228.)

Let f : V ⊂ X → Y be an operator defined on a neighborhood of the point v ∈ V , and
let X and Y be Hilbert spaces. The differential df (v) of f at point v exists if there is a

linear bounded operator denoted by df (v) : X → Y such that

lim
||h||→0

||f (v + h)− f (v)− df (v)h||Y
||h||X

= 0

holds for all h ∈ X in some open neighborhood of h = 0 in X. The operator df (v) is
also denoted by f

′
(v) and known as the Fréchet derivative of f at v .

The operator df (v) is, if it exists, uniquely determined by:

df (v)h = lim
t→0

f (v + th)− f (v)
t

.

Remark 7.2.1. The Fréchet derivative is a generalization of the directional derivative.

Therefore, the Fréchet derivative may not exist, depending on the properties of the

operator under consideration.

If the Fréchet derivative of f exists at every v ∈ V , and the mapping v → f
′
(v) = df (v)

is continuous at v0, then f is called continuously Fréchet differentiable at v0. If f is

continuously Fréchet differentiable for every v0 ∈ V , then f is called is continuously
Fréchet differentiable on V .
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The Frechet derivative of df at the point v ∈ V ⊂ X is again a linear map in L(X, Y ),
denoted by df 2. The object df 2 therefore defines, by ranging over V, a mapping V →
L(X,L(X, Y )), where we identify the latter object with L(X × X, Y ). Likewise, df k :
V → L(Xk , Y ) and we denote df (k)(h, . . . , h) by df (k)hk .

With use of the Fréchet derivative, the generalized Taylor expansion can be defined.

Definition 7.2.2 (Generalized Taylor Expansion [Zeidler, 1995], p.243.)

Let the map f : V ⊂ X → Y be defined on the open convex set V and let X and Y

be Hilbert spaces, such that f (k)(v) exists for k = 1, .., n − 1. The generalized Taylor
expansion of order n at the point v ∈ V reads as:

f (v + h) = f (v) +

n−1∑

k=1

1

k!
f (k)(v)hk + Rn(v , h),

where n = 1, 2, ... and Rn denotes the residual. The residual Rn can be characterized

as follows:

Rn(v , h) :=

∫ 1

0

(1− τ)n−1
(n − 1)! f

(n)(v + τh)hndτ.

Likewise in the finite dimensional case, the partial Fréchet derivative can be defined as

follows.

Definition 7.2.3 (Partial Fréchet derivative [Zeidler, 1995], p.232.)

Let the map f : V (v , w) ⊂ X×Y → Z be defined on the open neighborhood of the point

(v , w), where X, Y and Z are Hilbert spaces. Let w be fixed and set g(v) := f (v , w).

If g has a Fréchet derivative at the point v , then we define the Partial Fréchet derivative

of f with respect to v , say fv (v , w), through

fv (v , w) := g
′
(v) = dg(v).

We are now in the position to define linearization of dynamical systems. The linearization

of (7.6) around (xw , uw , dw ) ∈ X × U ×D is defined as follows:
Definition 7.2.4 (Linearization around (xw , uw , dw ).)

Define δx ∈ X, δu ∈ U, δd ∈ D and assume that and the partial Fréchet derivatives
fx(xw , uw , dw ), fu(xw , uw , dw ), fd(xw , uw , dw ), hx(xw , uw , dw ), hu(xu, uw , dw ),

hd(xu, uw , dw ) exist. The linearization of (7.6) around (xw , uw , dw ) is given by:

{

δ̇x = f (xw , uw , dw ) + fx(xw , uw , dw )δx + fu(xw , uw , dw )δu + fd(xw , uw , dw )δd,

y = h(xw , uw , dw ) + hx(xw , uw , dw )δx + hu(xw , uw , dw )δu + hd(xw , uw , dw )δd.

The point (xw , uw , dw ) is known as the operating point, linearization point or working

point.

Remark 7.2.2. Note that we do not assume that f (xw , uw , dw ) = 0, i.e. the operating

point (xw , uw , dw ) is not necessarily an equilibrium point
1 of the system.

1The operating point (xw , uw , dw ) is an a equilibrium point of the differential equation ẋ = f (x, u, d)

if f (xw , uw , dw ) = 0.
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Remark 7.2.3. Note that for the system under consideration the linearization also de-

pends on the unknown disturbance dw . In practical applications it is often assumed that

dw = 0.

In general, it is interesting to know if there exists a preferable order to perform lineariza-

tion and approximation respectively. That is, if there is difference between a procedure in

which linearization is followed by approximation and a procedure in which approximation

is followed by linearization. We consider the situation where approximations are made

by Galerkin projection and introduce the following theorem.

Theorem 7.2.1

Consider the nonlinear system

Σ : ẋ = f (x),

with x ∈ X, where X is a Hilbert Space. Define the operating points xw ∈ X, xw,N ∈ XN
and let the Galerkin projection be defined according to Definition 6.2.2 with PN : X →
XN and EN : XN → X.

Let the system Σl ,p be obtained by applying a Galerkin projection to a linearization of

Σ at operating point xw and let Σl ,p be given by:

Σl ,p : ẋN = Al ,pxN + Rl ,p with Al ,p : XN → XN and xN(0) ∈ XN .

Let the system Σp,l be obtained by applying a linearization at the operating point xw,N
of a Galerkin projection of Σ and let Σp,l be given by:

Σp,l : ẋN = Ap,lxN + Rp,l with Ap,l : XN → XN and xN(0) ∈ XN .

Then Σl ,p = Σp,l if and only if the following two conditions hold:

PN(
∂f

∂x

∣
∣
∣
xw
− ∂f
∂x

∣
∣
∣
ENPNxw

)EN = 0, (7.7)

PN(f (xw )− f (ENxw,N)) = 0. (7.8)

Proof. The proof follows from straightforward computation of Al ,p, Ap,l , Rl ,p and Rp,l .

Define fN : XN → XN by the Galerkin projection of f , i.e. fN(xN) := PN f (ENxN) for

xN ∈ XN . It follows that Al ,p and Ap,l are given by:

Al ,p =PN
∂f

∂x

∣
∣
∣
xw
EN Ap,l =

∂fN
∂xN

∣
∣
∣
xw,N

(7.9)

The operator Ap,l can be rewritten with use of the chain-rule for differentiation as follows:

Ap,l =
∂PN f (ENxN)

∂xN

∣
∣
∣
xw,N
= PN

∂f (ENxN)

∂xN

∣
∣
∣
xw,N
= PN

∂f

∂x

∣
∣
∣
ENxw,N

EN

Comparison of the expressions for Al ,p and Ap,l shows that Al ,p and Ap,l are equal if and

only if

PN
∂f

∂x

∣
∣
∣
xw
EN = PN

∂f

∂x

∣
∣
∣
ENxw,N

EN .

Moreover, it follows that Rl ,p = PN f (xw ) and Rp,l = PN f (ENxw,N), such that Rl ,p =

Rp,l if and only if PN(f (xw )− f (ENxw,N)) = 0.
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We have the following corollary:

Corollary 7.2.2

Let the linearization points be chosen such that xw,N = PNxw and xw = ENPNxw .

Then, the conditions (7.7) and (7.8) in Theorem 7.2.1 are satisfied and the order of

linearization and approximation are not of influence on the resulting approximate linear

model.

Proof. The corollary follows from the observation that under the assumed conditions

the following is true:

Rp,l = PN f (ENxw,N) = PN f (xw ) = Rl ,p, and f (ENxw,N) = f (xw ).

Next, we will continue with the linearization of the model for batch cooling crystallization

processes.

7.2.2 Linearization of population balance model.

In this section the linearization of the population balance model will be presented. Intro-

duce the operating point (xw , uw , dw ) ∈ L2(L,R)×U×D, the perturbation on the known
input δu = δTj ∈ L2(T,R), the perturbation on the unknown input δd ∈ L2(T,Rk+1)
and the state δx ∈ L2(T× L,R)× L2(T,R) as follows:

(xw , uw , dw ) =

([
nw
Tw

]

, Tj,w ,

[
d2,n,w
d2,T,w

])

, δx =

[
δn

δT

]

. (7.10)

The operating point also defines the concentration (at the operating point), which we

denote by cw = c0 + V (n0)− V (nw ). We define the set Xw as follows:

Xw =

{[
nw
Tw

]

|
[
nw
Tw

]

∈ X and ∂nw
∂ℓ
∈ L2

}

,

and we will assume that xw ∈ Xw . The differentiability condition on nw will be necessary
to define the linearization of the system. Moreover, we assume that (xw , uw , dw ) is a

valid operating condition of the system (7.1) in the sense that G(cw , Tw ) > 0.

We linearize the system (7.4) following Definition 7.2.4 and obtain:

δ̇x =f (xw , uw , dw ) + fu(xw , uw , dw )δu + fx(xw , uw , dw )δx, (7.11a)

y =h(xw , uw , dw ) + hx(xw , uw , dw )δx + hd(xw , uw , dw )δd, (7.11b)

z =g(xw ) + gx(xw )δx , (7.11c)



i

i

“thesis” — 2012/9/3 — 21:29 — page 191 — #205
i

i

i

i

i

i
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with:

f (xw , uw , dw ) =

[
−G(cw , Tw ) ∂nw∂ℓ
α(Tj,w − Tw )

]

, fu(xw , uw , dw )δu =

[
0

αδTj

]

,

fx(xw , uw , dw )δx =

[
−G(cw , Tw ) ∂δn∂ℓ + Gc(cw , Tw ) ∂nw∂ℓ V (δn)− GT (cw , Tw ) ∂nw∂ℓ δT

−αδT

]

,

h(xw , uw , dw ) =

[
Fnw + σF Ikd2,n,w
Tw + σT d2,T,w

]

, hx(xw , uw , dw )δx =

[
Fδn

δT

]

,

hd(xw , uw , dw )δd =

[
σF Ikδd2,n
σT Ikδd2,T

]

, g(xw ) =

[
Mnw
Tw

]

, gx(xw )δx =

[
M 0

0 1

] [
δn

δT

]

where V is the volume function and Gc and GT denote the derivatives of G with respect to

c and T respectively. It follows that for the model under consideration fd(xw , uw , dw ) = 0

and hu(xw , uw , dw ) = 0. Clearly, f and fx are only well defined if nw is differentiable,

which it is by assumption on Xw .

