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Summary 

 

Monitoring and control of particulate processes is quite challenging and has 

evoked recent interest in the use of image-based approaches to estimate product 

quality (e.g. size, shape) in real-time and in situ. Crystal size estimation from 

video images, especially for high aspect-ratio systems, has received much 

attention. In spite of the increased research activity in this area, there is little or no 

work that demonstrates and quantifies the success of image analysis (IA) 

techniques to any reasonable degree. This is important because, although image 

analysis techniques are well developed, the quality of images from inline sensors 

is variable and often poor, leading to incorrect estimation of the process state. 

This thesis studies large-scale size estimation with Lasentec’s in-process video 

imaging system, PVM. It seeks to fill this void by focusing on one key step in IA 

viz. segmentation. Using manual segmentation of particles as an independent 

measure of the particle size, we have devised metrics to compare the accuracy of 

automated segmentation during IA. These metrics provide a quantitative measure 

of the quality of results. A Monosodium Glutamate seeded cooling crystallization 

process is used to illustrate that, with proper settings, IA can be used to accurately 

track the size within ~8% error. 

Any image processing algorithm involves a number of user-defined parameters 

and, typically, optimal values for these parameters are manually selected. Manual 
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selection of optimal image processing parameters may become complex, 

time-consuming and infeasible when there are a large number of images and 

particularly if these images are of varying quality, as could happen in batch 

crystallization processes. This thesis combines two optimization approaches to 

systematically locate optimal sets of image processing parameters – one approach 

is a model-based optimization approach used in conjunction with uniform 

experimental design; another approach is the sequential simplex optimization 

method. Our study shows that these two approaches or a combination of them can 

successfully locate the optimal sets of parameters and the image processing 

results obtained with these parameters are better than those obtained via manual 

tuning. Combination of these two approaches also helps to overcome the 

drawbacks of the two individual methods. Our work also demonstrates that the 

optimal sets of parameters obtained from one batch of process images can also be 

successfully applied to another batch of process images obtained from the same 

system. The in-process video microscopy (PVM) images that are acquired from 

Monosodium Glutamate (MSG) seeded cooling crystallization process are used to 

demonstrate the workability of the proposed approach.  
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Chapter 1.  Introduction 

 

Crystallization is a critical process in pharmaceutical, fine chemical, 

petrochemical, food, and semiconductor manufacturing industries. In 

crystallization operations (Myerson, 2002; Quirk & Serda, 2002; Yu & 

MacGregor, 2003), particle size and shape are important specifications of product 

quality that need to be well-controlled. For a pharmaceutical product, the 

dissolution rate, bioavailability and therapeutic effects depends significantly on 

the particle size and shape. A narrow particle size distribution with specific 

particle shape is often indicative of good product quality.  

 

Real-time monitoring and control of the crystallization process is important to 

ensure that the desired final product quality is achieved. Traditionally, the control 

of crystallization processes has relied extensively on empirical experience. 

Complex chemistries, non-availability of detailed models, and the lack of in situ 

sensors to directly measure product quality have been the main reasons for this 

state of affairs. The lack of in situ sensors is felt in other particulate processes 

such as filtration, drying and granulation as well. Although technologies for 

offline particle size and shape measurements such as microscopy have been 

available and widely used, it is but recently that in-line measurements are 
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becoming possible. Technologies such as Focused Beam Reflectance 

Measurement (FBRM) and In-Process Video Microscopy (PVM), both from 

Lasentec / Mettler Toledo, are widely used in manufacturing units to monitor 

particle size distribution and shape variation. With the advances in real-time 

imaging hardware and the concomitant developments in image analysis 

technology, there is an opportunity to monitor crystallization processes by 

processing in-situ images.  

 

Section 1.1 will discuss the challenges in processing in-situ images. Our main 

contributions will be summarized in Section1.2. The thesis structure will be 

introduced in Section 1.3.    

 

1.1 Challenges in In-Line Imaging for Crystallization 

The numerous benefits of extracting product, process, and phenomena 

characteristics from in-situ images are conditional on accurate assessment of the 

particle size and shape from the images. Although, the various steps of image 

analysis are well-established and have been used in several crystallization systems, 

it is widely acknowledged (Patience et al. 2001; Braatz, 2002; Larsen et al. 2006a) 

that the extraction of information from in-situ images remains a challenging task 

for several reasons:  
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 The in-process video offers a 2-d image of 3-d objects with the consequent 

loss of information. 