In the remainder of this chapter we will denote the linearization of Σnl in by Σl in and use

the following notation:

Σl in :







δ̇x = Aδx + Bδu + R, (7.12a)

δy = Cδx + Sδd, (7.12b)

δz = Hδx (7.12c)

where δy = y − h(xw ), δz = z − g(xw ) and A : X → X, B : U → X, C : X → Y ,

H : X → Z S : D → Y and R ∈ X, are such that:

A =fx(xw , uw , dw ) B =fu(xw , uw , dw ), R =f (xw , uw , dw ),

C =hx(xw , uw , dw ), S =hd(xw , uw , dw ), H =gx(xw )

The system Σl in can be interpreted as a linear infinite dimensional system with input

Bδu+R, initial condition δx0 = col(δn0, δT0) for δx(t) = 0 at time t = 0, and boundary

condition δn(0, t) = n(0, t)− nw (0, t) = 0 for all t ≥ 0. It is important to study if the
equations obtained after linearization still make sense and whether they define a system

of equations for which unique solutions do exist. That is, it is important to study if the

system Σl in is a well posed linear system and if solutions do exist.

First we introduce the following lemma.

Lemma 7.2.3 (Perturbation by bounded linear operators, [Pazy, 1983, Theorem 3.1.1])

Let X be a Hilbert space and A be the infinitesimal generator of a C0-semigroup T (t),

satisfying ||T (t)|| ≤ Meωt with M > 0 and ω ∈ R. If B is a bounded linear operator
on X then A+B is the infinitesimal generator of a C0-semigroup S(t), with ||S(t)|| ≤
Me(ω+M||B||)t .

Proof. For the proof we refer to [Pazy, 1983].

The operator A is the generator of a C0-semigroup, which is shown in the following

theorem.
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Theorem 7.2.4

Consider the system Σl in defined by (7.12). Assume that G(c, T ) is continuously dif-

ferentiable with respect to c and T , that ∂nw∂ℓ ∈ L2 . The operator A is the infinitesimal
generator of a C0-semigroup on X.

Proof. Consider the operator A0 : D(A0)→ X:

A0

[
δn

δT

]

=

[
−G(cw , Tw ) ∂∂ℓ 0

0 −α

] [
δn

δT

]

(7.13)

The operator A0 is a diagonal operator. It is well known [Curtain and Zwart, 1995] that

the operator −G(cw , Tw ) ∂∂ℓ is the infinitesimal generator of the right shift C0-semigroup,
which we denote by Tn(t) : L2([0,∞),R)→ R:

Tn(t)δn =
{

δn(ℓ− G(cw , Tw )t) for G(cw , Tw )t < ℓ,

0 else.

Therefore A0 is the infinitesimal generator of the C0-semigroup T0(t) : X → X:

T0(t)
[
δn

δT

]

=

[
Tn(t)δn 0

0 e−αtδT

]

The operator A in (7.12) can be interpreted as a perturbed version of A0, i.e

A

[
δn

δT

]

= (A0 + ∆A)

[
δn

δT

]

,

with:

∆A

[
δn

δT

]

=

[
Gc(cw , Tw )

∂nw
∂ℓ V (δn)− GT (cw , Tw ) ∂nw∂ℓ δT

0

]

. (7.14)

Since ∂nw∂ℓ ∈ L2 and from continuous differentiability of G it follows that Gc(cw , Tw ) <
∞, GT (cw , Tw ) <∞, we conclude that the operator ∆A is a bounded operator. More-
over, based on physical limitations it can be assumed that V (δn) < ∞. It therefore
follows from Lemma 7.2.3 that A is the generator of a C0-semigroup T (t) : X → X.

Since the system is well posed and the operator (t) is a c0 semigroup, it followed from

the standard results on the abstract Cauchy problem, for instance see

[Curtain and Zwart, 1995, Theorem 3.1.3], we have that for an input δTj ∈ C1(T;R)
and initial condition δx0, the unique classical solution of Σl in is given by:

δx(t) = T (t)δx0 +
∫ t

0

T (t − τ)(BδTj(τ) + R)dτ.

In the next section we will derive a finite dimensional approximation ΣNlin for Σl in and an

estimator for ΣNlin .
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7.3 Estimator design for linearized models

In this section we will design an estimator for the linearized model of the Batch Cooling

Crystallization process, given by Σl in in Equation (7.12) obtained by linearization in the

operating point (xw , uw , dw ). Ideally, one would like to apply the estimator design method

as described in Chapter 5 to obtain the optimal estimator Σl in,e for the system Σl in.

However, as described in Chapter 6, the optimal estimator obtained by this approach

is not implementable since it is infinite dimensional and in order to obtain an explicit

realization of the optimal estimator, one needs to solve the implicit Riccati equation

involved in the design procedure. As alternative, we will obtain an estimator for the

system Σl in by Scenario S1, which is introduced in Section 6.2.3. That is, first we

will derive a finite dimensional approximation ΣNlin of the linearized infinite dimensional

system Σl in. Subsequently we will design an optimal estimator Σ
N
lin,e for the system

ΣNlin.

We will use the approximation framework introduced in Chapter 6 where the Galerkin

projection is used. The Galerkin projection is defined in Section 6.2.2 to obtain the finite

dimensional approximations of Σl in. First, we truncate the domain of the particle size

from [0,∞) to [0, ℓ̄], which is possible since we have assumed that there is a maximum
size that the particles can obtain. That is we choose ℓ̄ larger this maximum particle size.

We will define Z = X = L2(0, ℓ̄) × R, and let XN = RN with canonical basis {ei}Ni=1.
We introduce for any N > 1 the following orthonormal basis {φi}Ni=1 of a subspace of
Z:

φ1 =

[
1

0

]

, φi =





√
2

ℓ̄
cos
(π

ℓ̄
(i − 1)ℓ

)

0



 for i ∈ {2, ...N − 1} φN =

[
0

1

]

.

(7.15a,b,c)

We will define operators PN and EN as in Example 6.2.1, that is PN : Z → XN and

EN : XN → Z, given by:

PNx =

N∑

i=1

〈x, φi 〉ei , ENxN =

N∑

i=1

〈x, ei 〉φi .

By use of Galerkin projection, we obtain the system ΣNlin from the linear system Σl in,

which is given by:

ΣNlin :







δ̇xN = ANδxN + BNδu + GNδd1 + RN ,

δy = CNδxN + SNδd2,

δz = HNδxN ,

(7.16)

with AN ∈ RN×N , BN ∈ RN×dim(U) , RN ∈ RN×1, CN ∈ RN×(k+1) and HN ∈ RN×N given
by

AN :=PNAEN , BN :=PNB, RN :=PNR, (7.17a)

CN :=CEN , HN :=HEN , SN :=S. (7.17b)
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The operator GN represents the influence of the external disturbances on the evolution of

the state δxN . Note that, in general state disturbances are not modeled in first principle

models and that there is also no state disturbance considered in the process model (7.1).

Therefore, there is also no state disturbance present in the linearized model Σl in. We

have introduced, somewhat artificially, the operator GN and unknown disturbance signal

d1 to represent the influences of the linearization and approximation error on the state

evolution. It will (again somewhat artificially) be assumed that the disturbance signal is

uncorrelated with xN .

Note that the approximation is finite dimensional of order N. It reflects a projection on

the first N − 1 harmonics of the spatially distributed population balances in L2([0, ℓ̄]).
For the system ΣNlin we would like to obtain an optimal impulse response estimator by use

of the estimator design method given in Chapter 5. However, the system ΣNlin contains

the known input signal δu = δTj and the drift vector RN , which are not considered in

the estimator design problems discussed in Chapter 5. By linearity it follows that the

design method of Chapter 5 can be used with a minor modification as follows. Consider

the systems ΣNlin,d and Σ
N
lin,u, given by:

ΣNlin,d :







˙δxd = ANδxd + GNδd1,

δyd = CNδxd + SNδd2,

δzd = HNδxd ,

ΣNlin,u :







˙δxu = ANδxu + BNδu + RN ,

δyu = CNδxu,

δzu = HNδxu,

where δxu ∈ XN , δxd ∈ XN . We set the initial conditions to xd(0) = 0 and xu(0) = xN(0)
and the matrices AN , GN , RN , CN , SN and HN are as defined by (7.17a) and (7.17b).

The systems are constructed such that state δxu denotes the contribution in δx due to

input δu = δTj and the drift vector RN . Moreover, δxd ∈ XN denotes the contribution in
δxN due to disturbance δd1. By linearity it follows that δxN = δxu+ δxd , δy = δyu+ δyd
and δz = δzu + δzd .

Since it is assumed that δu and RN are known, the outputs δyu and δzu are exactly known

and hence not part of the estimation problem. Following the same line of reasoning as in

Remark 5.2.2, in which we consider the case with a known initial condition, an estimator

for the system ΣNlin can be constructed by use of the estimator design method given in

Chapter 5. That is, we obtain an optimal impulse response estimator for the system

ΣNlin considering the estimator design problem for the system Σ
N
lin,d , with which we

estimate δẑd of δzd based on δyd = y − δyu. The estimate δẑ of δz is now obtained
by δẑ = δẑd + δzu. Concluding, the optimal impulse response estimator Σ

N
lin,e for the

system ΣNlin is given by:

ΣNlin,e :

{
˙̂x = (AN − ΠNC∗N(SS∗)−1CN)x̂ + PNΠNC∗N(SS∗)−1δy + BNδu + RN
δẑ = HN x̂

(7.18)

with x̂(t) ∈ RN and where we will use δu = u − uw and δy = y − h(xw , uw , dw ). In the
case of optimal impulse response estimator design, ΠN is the solution of the Algebraic

Riccati Equation:

ΠNA
∗
N + ANΠN + GNG

∗
N − ΠN(C∗N(SS∗)−1CN)ΠN = 0. (7.19)
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To obtain an estimate for z , we will use that ẑ = g(xw ) + δẑ .

Of course, it is important to validate if the estimator ΣNlin,e converges to the estimator

Σl in,e when the order of N increases. Unfortunately we have not been able to prove

convergence by use of the method presented in Section 6.4.2. Especially the condition

E3 is hard to validate. The convergence of the semigroup operators TN(t) : XN → XN
and T (t) : X → X, with infinitesimal generator by A and AN (stated in condition E1)

can be shown as follows.

Theorem 7.3.1

Consider the operators A and AN as defined for the systems (7.12) and (7.16). Let

TN(t) : XN → XN and T (t) : X → X be the semigroup operators with infinitesimal

generators A and AN . Then:

lim
N→∞

||ENTN(t)PNx − T (t)x || = 0 for all x ∈ X.

Proof. Let A0 and ∆A be as defined in the Equations (7.13) and (7.14). Then, as in

Theorem 7.2.4, it follows that that A can be obtained by a bounded perturbation of the

generator A0, i.e. A = A0+∆A. Equivalently, AN can be expressed by AN = PNA0EN +

PN∆AEN . Let T0(t) : X → X and TN,0(t) : XN → XN be the semigroup operators

with generators PNA0EN and A0. Convergence of T0(t) : X → X and TN,0(t) : XN →
XN follows use of Theorem 6.3.2 and is equivalent to the proof in the Example with

convection in Section 6.5.2. By use of Theorem 6.4.5, convergence of the semigroup

operators TN(t) : XN → XN and T (t) : X → X follows.

7.4 Implementation and simulation of the estimation

algorithm

For the experimental validation and testing of the estimators when used for batch cooling

crystallization processes, an estimator based on Algorithm 7.1 has been implemented in

a simulation environment. We will test the estimator for a batch cooling crystallization

process that is described by the model (7.1), which is equipped with the temperature

and particle size distribution sensors that can be represented by Equation (7.3). The

simulation has been performed with model parameters as given in Table 7.1. The model

parameters do not correspond to a specific industrial process bt are chosen such they

are representative. The solubility data corresponds to the solubility data of KNO3

and is obtained from [Matthews et al., 1996]. The data on the crystal growth kinetics

is fictional by lack of reliable kinetic data and is chosen such that the batch time is

representative for practical situations.

It is assumed that particle population sensor F is a sensor with ideal classification as

described in Section 3.2.2 and that the sensor performs classification in 10 equally sized

classes which cover the complete domain [0, ℓ̄]. ℓ̄ represent the largest particle size that

can exist. The measurement disturbances, are modeled by zero mean Gaussian white

noise, with a standard deviation σT and σF . It has been assumed that the noise of the

measurement channels is uncorrelated. Moreover it has been assumed that the state
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Table 7.1: Model parameters

Parameter Interpretation Value Unit

ρc Specific density 2000 [J/◦Ckg]
α Thermal time constant 1500 [1/s]

Vr Reactor volume 1 [m3]

cs(T ) Solubility A0 + A1T + A2T 2 [g/g]

Sr (c, T ) Relative super saturation (c − cs(T ))/cs(T ) [−]

G(c, T ) Growth rate kgSr (c, T )
g [m/s]

V (n) Volume function
∫ ℓ̄

0
ℓ3n(ℓ)dℓ [m3/kg]

A0 Coefficient solubility polynomial 0.127 [g/g]

A1 Coefficient solubility polynomial 5.88 · 10−3 [g/g◦C]
A2 Coefficient solubility polynomial 1.72 · 10−4 [g/g◦C2]
kg growth rate factor 1 · 105 [m/s]

g growth rate exponent 1 [−]

σF Standard deviation on measure-

ment noise d2,F

5 · 1011 [1/m3]

σT Standard deviation on measure-

ment noise d2,T

1 · 10−1 [◦C]

σGn Standard deviation on state noise

d1,n

1 · 105 [1/m3]

σGT Standard deviation on state noise

d1,T

1 · 10−1 [◦C]

noise d1(t) acts uncorrelated on the states of the projected model. Also the state noise

d1 = [d1,n, d1,T ]
⊤ has been modeled by zero mean Gaussian white noise, such that GN

is diagonal and has the representation:

GN =

[
σGnIN−1 0

0 σGT

]

.

We assume that the states of the population balance are disturbed by noise with variance

σ2Gn and that the state of the reactor temperature is disturbed by noise with variance

σ2GT . It is assumed that one is interested in estimation of a projection of the state x on

the subspace XN of X, such that we assume that H = ENPN .

Algorithm 7.1 has been implemented for estimation of the state of the batch cooling

crystallizer. In the Algorithm we use the method for linearization described in Section 7.2

and the methods for approximation and estimator design described in Section 7.3. For

completeness, we state Algorithm 7.1 again, now with specific references to previous

sections.
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Algorithm 7.2 (Linearized estimator for Batch Cooling Crystallization)

[Initialize] Set k = 1 and choose a linearization interval τ > 0. Define (xw , uw )
1 ∈

X×U as initial operating points for the state and input. Define the order
of approximation N ∈ N+. Moreover define ZN = span{φi}Ni=1 and the
operators EN and PN by:

PNx =

N
∑

i=1

〈x, φi〉ei , ENxN =

N
∑

i=1

〈x, ei〉φi ,

where, for i ∈ {2, ...N − 1}:

φ1 =

[

1

0

]

, φi =





√

2

ℓ̄
cos

(π

ℓ̄
(i − 1)ℓ

)

0



 , φN =

[

0

1

]

.

[Step 1] Linearize Σnl in at (xw , uw )
k to obtain the linear system Σkl in, following

Equation (7.12), i.e:

Σkl in :











δ̇x
k
= Akδxk + Bkδu + Rk ,

δy k = Ckδx + Skδd,

δzk = HkNδx.

[Step 2] Approximate Σkl in by the N-th order system Σ
N,k
l in via Galerkin projection,

conform Definition 6.2.2. The system ΣN,kl in following (7.16), i.e.

Σkl in :











δ̇x
k
N = A

k
Nδx

k
N + B

k
Nδu + R

k
N ,

δy kN = C
k
Nδx + Sδd,

δzkN = H
k
Nδx.

[Step 3] Calculate for ΣN,kl in the optimal impulse response estimator ΣN,kl in,e ,

following the Equations (7.18), i.e.

ΣN,kl in,e :

{

˙̂xk = (AKN − Π
k
NC

k∗
N (SS

∗)−1CkN)x̂
k +ΠkNC

k∗
N (SS

∗)−1y + BkNδu + R
k
N ,

ẑ = HkN x̂ ,

with x̂(t) ∈ RN and where ΠKN is the solution of the algebraic Riccati
equation ΠkNA

k∗
N + A

k
NΠ
k
N + G

k
NG
k∗
N − ΠkN(Ck∗N (SS∗)−1CkN)ΠkN = 0.

[Step 4] Define the time interval Tk = ((k − 1)τ, kτ ]. Initialize the estimator
ΣN,kl in,e with initial condition x̂

k
N = PN(xw )

k . Obtain for t ∈ Tk the es-
timate ẑk(t) as for z(t), where ẑk(t) is the output of the estimator

ΣN,kl in,e .

[Step 5] Set xw,k+1 = EN x̂
k
N(kτ). Set uw,k+1 = u(kτ) where u(kτ) is the value

of the input u at time kτ . Set k = k + 1 and go to step 1.

The estimation algorithm has been implemented in Matlab and computations have been

performed on an Intel core I5, 540 M processor at a clock frequency of 2.53 GHz

with 4Gb of RAM on a Windows 7 Enterprise SP1 32bit installation. The order of the

approximations is N = 31 and is chosen as a tradeoff between computational complexity

and satisfactory performance of the approximations of the open loop of the system Σnl in,

given by equation (7.1) (compared to a simulation with N = 100). The range of the

crystal size distribution has been set to ℓ = [0, ℓ̄] = [0, 1 · 10−3], and this domain has
been been divided into 200 equally spaced bins. In order to obtain numerically reliable

results, all inner products involved in the Galerkin projection of the system Σl in have

been calculated symbolically by use of the Matlab Symbolic Toolbox. Also, integration

involved in the computation of the volume function V has been implemented analytically

to avoid numerical instabilities in the integration. By calculation with Mathematica it
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Table 7.2: Simulation parameters

Parameter Interpretation Value Unit

Nℓ Discretization point compu-

tational domain

200 [−]

ℓ̄ Domain boundary 1·10−3 [m]

N Approximation order 31 [−]

τ Linearization interval 150 [s]

Ts Sample time 15 [s]

c0 Initial concentration 0.86 [g/g]

n0 Initial distribution 5·1012√
2π
e
− (ℓ−n0,µ).