 

 Unlike the images used in classical image analysis literature where the objects 

of interest change slowly, crystallization involves stirred solutions, and 

particles move at high speeds (vis-à-vis the field of view and the imaging rate). 

As a corollary, even with tens of images per second, the same particle cannot 

be guaranteed to be present in contiguous images. This precludes noise 

cancellation by averaging across samples (images). Further, the usual 

complications in capturing images of objects in motion occur including 

random orientations, and out-of-focus objects. 

 

 In situations where classical image analysis is widely applied, the 

‘background’ can be considered stationary in space and time with respect to 

the objects of interest. In crystallization systems, the background is a stirred 

solution – therefore, images suffer from various aberrations such as 

background noise, bubbles, time-changing intensity and contrast, etc. 

 

 Currently, there is no image processing algorithm that can perform well under 

varying image qualities. The algorithms have been largely customized to 

specific applications – both the specific image processing steps and their 
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parameters would need adjustment for a given crystallization system. Even 

within one system, there may be significant intra-run variability in the 

background and the quality of images. This makes it difficult to apply any one 

method or one set parameters to process all the images from different process 

stages. During a batch crystallization run, the solid concentration typically 

increases as the crystals nucleate and grow. The imaging system thus acquires 

blank images (of the background) at the beginning, and images with many 

overlapping crystals in a high solid-concentration background towards the 

later stages. As the run proceeds, the contrast of the images varies with time 

and the capability to extract information reliably from the images deteriorates 

considerably. As an additional complication, at high solid-concentrations, the 

crystals may aggregate or agglomerate, making accurate particle segmentation 

even more challenging.  

 

 Finally, to effectively track the process in real-time, the image-processing 

algorithm must not only be accurate and robust, but also capable of matching 

the speed at which images are acquired. The current rate of image acquisition 

is up to 30 images/second for charge-coupled device (CCD) camera and 10 

images/second for PVM. 
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(a) Partially imaged particle (b) Out of focus particle 

  

(c) Uneven background (d) Particle not clearly imaged 

  

(e) Far-away big particles are imaged 
as small ones 

(f) Long particles overlap and 
partially imaged 

  

(g) Uneven background and out of 
focus particles 

(h) High aggregation of long particles 

Figure 1.1. Problems with in-line imaging system. 
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Fig. 1.1 demonstrates the common problems that may be encountered with in-line 

imaging systems. Since the lens has limited field of view, long particles should be 

at the center of the image to be fully imaged. The longer a particle grows, the 

higher the possibility that the particle would only be partially imaged. Fig. 1.1(a), 

(f) and (h) show partially imaged particles. Random imaging of moving particles 

in a stirred slurry may also cause further problems of unclearly imaged particles 

(Fig. 1.1 (b) and (d)), uneven background (Fig. 1.1 (c)) and far away big particles 

may be imaged as small particles (Fig. 1.1 (e)). With the progress of 

crystallization process, more and more particles nucleate and grow bigger. 

Consequently, the solid concentration increases and particles aggregate, as shown 

in Fig. 1.1 (f), (g) and (h). With these common problems, it is not easy to 

precisely segment particles and characterize particle size and shape from in-line 

process images. Because of these challenges, it is important develop specific 

improvements targeted at PVM images.  

        

1.2 Objectives and Main Contributions 

Direct observation is now believed to be the best way to monitor particle shape 

and size (Yu et al., 2004). Process images can provide more realistic 

two-dimensional information on particle shape and size and help us better 

understand the process (Scott, 2005; Scott & McCann, 2005; Li et al., 2006). 

However, there is still a gap between the information obtained from advanced 
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imaging sensors and the knowledge required for in-line monitoring of 

crystallization process. In this thesis, we aim to circumvent these challenges by 

using in-process video imaging (PVM in particular) for determining particle shape 

and size distribution for the purpose of process monitoring. Three main 

contributions will be presented in this thesis. 

 

1) We develop an image analysis (IA) methodology to automatically extract 

the maximum possible information from in situ digital PVM images, and 

apply it to a Monosodium Glutamate (MSG) seeded cooling crystallization 

processes to monitor particle shape and size distribution in-line. 