2

n2
0,σ [−]

n0,µ Initial distribution mean 3 · 10−4 [m]

n0,σ Initial distribution standard

variation

7 · 10−5 [m]

T0 Initial reactor temperature 50 [◦C]

n0w Operating point 0.8 · n0 [−]

T 0w Operating point 49.9 [◦C]
T 0j,w Operating point 50 [◦C]
d2,n,w Operating point 0 [m−3]
d2,T,w Operating point 0 [◦C]

has be found that:
∫

ℓ3 cos(aℓ)dℓ =
−6 + 3a2ℓ2

a4
cos(aℓ) +

−6ℓ+ a2ℓ3
a3

sin(aℓ) (7.20)

where, we use a = πi
ℓ̄
in the computation of the projections.

The simulation has been carried out with simulation parameters as given in Table 7.2.

The time interval τ between two linearization steps has been chosen τ = 150s. This

choice is a tradeoff between the computational complexity complexity and performance

off the estimator. It has been observed that the demand of the value for τ , depend on

the way the process is operated. In the simulations that when dynamics of the process

change rapidly, i.e. when growth rates are large and vary fast, the value of τ needs to

be smaller than in the situation of more modest operation of the process, which is as

expected.

7.5 Simulation results

In this section we present simulation results in which the model of the batch crystalliza-

tion process has been interconnected with the estimator. In these simulations, we study

the scenario where the crystallizer is cooled using a predefined temperature trajectory

in the reactor jacket. The predefined temperature trajectory in jacket and the result-

ing reactor temperature are shown in Figure 7.2a. The evolution of the particles size

distribution as function of time is shown Figure 7.3a. The measurement of the particle

numbers by the particle size sensor is shown in Figure 7.2b. With use of the estimator,

the particles size distribution and the reactor temperate are estimated. The estimates



i

i

“thesis” — 2012/9/3 — 21:29 — page 199 — #213
i

i

i

i

i

i
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are shown in Figure 7.2a and Figure 7.3b. Visually, the figures 7.3a and 7.3b show a

reasonable agreement of the particle size distributions. From comparison of the figures

one can conclude that the dominant growth behavior of the particles in the process is

captured in the estimate. In the Figure 7.3b one can see the periodic behavior of the

basis functions φi(ℓ) along the ℓ-axis appearing in the estimate of the population. This

might be due to the approximation error in the system approximation. In order to obtain

a quantification of the error, we define the 2-norm of the estimation error as function

of time by

e(t) = ||n(·, t)− n̂(·, t)||2.

The estimation error, as function of time, is shown in Figures 7.2c and 7.2d. This figure

shows the effect of the switching between the estimators.

The simulations with the implemented algorithm show that the estimation algorithm

indeed does only perform reasonable when the initial operating point used for the lin-

earization in the design of the initial estimator, is close to the real state of the process.

That means that the initial estimation error is small. Moreover, simulations have shown

that with the current type of algorithms one cannot guarantee that the state of the

estimator remains in the domain of validity of the process model. As a result, it might

happen that at the moment when the estimator is updated, the process model cannot

be linearized at x̂(kτ). Simulations have also shown that in the case when cooling is

very slow and the crystal growth rate is very low, problems with the solvability of the

Algebraic Riccati Equation occur. This might be due to numerical reasons. One has

also to take into account that when the growth rate is small, i.e. G(c, T ) ≈ 0, the
measurements of the population balance are almost constant. This indicates that the

observability properties of the process might change here and the process might loose

the observability properties.
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Figure 7.3: Real particle population and estimated particle population.
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7.6 Conclusions and recommendations

7.6.1 Conclusions

In this chapter the design and implementation of an estimator for a Batch Cooling

Crystallization process has been discussed. Since the process model is nonlinear we

have introduced an algorithm in which linear estimators are used for estimation. Linear

approximations of the model have been derived by linearization, and with use of the

methods discussed in Chapter 6 an estimator for the linearized model has been imple-

mented. The convergence of approximations of the optimal estimators for the linearized

models has not been proved. The problem here is that we cannot show that the lin-

earized models are uniform exponentially stabilizable and detectable. A simulation has

been implemented to test the performance of the estimation algorithm. Simulations

show that, under the assumption that the initial guess of the state of the process is

close the real state of the process, the estimators perform reasonable and can be used

to estimate the dominant behavior of the batch crystallization process.

7.6.2 Recommendations

In this study, simulations with the optimal induced 2-norm estimator have not been

performed due to time limitations. It would be interesting to compare the performance of

the optimal impulse response norm estimator and the optimal induced 2-norm estimator.

Moreover, it is interesting to develop the algorithm further to obtain an equivalent to

the extended Kalman filter for distributed parameter processes.

It is also an interesting option to investigate the possibility to design estimators based on

techniques for nonlinear system such is proposed by invariant estimators [Bonnabel et al.,

2008] and nonlinear observer design by coordinate transformations as described in

[Kravaris et al., 2007] and [Krener and Xiao, 2002]. These techniques have the advan-

tage to have a large domain of convergence, but are known for their computational

complexity. Since the dynamics of the nonlinear batch crystallization process seems to

contain a lot of structure, it is interesting to study if this structure in the model can be

exploited for estimator design.
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CHAPTER 8

Conclusions and Recommendations

In this thesis we have developed methods which contribute to the goal to operate batch

cooling crystallization processes in such a way that the quality parameters are repro-

ducible and predictable. This chapter gives an overview of the conclusions which have

been obtained in the chapters in this thesis. The implications of the results for industrial

batch crystallization processes are explained. Moreover, recommendations on how to

proceed with research in these directions are provided. Finally, general conclusions on

the basis of the research are given.

8.1 Overview

The research documented in this thesis has the goal to develop methods which, given

the available models, knowledge of crystallization, state of the art industrial equipment

and measurement technology, enable to analyze the possibility to operate the current

batch cooling crystallization processes in such a way that the quality parameters become

reproducible and predictable. Control and estimation methods that contribute to achieve

this goal have been developed. An overview of the conclusions presented in this thesis

will be given.

In the first chapter an introduction to batch crystallization processes was given. The

introduction has an industrial perspective and focuses on the aspects of crystallization

processes which are of importance in industrial environments. Special attention has

been paid to specify the quality parameters of crystallization processes and to identity

the issues which are commonly encountered in industry with respect to those quality

parameters.

203



i

i

“thesis” — 2012/9/3 — 21:29 — page 204 — #218
i

i

i

i

i

i

204 Conclusions and Recommendations 8.1

The second chapter was devoted to the introduction of a first principle model for the

batch cooling crystallization processes. The model serves as a basis for analysis and the

model based controller and estimator design in the rest of the thesis.

In Chapter 3 an analysis of the observability and controllability of the batch cooling

crystallization process was presented. The analysis of observability shows what the pos-

sibilities are on the inference of information on the process states from measurements of

crystallization process. The observability properties of a general batch cooling crystal-

lization process equipped with a concentration sensor has been analyzed for the situation

that the process is modeled by a population balance model and for the case that the

process is modeled by a moment model. Also the observability properties of a general

batch cooling crystallization process equipped with a particle size sensor has been an-

alyzed. In the same chapter the analysis the controllability of the model of the batch

cooling crystallizer is presented.

In Chapter 4 a method for control of the level of supersaturation in batch cooling

crystallization processes was introduced. The control method has been based on state

feedback linearization. In an experiment in an industrial environment an approximation

of the control law has been tested. The experiment shows that with the (approximate)

feedback linearization method, supersaturation control is possible when the rate of the

consumption of material due to crystal growth is small.

In the Chapters 5, 6 and 7 we have considered the design and implementation of esti-

mators for batch crystallization processes. The motivation stems from the fact that in

batch cooling crystallization processes only a limited subset of the relevant process vari-

ables can be measured. The estimation problem deals with estimation of non-measured

variables from measured ones in a causal manner. Therefore, estimators can contribute

to infer more reliable, reproducible and predictable information on the process.

In Chapter 5 the design of optimal estimators for linear infinite dimensional parameters

systems with finite dimensional inputs and outputs has been studied. In this chapter

it has been shown how the design of estimators and controllers are related by duality.

On the basis of this duality relation it has been shown how estimators can be obtained

which minimize either the Hilbert-Schmidt norm or the induced L2 norm of the system

that defines how the disturbance signals are related to the estimation error.

In Chapter 6 the problem of computation and implementation of the optimal estima-

tors which are obtained by the design procedure in Chapter 5 has been considered. In

Chapter 5 is has been shown that optimal estimators for infinite dimensional system are

infinite dimensional system themselves. Moreover, the estimators cannot be computed

explicitly for most systems. In Chapter 6 methods for approximation of the solutions for

the linear quadratic optimal control problem are summarized and these methods have

been applied in the context of the approximation and implementation of estimators. In

two examples it has shown that for the test problems the convergence of approximation

of estimators to the optimal estimator can be shown.

In Chapter 7 we have applied the results which were obtained in Chapter 5 and Chapter 6

to derive an estimator for the batch cooling crystallization process. Special attention

has been paid to the implementation of the estimator in a simulation environment. In a
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simulation-example is has been shown that this estimator can be used to obtain estimates

of the temperature and population balance in the crystallization process.

8.2 Contributions and recommendation for future work

Chapter 2 - Modeling of batch cooling crystallization processes

In Chapter 2 a model that is representative for most of the batch cooling crystallization

processes with closed mass balance has bee introduced. The model is based on the use

of population balance models and in order the focus on the dominant dynamic behavior

and characteristic of the process, the model contains only the dominant mechanisms

of the crystallization process. That is, the structure of the model is independent of

the exact growth rate and birth rate kinetics of the crystallization process. Since the

model of the process is a hybrid nonlinear distributed parameter model, three scenarios of

operation has been proposed to reduce the complexity of the analysis. In two scenarios,

the growth scenario and the dissolution scenario, it is assumed that the model does

not switch between the modes such that the process model does not exposes its hybrid

character. Therefore, the behavior of the process in these two modes can be analyzed

without the hybrid character has to be taken in to account. In the third scenario, the

hybrid character of the process is exposed and analysis of the process behavior is more

complicated.

Chapter 3 - Observability and controllability of crystallization processes

In Chapter 3 we have analyzed the observability and controllability of the batch cooling

crystallization process. Although the concept of observability is well known, we have

returned to the definitions of observability since our process is not described by a linear

finite dimensional model. Starting from the definition we have analyzed the observability

of process model for batch cooling crystallization. The observability properties of a

general batch cooling crystallization process equipped with a concentration sensor have

been analyzed for the situation that the process is modeled by a population balance

model and for the case that the process is modeled by a moment model. The analysis

has shown that from concentration measurements, only information about the first

three moments can be obtained. The observability properties of a general batch cooling

crystallization process equipped with a particle size measurement has been analyzed. In

order to do so we have proposed a model for the crystal size sensors. We have analyzed

the observability for the case where the population sensors performs ideal classification

and the crystal growth rate is constant with respect to time. It follows that in this

situation, the process is approximately observable. The situation in which the crystal

growth rate is not constant, no results have been derived. This situation is left open for

future research.

In the second part of Chapter 3 we have analyzed the controllability of batch cooling

crystallization processes. We have started from our definition of controllability and

we have shown that when the process is operated in either the growth mode or the

dissolution mode the process is not controllable. With our notion of controllability and



i

i

“thesis” — 2012/9/3 — 21:29 — page 206 — #220
i

i

i

i

i

i

206 Conclusions and Recommendations 8.2

with temperature as actuation mechanism, this means that it is not possible to steer the

system towards an arbitrary particle size distribution in finite time. For the scenario that

the process switches between growth and dissolution mode no analysis has been given.

This is due to the lack of analysis methods and the complexity the controllability problem

for such processes. On the other hand, we indicate that it is very likely that, in case the

process would be controllable by use of this operation sceneario, the development of a

control methodology that is able to cope with the hybrid characteristics of the process

is a very complex task.

It is recommended to analyze if there are possibilities to improve the controllability

properties of the batch cooling crystallization process. One possibility is to investigate

if one can find more principles of actuation for the state of the population balance.

It is recommended to pay extra attention to actuation principles that enable to apply

corrective action in the direction of the desired state. Examples are the design of systems

in which undesired particles can be dissolved, a lack of particles can be compensated

by controlled nucleation and seeding or systems in which small particles can achieve a

higher growth rate than particles with the desired size.

Secondly, in our definition of controllability we have discussed the situation in which we

desire to steer the process from an arbitrary state to an arbitrary different state in finite

time. This definition might be over restrictive. From an industrial point of view, a large

set of states might be not interesting or not relevant of physical ground. It might be

interesting to investigate alternatives for the definition of controllability and to study if

it is possible to connect the concept of controllability more directly with control of the

quality parameters of the process.

Chapter 4 - Control of batch cooling crystallization by feedback linearization

Chapter 4 we have developed a method that enables the control of the super saturation

in a batch crystallization process. The method for supersaturation control enables to

control the driving force for crystal growth and nucleation. The method is based on an

application of the theory of feedback linearization. Extensive attention has been paid

to the theoretical analysis of the method. The application of the feedback linearization

method enables to control the supersaturation in the process by use of a linear controller.

The situation in the presence of parametric uncertainties in the model has been ana-

lyzed. It has been shown that an uncertainty description of suitable for robust controller

design can be obtained and can be used for robust controller design. We proved that

this method results in controllers that stabilize the nonlinear process in a robust way.

This is very much in contrast to earlier results in which feedback linearization methods

are known to be non-robust. As such, the method enables to operate crystallization

processes such that the supersaturation trajectory is reproducible. The performance of

the controlled system and the influence of measurement noise has been analyzed in a

simulation study. An approximation of the method of feedback linearization has been

tested in an industrially representative case.

The experimental results show the method can be applied successfully in an industrial

environment. The approach offers an efficacious method for the control the super-

saturation level and the controller enables proper control of the supersaturation in a
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crystallization process for situations where material consumption is small. A nice fea-

ture is the limited complexity and the limited need of kinetic information.

Chapter 5 - Estimation for distributed parameter systems

In Chapter 5 the design of optimal estimators for infinite dimensional systems has been

analyzed. We have defined two criteria for estimator design. In both the criteria we

have defined a norm of the system that represents the transfer from the disturbance

sources to the estimation error. We have considered the Hilbert-Schmidt norm of the

error system and the induced L2 norm of the error system as design criterion. We

have shown how the designs of estimators and controllers are related by duality. On

the basis of this duality relation, we have shown how estimators can be obtained which

minimize either the Hilbert-Schmidt norm or the induced L2 norm of the error system.

We have presented a very complete solution to the optimal estimator design problem

for both cases in the setting of estimation over finite time horizon. Both optimal the

Hilbert-Schmidt optimal and optimal L2 induced gain estimators prove to be infinite

dimensional time-variant and causal systems. We have provided explicit representations

of the estimators both in kernel as well as in state space form. In the situation of

minimization of the induced L2 norm we have analyzed the situation with known and

unknown initial condition. Moreover, we have presented a solution to the design problem

for time invariant estimators for estimation problems over infinite time horizon.

Chapter 6 - Approximation and implementation of estimators

In Chapter 6 the implementation of estimators for linear distributed parameter systems

has been studied. We have introduced a fairly general mathematical framework for the

approximation of infinite dimensional systems with the purpose to implement estima-

tors for infinite dimensional systems. We have analyzed the approximation of optimal

impulse response estimators and introduced a condition for which the performance of

the approximations converges to the optimal estimator. Using the theory that relates

estimation and control problems, developed in Chapter 5 we have shown how existing

results on approximations in the context of the linear quadratic regulator can be applied

in the context of estimation problems. We have applied the theoretical results in two

examples. In the examples we analyzed and implemented the approximation of estima-

tors for a system with diffusion and for a system with convection. We have not studied

the approximation of optimal L2 estimators, which is left for future research. In two

examples we have shown that the approximations of estimators can be implemented in

a suitable application.

In the approximation framework introduced in Chapter 6, there are some choices that

have to be made, especially in the subspaces and projection operators used for approxi-

mation. We have not discussed on how the choices in system approximation should be

made, but this is an interesting topic of future research to study if one can find preferred

projections for the approximation of estimators. It would be interesting to study if there

exist preferable choices that are generally suitable for typical classes of systems.

Chapter 7 - Estimators design and implementation for crystallization

Chapter 7 is devoted to the application of the results which have been developed in
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Chapter 5 and Chapter 6 to a model of batch cooling crystallization process. Since

the results obtained in the Chapter 5 and Chapter 6 are only valid for linear systems,

we have proposed an estimation algorithm based on linear approximations of the model

of the batch cooling crystallization process. Since the linear approximations have a

limited region of validity, we proposed a method of scheduled re-linearization, estimators

synthesis and switching of estimators.

We have introduced the method of linearization for distributed parameter systems. In

the analysis we have studied whether there exists a preferred order in linearization and

finite dimensional approximation of the nonlinear system. Moreover, we have identified

conditions on the operating point and approximation scheme for which the order is not

of relevance.

In the design and implementation of the estimator for the crystallization process we have

taken a different approach than what is common in engineering applications. That is,

we have not relied on numerical approximation tools to obtain a high dimensional finite

dimensional approximation of the system from the start of the implementation phase,

but we have postponed the system approximation. Idea behind this approach is that we

prefer to treat the approximated system not as complete black box.

The estimation algorithm has been implemented in the simulation environment Matlab.

In the simulation we estimate the states of a simulator of the batch cooling crystallization

process. The simulation shows that the estimator is able to estimate the state of the

process. We have identified some issues that arise due to the linearization approach

that we have chosen. The estimator which has been developed has been based on

estimation for linear systems and is not able to incorporate constraints on states or

the estimated variables. The incorporation of constraints in estimation methods is an

interesting research topic for future research. Moreover, it should be noted that the

estimator is not optimal for the system and that it might be interesting to compare the

performance of the algorithm with estimation algorithms such as the Ensemble Kalman

Filter and or a Particle Filter.

Future research is possible in the direction of the robustness of the estimators with

respect to parameter variations and structural variations in the process model. Also,

since the estimators are based on linear approximations of the nonlinear process model,

convergence of the estimation error cannot be expected when the initial estimation error

is large. Possibilities for the improvement of the convergence region might be a subject

of study.

8.3 General conclusions

The work presented in this thesis has been motivated by the goal to develop methods

which enable to operate the current batch cooling crystallization processes in such a

way that the quality parameters become reproducible and predictable. Although there

are still a large number of open questions, the methods for supersaturation control and

methods to design and implement estimators contribute to this goal.
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With the development and analysis of estimators for distributed parameter systems we

have shown that it is possible to develop estimators for population balance systems.