 

2) To study the accuracy of PVM imaging system and IA methodology, we 

evaluate the PVM imaging system with off-line microscopy measurements 

and evaluate the IA methodology with manual image segmentation. Two 

experiments are studied for comprehensive evaluations. The first 

experiment, five sets of sea sand in DI water, involves no variation of 

particle size and shape during the process time. The second experiment 

involves particle growth with process time during a seeded batch cooling 

crystallization of MSG,.    

 

3) Instead of manually tuning the complex combinations of IA parameters, 

optimization methods are developed to automatically locate their optimal 
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values. The developed optimization methods integrate model-based 

optimization with simplex search optimization. It is possible to locate all 

possible optimal IA parameters in the entire parameters’ space. The 

obtained optimal IA parameters are robust not only to the images acquired 

from the same batch of process, but also to the images acquired from other 

batches.    

   

1.3 Thesis Structure 

The rest of the thesis is organized as follows: Chapter 2 introduces the important 

specification of product quality in crystallization process, summarizes current 

in-situ instruments for crystallization process monitoring and control, and reviews 

the current state of the image-based techniques. In Chapter 3, our proposed IA 

methodology is described in detail. Chapter 4 demonstrates the experimental 

setup and the detailed experimental procedures. In Chapter 5, the metrics for 

evaluating PVM imaging system and IA methodology are introduced, and 

evaluated with sea sand images by microscopy measurement and manual image 

segmentation. In Chapter 6, the developed IA methodology is validated and 

applied to MSG seeded cooling crystallization process to monitor particle growth 

in real-time. Chapter 7 demonstrates an optimization method to automatically 

locate optimal IA parameters. Finally, conclusions and future work are discussed 

in Chapter 8. 
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Chapter 2.  Real-Time Monitoring and 

Control of Crystallization Processes  

 

Monitoring and control of particle shape and size distribution in real-time is a 

challenge faced by the traditional pharmaceuticals and fine chemicals industries. 

This is due to the lack of sufficient process knowledge and in-situ sensors. With 

regulatory initiatives such as the US Food and Drug Administration’s (FDA) 

Process Analytical Technology (PAT) program for the pharmaceutical industry 

and the ongoing improvements in real-time imaging hardware (exemplified by 

FBRM and PVM, both from Lasentec) concomitant with the developments of 

image analysis techniques, there is a fast growing interest in the pharmaceutical 

and chemical industries as well as the research community to develop advanced 

in-line control technologies for particulate processes using advanced imaging 

equipments.  

 

A number of studies (Yu et al., 2004; Birch et al., 2005; Barrett et al., 2005; 

Calderon De Anda et al., 2005a, 2005b, 2005c; Larsen et al., 2006a, 2006b, 2007, 

2009; Li et al., 2006, 2008; Ma et al., 2007; Patience et al., 2001, 2002; Qu et al., 

2006; Sarkar et al., 2009; Simon et al., 2009a, 2009b, 2010a; Wan et al., 2009; 
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Wang, 2006; Wang et al., 2007, 2008; Zhou et al., 2007, 2009) have highlighted 

the success of implementing of such imaging sensors to gain insights into the 

crystallization process thereby providing extra capability for in-line process 

control.  

 

Section 2.1 introduces the important specifications of product quality in 

crystallization processes, including the basic concepts and the factors affecting the 

formation of crystals. Section 2.2 reviews current in-situ sensors and 

corresponding measurements that facilitate the monitoring and control of 

crystallization processes. Section 2.3 introduces the concept of process imaging 

and reviews the available processing technologies in characterizing particle size 

and shape. Section 2.4 summarizes the major image analysis steps. Conclusions 

will be given in Section 2.5.    

 

2.1 Important Specifications of Product Quality in 

Crystallization Processes 

Particle size, shape and size distribution are the main indicators of product quality 

in crystallization processes. Usually, a relatively big particle size, a narrow 

particle size distribution and a specific particle shape are specified as targets of 

product quality in crystallization operations. If the product has a small mean 

particle size, it can cause problems in further downstream processing, such as 
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centrifuging, washing and packaging. A broad particle size distribution is 

generally not desired because it will lead to different dissolution times thereby 

affecting their subsequent usage (e.g. medical applications). Particle shape can 

significantly affect physical and chemical properties of powder material, such as 

fluidity, solubility and the electromagnetic characteristics.     