In this way, we have provided an alternative to moment model based estimators, that

is able to estimate particle size distributions. The methods for estimator design and

implementation are not restricted to crystallization processes, but can also be used for

different systems and engineering applications.

It is important to note that the methods developed are based on models of the process.

Therefore, we rely on the validity of these models. Especially in crystallization processes

accurate predictive dynamic models often do not exist and it is known that the solubility,

and growth and birth rate kinetics are sensitive to impurities. The development of

methods to learn this type of information from online experiments or even during the

batch is recommended.

The methods developed do not provide a methodology which strictly guarantees that the

quality parameters of crystallization are reproducible and predictable. The analysis of the

controllability of the process has shown that the controllability of the process, especially

of the particle size distribution, is limited. Therefore, the possibilities to steer the system

from undesired states to more desired states are rather limited. The development of

actuation methods and other methods to improve the controllability of the process have

to be encouraged.

General recommendations

During the research some interesting topics have been encountered which are worth to

be considered as topic for further investigation.

• In the process industry it is common practice to classify processes in batch and
continuous process. Is has been generally accepted by process engineers and con-

trol engineers that batch processes suffer from ”limited actuation” and are ”more

difficult to control” compared to continuous processes [Bonvin, 1998, 2006]. It

would be a very interesting challenge to study what the fundamental difference

between the two classes of processes is from a system theoretic point of view and

what the implications are for the identification, optimization, robustness analysis,

and controller and estimator synthesis for batch processes.

• The complex step differentiation [Squire and Trapp, 1998; Martins et al., 2003]
method has been analyzed and has shown extraordinary results in the numerical

approximation of derivatives of functions. The method is an interesting alternative

for standard finite difference methods and can be useful for the development of al-

gorithms where numerical differentiation of functions is used, such as the extended

Kalman estimator.

• During a study on methods for numerical approximation and simulation of the
population balance equations the CE/SE method has shown to be interesting.

The method has can be found in [Chang, 1995; Chang et al., 2000] and originates

from research in computational fluid dynamics. The method has been applied to

population balance systems in [Motz et al., 2002].
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APPENDIXA

Mathematical Notation

A.1 Lie derivative

The Lie-derivative evaluates the change of a vector field or scalar function with respect to

the flow of another vector field. In this section, the Lie-derivative of the scalar function h

with respect to the vector field f will be introduced. For an in-depth introduction we refer

to [Nijmeijer and Van der Schaft, 1990]. Let f be a continuously differentiable vector

field defined on Rn and let h(x) be a continuously differentiable function h : Rn 7→ R.
The Lie derivative of h with respect to f , is a mapping Lf h(x) : R

n → R and is defined
as,

Lf h(x) := 〈dxh, f 〉 (x) ∈ R, (A.1)

where dx =
∂
∂x and 〈·, ·〉 denotes the Euclidean inner product.

Higher order Lie derivatives are defined as follows,

Lkf h(x) := Lf [L
k−1
f h(x)] =

〈
dxL

k−1
f h, f

〉
(x), k = 2, 3, . . . . (A.2)

For f (x) = [f1(x), · · · , fn(x)]⊤ and x = [x1, x2, . . . , xn]⊤ the Lie-derivative Lf h(x) can
be computed as follows:

Lf h(x) = 〈dxh, f 〉 =
∂h

∂x1
(x)f1(x) + · · ·+

∂h

∂xn
(x)fn(x).

211
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APPENDIXB

Appendix to Chapter 3

B.1 Construction of indistinguishable distributions

In Section 3.2.1 the observability of a batch cooling crystallization process with concen-

tration measurements has been analyzed. For the analysis the process has been modeled

by the model (3.4) and the sensors has been modeled by Equation (3.7). It has been

shown in theorem 3.2.1 that for a sensor which measures moments of the distribution

up to the order k (c.f. Equation (3.7)), the kernel of the observability can be charac-

terized by distributions n ∈ L2(L,R) for which the moments 0, 1, ...k are zero. As such,
distributions of which the moments 0, 1, ...k are zero are indistinguishable from each

other. It is interesting to know if indistinguishable distrubutions have physical relevance.

In this section we consider an method to construct distributions which are indistinguish-

able by concentration measurements, as introduced in Section 3.2.1. That is, we show

that it is possible to construct a non zero function n(ℓ) 6= 0 such that the first k mo-
ments are zero. The following theorem allows to characterized the moments of a special

class of functions as a matrix equation in the coefficients. With use of Theorem B.1.1

one can construct states which indistinguishable at the output of system (3.8). As

illustration we will construct a function which is unobservable for a sensor with k = 3.

Theorem B.1.1

Consider functions h(ℓ) in the class:

H := {h : R→ R = h(ℓ) =
m∑

i=1

aie
pi ℓ, m <∞ai ∈ R, pi < 0, pi 6= pj}

Let α0, ..., αm ∈ Rm be the set of moments of h defined by αi =
∫∞
0 ℓih(ℓ)dℓ for

213
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i = {0, ..., m}.Then the the moments of h(ℓ) and the coefficients ai , pi for i ∈ {0, ..., m}
are related by the matrix equation:

Ma = b




p−11 p−12 ··· ··· p−1m−1 p−1m
...

...
...
...

...
...

(−1)mm!p−1−m1 (−1)mm!p−1−m2 ··· ··· (−1)mm!p−1−mm−1 (−1)mm!p−1−mm





[
a1
...
am

]

=

[
α0
...
αm

]

(B.1)

Proof. We introduce the Laplace transforms H(s) of the function h(ℓ), which is given

by:

H(S) =

m∑

i=1

ai(s + pi)
−1,

with region of conversion s < min(Re(pi)). Then use the following property, which can

be found in [Antoulas, 2005, p345]

αk =

∫ ∞

0

ℓkh(ℓ)dℓ = (−1)k d
kH

dsk

∣
∣
∣
s=0
. (B.2)

For the class of functions under consideration d
kH
dsk
is given by:

dkH

dsk
=

m∑

i=1

ai(−1)kk!(s + pi)−1−k . (B.3)

Therefore, it follows from substitution of (B.3) into (B.2) that the moment αk is given

by:

αk =
dkH

dsk

∣
∣
∣
s=0
=

m∑

i=1

ai(−1)kk!p−1−ki . (B.4)

The Matrix-equation (B.1) is a matrix representation of (B.4) for k ∈ {0, 1, ..., m}

The theorem now enables to construct a function h(ℓ) which has the first k moments

equal to zeros. We will show this in the following example.

Example B.1.1

In this example we construct a nonzero function n(ℓ) which is indistinguishable from

n0(ℓ) = 0 for a sensor defined by Equation (3.7) with k = 3. From Theorem B.1.1 it

follows that this can be done by choosing m > k . In addition to the constraints on the

first three moments, we demand n(0) = 0 to be compatible with the boundary condition

of (3.8). This results in the following system of equations,

Ma = b (B.5)










1 1 1 1 1 1

p−11 p−12 p−13 p−14 p−15 p−16
−p−21 −p−22 −p−23 −p−24 −p−25 −p−26
2p−31 2p−32 2p−33 2p−34 2p−35 2p−36
−6p−41 −6p−42 −6p−43 −6p−44 −6p−45 −6p−46
24p−51 24p−52 24p−53 24p−54 24p−55 24p−56





















a1
a2
a3
a4
a5
a6











=











n(0)

α0
α1
α2
α3
α4











, (B.6)
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where the first row of M is due to the boundary condition n at ℓ = 0. We choose

n(0) = 0, and α0 = α1 = α2 = α3 = 0. The coefficients due to k! in Equation (B.4)

can be divided out of the equations and we observe that the matrix M is the transpose

of a Vandermonde matrix and is invertable for all pi ≤ 0. We have the following result
on the regarding determinant of M:

Lemma B.1.2

The determinant of M is given by:

detM =
∏

1≤i<j≤6
(pj − pi)

A proof can be found in [Golub and Van Loan, 1996].

Therefore, we conclude that det(M) 6= 0 if and only if pj 6= pi for i 6= j . Equivalently,
the inverse of M exists if we chose the poles pi distinct. To test the algorithm, we

choose the poles such that pi = i and α6 = 1/24 and we obtain the function shown in

Figure 3.1.

B.2 Observability co-distribution for moment models

In this appendix we show the calculation of the observability co-distribution that has

been used in the analysis of the observability of the moment model (3.30a) with con-

centration measurements, which is presented in Section 3.2.2. For the analysis, we only

consider states in which crystals do grow, i.e. states x ∈ XG , with XG defined by the
set(3.31). For the system Σmon we calculate the observability algebra and observability

co-distribution.

B.3 Observability Algebra of moment model

We use the Lie-derivative of h : X → R along f :
Lf (h) = 〈dh, f 〉

First we calculate the one forms dh1 and dh2:

dh1 =
[
0, 0, 0,−1, 0

]⊤
, dh2 =

[
0, 0, 0, 0, 1

]⊤
.

Then we calculate the first order Lie derivatives:

Lf h1 =〈dh1, f 〉 = −3Gµ2, Lf h2 =〈dh2, f 〉 = −αT,
Lgh1 =〈dh1, g〉 = 0, Lgh2 =〈dh2, g〉 = 1.