 

In early stages of drug development, it is important to characterize the API 

crystals of pharmaceutical powders, so as to ensure that the particles in powder 

materials have expected function. It is also critical to monitor the crystallization 

process to ensure that the produced particles can meet the specified requirements 

on particle size and shape.      

 

2.1.1 Important Specifications for Crystallization Process 

Crystallization is a phase change process. It involves the generation and growth of 

crystals from liquid solutions. Hence, the important specifications of 

crystallization include the solubility of solute, supersaturation, nucleation, growth 

and polymorphs of crystals. The details of these important specifications will be 

introduced below.    

 

Solubility and Supersaturation 

At a given temperature, solubility, also called equilibrium concentration or 
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saturation concentration, is defined as the maximum amount of solute dissolved 

in a given amount of solvent. This makes the solution saturated. The variation of 

solubility with temperature determines the particle yield. For a given species i, 

when the solute concentration 
i

C  is less than, equal to, or greater than the 

equilibrium concentration, *

iC , the system could be defined as undersaturated, 

saturated, or supersaturated respectively.  

 

Supersaturation, S, is the thermodynamic driving force of crystallization and is 

the necessary condition for the occurrence of crystallization. Supersaturation is 

defined as the amount of solute concentration exceeding the saturation 

concentration. Several expressions for supersaturation exist in the literature and 

some are provided in Eq. (2.1) to (2.3). 

 Concentration driving force: 

*

ii CCC                                               (2.1) 

 Supersaturation Ratio: 

*

i

i

C

C
S                                                   (2.2) 

 Dimensionless concentration difference 

1
*

*




 S
C

CC

i

ii                                         (2.3) 

 

Crystal Nucleation and Growth 

A supersaturated solution is not at equilibrium state. In order to move it toward 
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equilibrium, the solute molecules will be transferred from liquid phase to solid 

phase in the form of crystals. This is indicated as nucleation, a phase separation 

step in which new crystals are formed.   

 

Supersaturation is necessary for nucleation. However, supersaturating certain 

amount of solute into the saturated solution will not necessarily cause nucleation, 

because nucleation needs extra molecules to form a critical sized cluster (Myerson, 

2002). This supersaturated state is metastable. The maximum amount of solute 

that can be supersaturated into the solution without triggering the instantaneous 

nucleation is called metastable limit, or spinodal cruve. The zone between the 

solubility curve and metastable limit is indicated as metastable zone. Traditionally 

industrial crystallizations are carried out within this zone.  

 

  

 

 

 

 

 

 
Figure 2.1. Definition of metastable zone. 

 

Fig. 2.1 demonstrates the relationships between metastable limit, metastable zone 
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and solubility curve. When the solution concentration is above metastable limit, 

the spontaneous nucleation that occurs is defined as primary nucleation. Primary 

nucleation is unstable and hard to control - so it is often avoided. Adding a small 

amount of parent crystals, such as seeds, into the supersaturated solution will 

decrease the supersaturation needed for nucleation. This kind of nucleation is 

termed as secondary nucleation.     

 

Primary nucleation generates the smallest sized crystals. Subsequently, the solute 

molecules will be transported from supersaturated solution to these nuclei and 

crystal growth occurs in 3 dimensions with repeating periodic structure, (this step 

is defined as crystal growth). With different conditions, crystals could grow at 

different rates with different crystal habits. Crystal nucleation and growth occur 

simultaneously in crystallization process, the relation between the degree of 

nucleation and growth rate will determine the particle size and size distribution.    

 

Polymorphs 

Pharmaceutical powders usually exist as crystalline or amorphous solids forms. In 

a crystalline pharmaceutical powder, the structural units are repeated in a regular 

order, a well-defined three dimensional structure, which is also known as crystal 

lattice. An amorphous pharmaceutical powder does not have such obvious crystal 

lattice.  
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A crystalline powder can have more than one possible crystal structure. This 

phenomenon is known as polymorphism. The same substance with different 

crystal structure is termed as polymorphs (Myerson, 2002), which are represented 

as different physical and chemical properties. Typically, only one polymorph can 

be stable at a certain temperature and pressure. Hence, the most 

thermodynamically stable form is chosen as the final dosage form (Bugay, 2001). 