From the first order Lie derivatives the following one forms are calculated:

dLf h1 =
[
0, 0,−3G, 0,−3Gcµ2,−3GTµ2

]⊤
,

dLf h2 =
[
0, 0, 0, 0, 0,−1

]⊤
,

dLgh1 =dLgh2 = 0.
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Then we calculate the second order Lie derivatives, which are given by:

Lf Lf h1 =〈dLf h1, f 〉 = −2G2µ1 + 9GGcµ22 − 3GTµ2(T0 − T ),
LgLf h1 =〈dLf h1, g〉 = −3GTµ2,
Lf Lf h2 =〈dLf h2, f 〉 = −αT,
LgLf h2 =〈dLf h2, g〉 = −1.

The second order Lie derivatives Lf Lgh1,LgLgh1,Lf Lgh2,LgLgh2 are zero. Moreover

we have thatLf Lf h2 = Lf h2, from which we deduce that (Lf )
ih2 = Lf h2 for i ∈

Z. It follows that Lg(Lf )
ih2 = LgLf h2 = −1 for i ∈ Z and that Lf Lg(Lf )ih2 =

LgLg(Lf )
ih2 = 0 for i ∈ Z.

From the second order Lie derivatives we calculate the one forms dLf Lf h1, dLgLf h1,

dLf Lf h2,dLgLf h2:

dLf Lf h1 =






0
−2G2
18GGcµ2
0

−4GGcµ1+9(GcGc+GGcc )µ22,−3Gcµ2
−4GTGµ1+9(GTGc+GGcT )µ22−3(GTT (T0−T )−GT )µ2




 dLgLf h1 =





0
0

−3GT
0

−3GTcµ2
−3GTTµ2





Then we calculate the third order Lie derivatives, which are given by:

Lf Lf Lf h1 =〈dLf Lf h1, f 〉
=− 2G3µ0 + 36G2Gcµ1µ2 − 3(−4GGcµ1 + 9(GcGc + GGcc)µ22,−3Gcµ2)Gµ2
− (−4GTGµ1 + 9(GTGc + GGcT )µ22 − 3(GTT (T0 − T )− GT )µ2)(T0 − T )

LgLf Lf h1 =〈dLf Lf h1, g〉 = −6GT u1 − 9GTcGµ22 − 3GTTµ2(T0 − T )

From the second order Lie derivatives we calculate the one forms dLf Lf Lf h1 and

dLgLf Lf h1:

dLf Lf Lf h1 =

[
−2G3
∗
∗
∗
∗

]

dLgLf Lf h1 =

[
0

−6GT
−18GTcG(c(t),T (t))µ2−3GTT (T0−T )

∗
∗

]

,

We construct the space dO′ , which is a subspace dO:

dO′ =span {dh1, dh2, dLf h1, dLf Lf h1, dLgLf h1dLf Lf Lf h1}

=span {









0

0

0

1

0









,









0

0

0

0

1









,









0

0

−3G
−3Gcµ2
−3GTµ2









,









0

−2G2
18GGcµ2
∗
∗

















0

0

−3GT
−3GTcµ2
−3GTTµ2









,









−2G3
∗
∗
∗
∗









} .
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APPENDIXC

Lagrangian formulation of optimal LQ control

In this appendix we document the solution to the linear quadratic optimal control problem

with exogenous input and linear and quadratic final stage cost based on the Lagrangian

method of optimization.

Consider the problem of optimal control in the presence of an exogenous input w .

min
u,x

1

2

∫ tf

t0

x⊤Qx + u⊤Ru + x⊤Su dt + x⊤(tf )Ex(tf ) + h
⊤x(tf )

subject to ẋ = Ax + Bu +Dw, x(0) = 0

Recognizing the standard formulation of a optimization problem with equality con-

straints:

min
u,x

∫ tf

t0

F (x, u)dt +Φ(x(tf )),

subject to Ax + Bu +Dw − ẋ = 0, x(0) = 0
with: Φ(x(tf )) = x

⊤(tf )Ex(tf ) + h
⊤x(tf ),

F (x, u) =
1

2
(x⊤Qx + u⊤Ru + x⊤Su).

With use of Lagrange multipliers we define the Lagrangian L(x, u, λ) for this problem

as follows

L(x, u, λ) =

∫ tf

t0

F (x, u) + λ⊤[Ax + Bu +Dw − ẋ ]dt +Φ(x(tf )).
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By use of integration by parts, we rewrite this to:

L(x, u, λ) =

∫ tf

t0

F (x, u) + λ⊤[Ax + Bu +Dw − ẋ ] dt + x⊤(tf )Ex(tf ) + h
⊤x(tf )

=

∫ tf

t0

F (x, u) + λ⊤[Ax + Bu +Dw ] dt − [λ⊤x ]tft0+

∫ tf

t0

λ̇⊤x dt + x⊤(tf )Ex(tf ) + h
⊤x(tf )

=

∫ tf

t0

H(x, u, λ) + λ̇⊤x dt − [λ⊤(tf )x(tf )− λ
⊤(t0)x(t0)] + x

⊤(tf )Ex(tf ) + h
⊤x(tf )

with H(x, u, λ) = F (x, u) + λ⊤[Ax + Bu +Dw ]

The minimum of the Lagrangian with respect to (x, u), defines the cost function for the

dual optimization problem, denoted by l(λ):

l(λ) = min
u,x

L(x, u, λ).

The dual (unconstrained) optimization problem is given by:

max
λ
l(λ)

In the remainder of this section we will solve the dual optimization problem.

Using the first order optimality conditions state that the optimum is located at the

saddle point of L(x, u, λ), given certain necessary conditions hold. At the optimum

(x∗, u∗, λ∗) the following condition holds:

∇L(x∗, u∗, λ∗) = 0

This provides the conditions that at the optimum:

∂L

∂λ
(x∗, u∗, λ∗) = 0,

∂L

∂x
(x∗, u∗, λ∗) = 0,

∂L

∂u
(x∗, u∗, λ∗) = 0

We calculate the partial derivatives:

∂L

∂λ
=
∂H

∂λ
= Ax + Bu +Dw − ẋ

∂L

∂x
=
∂H

∂x
+ λ̇ = Qx + Su + λ⊤A+ λ̇

∂L

∂u
=
∂H

∂u
= Ru + S⊤x + B⊤λ

Therefore, it follows from the condition ∇L(x∗, u∗, λ∗) = 0 that at the optimimum:

u =− R−1(B⊤λ+ S⊤x) (C.1)

λ̇ =−Qx − Su − λ⊤A, (C.2)

ẋ =Ax + Bu +Dw (C.3)
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and we deduce that at the optimum the following relations hold:

[
ẋ

λ̇

]

=

[
A− BR−1S⊤ −BR−1B⊤
−Q+ SR−1S⊤ −A⊤ + SR−⊤B⊤

] [
x

λ

]

+

[
D

0

]

w (C.4)

with the boundary values x(0) = x0 and λ(tf ) = Ex(tf ) + h.

Next we will introduce the following coordinates

[
x(t)

σ(t)

]

with σ(t) = λ(t)−P (t)x(t)
and time dependent operator P . The time index of P has been omitted for brevity. This

is described by the coordinate transformation T =

[
I 0

P I

]

and T−1 =

[
I 0

−P I

]

and it follows that

[
x

λ

]

= T

[
x

σ

]

. This gives

[
ẋ

λ̇

]

= T

[
ẋ

σ̇

]

+ Ṫ

[
x

σ

]

, such

that we conclude that:
[
ẋ

σ̇

]

= T−1(

[
ẋ

λ̇

]

− Ṫ
[
x

σ

]

).

The system (C.4) in new coordinates is given by:
[

ẋ

σ̇

]

=

[

A− BR−1S⊤ − BR−1B⊤P −BR−1B⊤

χ −A⊤ + SR−⊤B⊤ + PBR−1B⊤

] [

x

σ

]

+

[

D

−PD

]

w

with: χ = −Ṗ −Q+SR−1S⊤− (A⊤−SR−⊤B⊤)P −P (A−BR−1S⊤)+PBR−1B⊤P
Then it follows the state σ(t) is independent of x(t) if χ(t) = 0 for all t This implies

that for decoupling of σ and x , P has to the Riccati differential equation:

−Ṗ = (A⊤ − SR−⊤B⊤)P + P (A− BR−1S⊤)− PBR−1B⊤P + (Q− SR−1S⊤)
(C.5)

The initial condition of the Riccati differential equation follow from the boundary values

of x and σ. From the problem description if follows that x(0) = x0. Therefore:

σ(tf ) = λ(tf )− P (tf )x(tf )
= Ex(tf ) + h − P (tf )x(tf )

Choosing P (tf ) = E(tf ) yields σ(tf ) = h. Alternatively, the Riccati equationC.5can be

rewritten into the following form:

−Ṗ = A⊤P + PA+Q− (PB − S)R−1(B⊤P − S⊤)

When χ = 0, σ statisfies the following differenctial equation

σ̇ =(−A⊤ + SR−⊤B⊤ + PBR−1B⊤)σ − PDw, with σ(tf ) = h. (C.6)

It follows from (C.1) that the optimal input is given by:

u∗ = −R−1((B⊤P + S⊤)x + B⊤σ),

where σ satisfies (C.6).
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It follows that the optimal input u depends on x but also on σ. The system σ repre-

sents a differential equation in reversed time with end-point condition and dependent

on w . Therefore the input u depends noncausal on the disturbance w and anticipates

on distrurbances in future. When we set h = 0 and w = 0 the solution to the lin-

ear quadratic regulator problem is obtained. In this case we have σ(t) = 0 for all t,

which follows since it can be shown that V (x) = xPx is a Lyaponov function and that

A − BR−1S⊤ − BR−1B⊤P is exponentially stable. It is interesting to observe that if
w = 0, h 6= 0, the solution remains non causal.
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APPENDIXD

Proofs

D.1 Adapted proof for Theorem 6.4.3

An incorrect step in the original proof of Theorem 2.1 in [Ito, 1987], which can be found

in this thesis as Theorem 6.4.3, has been observed. First the setting of the theorem will

be defined. Secondly the Theorem will be stated and then the point of concern will be

indicated. Finally, an alternative to correct the proof will be presented.

Assume that X, U and Y are Hilbert spaces, that XN is a finite dimensional subspace of

X and that PN : X → XN is a projection operator. Let A : D(A)→ X and A : XN → XN
be the generators of c0 semigroups T (t) : X → X and TN(t) : XN → XN respectively.

Consider the systems Σ and ΣN , given by:

Σ :

{

ẋ = Ax + Bu

y = Cx
ΣN :

{

ẋN = ANxN + BNu

yN = CNxN

with initial conditions x(0) = x0 xN(0) = xN,0 and the operators B,BN , C, CN be

bounded and defined such that B ∈ L(U,X),BN ∈ L(U,XN), C ∈ L(X, Y ) and
CN ∈ L(XN , Y ).
Associated to the system Σ we consider the problem of minimization of the following

functional

J(u, x0) =

∫ ∞

0

||y(t)||22 + ||u(t)||22dt.

It is well known that if (A,B) is stabilizable and (A,C) is detectable that the optimal

solution is uopt(t) = −B∗ΠT (t)x0, where Π is the non negative solution of the Riccati

221
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equation:

A∗Π+ ΠA− ΠBB∗Π+ C∗C = 0. (D.1)

Moreover it is known that the minimum value of J(u, x0) is given by J(uopt , x0) =

〈Πx0, x0〉. Likewise, associated to the system ΣN we consider the problem of minimiza-
tion of the following functional

JN(u, xN,0) =

∫ ∞

0

||yN(t)||22 + ||u(t)||22dt.

It is well known that if (AN , BN) is stabilizable and (AN , CN) is detectable that the

optimal solution is uN,opt(t) = −B∗NΠNTN(t)xN,0, where ΠN is the non negative solution
of the Riccati equation:

A∗NΠN +ΠNAN − ΠNBNB∗NΠN + C∗NCN = 0. (D.2)

Moreover it is known that the minimum value of JN(u, x0) is given by

JN(uN,opt , xN,0) = 〈ΠNxN,0, xN,0〉.
We introduce the following assumptions:

H1 For each x ∈ XN we have that
1. limN→∞ ||TN(t)PNx − T (t)x || = 0,
2. limN→∞ ||T ∗N(t)PNx − T ∗(t)x || = 0,
uniform in t on bounded subsets of [0,∞).

H2 1. For each u ∈ U, limN→∞ ||BNu − Bu|| = 0.
For each x ∈ X, limN→∞ ||B∗NPNx − B∗x || = 0.

2. For each x ∈ X, limN→∞ ||CNPNx − Cx || = 0.
For each y ∈ Y , limN→∞ ||C∗Ny − C∗y || = 0.

H3 1. The family of pairs (AN , BN) is uniformly stabilizable: i.e. there exists a se-

quence of operators KN ∈ L(XN , U), with supN ||KN || <∞ such that

||e(AN−BNKN)tPN || ≤ M1e−ω1t , for t ≥ 0 (D.3)

for some constants M1 ≥ 1 and ω1 > 0.
2. The family of pairs (AN , CN) is uniformly detectable: i.e. there exists a

sequence of operators GN ∈ L(Y,XN), with supN ||GN || <∞ such that

||e(AN−GNCN)tPN || ≤ M2e−ω2t , for t ≥ 0 (D.4)

for some constants M2 ≥ 1 and ω2 > 0.
The theorem under consideration is the following:

Theorem D.1.1

Suppose that H1, H2 and H3 are satisfied. Then for each N the Riccati Equation D.2

admits a unique, non-negative solution ΠN with supN ||ΠN || < ∞ and there exist con-
stants M3 ≥ 1 and ω3 such that

||e(AN−BNB∗NΠN)tPN || ≤ M3e−ω3t for t ≥ 0.
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In the original proof it is suggested that by use Datko’s lemma [Salamon, 1985, Theorem

6.2.] and [Gibson, 1979, Theorem 2.2] one can conclude that from:

lim
t→∞

∫ t

0

||xN(t)||dt <∞ for all N

it follows that there exists a uniform exponential bound on xN(t), i.e. the existence of

an M independen of N and γ ≤ 0, such that:

||xN(t)|| ≤ Meγt for all N and for all t ≥ 0

This is not true, since in M might still depend on N.

The theorem can be repaired on compact time intervals.

Proof. Existence and uniqueness of ΠN follows from standard finite dimensional LQR

theory. We show that supN ||ΠN || < ∞ first. From the setting it follows that ΠN
provides the optimal solution to the optimal control problem with cost JN(u()̇; z). Since

the solution is unique, it follows that when the feedback u = KNxN is applied, the value

of JN is such that

〈ΠNxN,0, PNxN,0〉 ≤ JN(−KNzN(·); xN,0) for any initial condition xN,0 ∈ XN

The cost under the feedback uN = −KNzN , i.e. JN(uN ; xN,0) = JN(−KNxN(·); xN,0),
can be calculated as follows:

JN(−KNxN(·); xN,0) =
∫ ∞

0

||CNe(AN−BNKN)txN,0||2 + ||KNe(AN−BNKN)txN,0||2dt

Since CN , KN are bounded operators and ||e(AN−BNKN)txN,0|| ≤ M2e
−ω2t ||xN,0||, it fol-

lows that

JN(−KNxN(·); xN,0) ≤
∫ ∞

0

(||CN ||2 + ||KN ||2)M22e−2ω2t ||xN,0||2dt.

Define βN :=
∫∞
0 (||CN ||2+||KN ||2)M22e−2ω2tdt. Then JN(−KNxN(·); xN,0) ≤ βN ||xN,0||2.

Since CN , KN are bounded operators and M2, ω2 are independent of N it follows that

there exists a β̄ independent of N such that β̄ = supN βN < ∞. Therefore it follows
that JN(−KNxN(·); xN,0) ≤ β̄||xN,0||2. This implies that 〈ΠNPNxN,0, xN,0〉 ≤ β̄||xN,0||2,
from which it follows that ΠN ≤ β̄.
We now proof uniform exponential boundedness. Introduce the identity:

e(AN−BNB
∗
NΠn)t = e(AN−GNC

∗
N)t+

∫ t

0

e(AN−GNC
∗
N)(t−s)(GNCN−BNB∗NΠN)e(AN−BNB

∗
NΠN)tds.

From the identity we infer that

||e(AN−BNB∗NΠN)txN,0|| ≤ ||e(AN−GNC
∗
N)txN,0||

+ ||
∫ t

0

e(AN−GNC
∗
N)(t−s)(GNCN − BNB∗NΠN)e(AN−BNB

∗
NΠN)sxN,0ds ||.
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We apply the triangular inequality and Cauchy Schwartz to obtain

||e(AN−BNB∗NΠN)txN,0|| ≤ ||e(AN−GNC
∗
N)txN,0||+

∫ t

0

||e(AN−GNC∗N)(t−s)||||(GNCN − BNB∗NΠN)||||e(AN−BNB
∗
NΠN)txN,0||ds.

We will set xN,0 = PNx0. Then we will use Equation (D.4) and apply Cauchy Schwartz

again,

||e(AN−BNB∗NΠN)tPNx0|| ≤ M2||PNx0||

+M2||(GNCN − BNB∗NΠN)||
√
t

√
∫ t

0

||e(AN−BNB∗NΠN)tPNx0||2ds.

Because the optimal controlled cost is bounded independent of N, the contribution of

∫ t

0

||e(AN−BNB∗NΠN)tPNx0||2ds

is bounded independent of N. Moreover ||(GNCN −BNB∗NΠN)|| is bounded independent
of N by assumption. From H1 it follows that limN→∞ ||PNx − x || = 0. Therefore, we
conclude that for t ∈ [0,∞), ||e(AN−BNB∗NΠN)tPNx0|| is bounded independent of N.
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Physical properties KNO3

The following parameters where used for the simulations in Chapter 4. The data is

adopted from [Matthews et al., 1996].

Process parameters Symbol Value Unit

growth exponent g 1.32 -

growth coefficient kg 6.97 · 10−3 m
min

nucleation exponent b 1.78 -

nucleation coefficient kb 3.47 · 1013 1
m3min

crystal density ρc 2.11 · 106 g
m3

solvent density ρ 1 · 106 g
m3

Volume shape factor kv 1 -

Conversion factor h 1.5062 · 10−6 m3(slur ry)
g(H2O)

Saturation parameters of

KNO3

A0 0.1286 g(KNO3)
g(H2O)

A1 5.88 · 10−3 g(KNO3)
g(H2O)◦C

A2 1.721 · 10−4 g(KNO3)

g(H2O)◦C2

Crystallization heat parame-

ters

B0 −358.78 J
g(KNO3)

B1 388.36 J
g2(KNO3)

B2 −418.27 J
g3(KNO3)

Heat capacity parameters C0 4.172 J
gsolution◦C

C1 −4.435 J
gsolution◦C

C2 4.213 J
gsolution◦C

Table E.1: Physical properties KNO3.
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