The polymorphs of a pharmaceutical powder have the identical chemical nature 

but their physical properties, such as morphology (or shape), color, density, heat 

capacity, melting point, thermal conductivity, optical activity etc., can vary from 

one polymorph to another (Myerson, 2002). These differences are commonly 

caused by the difference in the crystal lattice. The polymorphs also affect 

pharmaceutical properties, such as stability, dissolution, and bioavailability 

(Haleblian & McCrone, 1969).  

 

2.1.2 Factors Affecting Crystallization Process 

Crystallization is a complex process. In addition to the nucleation and growth 

steps, crystal agglomeration and breakage may also occur. Agglomeration occurs 

when two or more particulates collide and aggregate into a big particle. Usually, 

three steps are involved in agglomeration: (i) collision of particles, (ii) adhesion, 

and (3) solidification of agglomerate. Agglomeration does not contribute to the 

phase transfer from liquid to solid, but it distorts the shape of PSD. Breakage 
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occurs when a big single crystal or agglomerate is broken down into many smaller 

fragments. Breakage can also be considered as a type of secondary nucleation. 

Both the agglomeration and breakage can affect particle size and size distribution, 

thereby affecting product usage its properties. 

 

Selecting a correct solvent is very important, since solvent can 

thermodynamically and kinetically affect the nucleation and growth of crystals. 

For example, the solubility and metastable zone of a solute may vary a lot in 

different solvents. This will lead to different crystallization conditions for 

different solutions and may result in crystals with different shapes and qualities.       

 

A small amount of impurity could dramatically influence crystal growth, 

morphology and nucleation, and result in products that are quite different from 

those obtained from pure solvents. Both the solvent and impurity effects on 

crystallization can be explained in terms of intermolecular interactions. For 

example, the solubility of solute varies with different solvent system. That is 

because the collision frequency among solute molecules necessary to form 

molecular clusters changes with solvents, which is caused by the changes in 

diffusivity of solute and solid-liquid interfacial tension.    

 

Furthermore, operating conditions such as the cooling rate, temperature profile, 

agitation speed of the stirrer, size of seeds, seeding time and vessel scale have an 
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influence on the crystallization process and lead to variability in the product 

quality.  

 

2.2 Current In situ Instruments for Crystallization 

Process Monitoring and Control 

The FDA’s PAT initially brings in the application of new and efficient 

engineering expertise into the pharmaceutical industry. To ensure the optimal 

process state and desired product quality, a few typical in situ PAT instruments 

for crystallization process would be reviewed here. Attenuated Total Reflectance 

Fourier Transform Infrared (ATR-FTIR) is used for measuring solution 

concentration and supersaturation; FBRM measures particle chord length and 

chord length distribution (CLD); Raman and near-infrared spectroscopy (NIR) are 

applied to identify particle polymorphs; In-process video imaging system together 

with specific image processing techniques can be used to characterize particle size 

and shape.  

 

2.2.1 Attenuated Total Reflectance Fourier Transform Infrared 

Spectroscopy   

ATR-FTIR has been widely applied for in situ measurement of supersaturation, 

solubility and metastable zone in all kinds of crystallization processes (Lewiner et 
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al., 2001; Togkalidou et al., 2002; Fujiwara et al., 2002; Liotta & Sabesan, 2004; 

Pollanen et al., 2005; Yu et al., 2006a , 2006b; Alatalo et al., 2008; Borissova et 

al., 2009; Chen et al., 2009). These studies demonstrated that ATR-FTIR could be 

successfully applied for in situ measurement of the solute concentration in 

solutions with solid particles present.   

 

An ATR-FTIR probe is shown in Fig 2.2. It could be directly inserted into 

crystallizer. A specific ATR crystal (ZnSe) is fixed at the tip of the probe and is in 

contact with the slurry in crystallization. FTIR generates a laser beam and directs 

it to ATR crystal. Part of this laser beam is reflected while the other part 

propagates into the liquid solution and is absorbed.   

 

 
Figure 2.2. Photo of ATR probe. 

 

The frequencies of absorbed infrared light indicate the chemical species that are 

detected in the solution and the corresponding absorption magnitude shows the 

concentration of each species. Since different compounds in the solution will have 
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different frequencies of absorption, the collected spectra can be correlated with 

the solution concentration of more than one compound. Once the collected spectra 

are calibrated with known composition of multi-component mixture using 

chemometrics, it is possible to estimate the concentration of each composition in 

situ.    

 

In situ measurement of the concentration of each composition in a 

multi-component mixture and the insensitivity of measurements to the presence of 

solid particles are the main advantages of ATR-FTIR over other concentration 

measurement techniques. It is a suitable PAT instrument for monitoring and 

control of multiple solute concentrations in crystallization processes.  

 

2.2.2 Focused Beam Reflectance Measurement (FBRM) 

 

 

 

 

 

Figure 2.3 Structure diagram of FBRM. 

 

FBRM is a popular in-line instrument to monitor particle size distribution in 
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current pharmaceutical manufacturing. As shown in Fig. 2.3, the principle of 

FBRM is that an infrared laser beam rotated at high-speed is reflected back when 

it hits a particle. The particle size is calculated based on the rotation speed of the 

laser beam as well as the time taken by the beam to pass through the particle. The 

measured particle size is termed as chord length.  

 

Using the measured number of particles and chord length distribution, different 

weighting is applied to get an estimate of the actual particle size. The weighting 

given to each channel emphasizes the changes in one region of the distribution 

while de-emphasizing changes in another part of the distribution at the same time. 

This is done by applying a channel-specific weight, wi to count, ni. The weighted 

channel count, yi are obtained by 

 

yi  = wi ni     for channels i = 1, 2, …, N                       (2.4) 

 

The weight wi is obtained from channel midpoint Mi by 

N
M

M
w

N

j
j

i
i 


1





 for channels i = 1, 2, …, N                          (2.5) 

 

Different types of channel weights can be determined by varying γ as given in Table 

2.1: 
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Table 2.1 : Parameters for Various Weights of FBRM Measurements 
 

Method γ 

1/Length Weight -1 

No Weighting 0 

Length Weight 1 

Square Weight 2 

Cube Weight 3 

 

FBRM has the advantage that its sensor probe can be inserted directly into the 

solution without the need for sampling lines. It can be used in high temperature, 

high pressure and high solid concentration situations (Ruf, Worlitschek & 

Mazzotti, 2000). The measured chord length and chord length distribution are 

reliable and permits the user to track the trends as the crystals evolve. However, 

the measured CLD is not the actual particle size distribution (PSD), since the 

rotated laser beam of FBRM may randomly hit any portion of a particle and pass 

through it in any angle. The one-dimensional measurement is just a chord length 

across any two edge points – in the general case, it does not connect directly to 

geometrical shape descriptors such as the length or width of the particle. 

Furthermore, FBRM does not indicate the particle shape, and thus cannot fully 

represent the two- or there-dimensional particle size information, especially when 

the particles are non-spherical.  
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As mentioned above, FBRM measurements cannot reflect the actual PSD. Some 

researchers (Heath et al., 2002) try to restore the PSD from CLD. Empirical 

methods assign different chord weightings to different ranges of particle size, 

while analytical methods usually assume the particles to be of spherical shape or 

ellipsoid shape (Hukkanen & Braatz, 2003). A mathematical model is built to 

correlate CLD and PSD (Worlitschek, 2003) and numerical methods have to be 

applied to correlate the CLD and PSD for highly non-isotropic particles (e.g. 

octahedral-shaped or needle-shaped particles). Some researchers have also 

proposed correcting to the correlation by considering the effect of particle 

orientation (Nere et. al, 2007). Limiting particle size to specific ranges for 

selecting good values of weighting parameters is not applicable, especially when 

dealing with long needle shaped particles and when the CLD is quite broad. 

Generating some common theoretical models is also not generally applicable due 

to the complexity of crystallization processes. The three-dimensional crystals in 

different molecular structures and shapes make it difficult to fully recover 

3-dimensional information from the one-dimensional FBRM data. Even if it is 

reasonable, crystal growth, polymorph transitions, particle breakage and 

agglomeration may occur at the same time in the crystallization process. This 

means that single particles in different symmetric shapes and particle clots in 

irregular shapes may coexist in the solution. Since FBRM cannot recognize the 

shape of particles or particle clots, it is hard to control the process of particle 

growth, polymorph transition or prevent particle aggregation.   
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2.2.3 Raman and Near-Infrared Spectroscopy 

Both Raman and near-infrared (NIR) are able to characterize the structure of 

crystals in-situ at the early stage of drug development. They enable the 

monitoring and control of crystal polymorphs, thereby ensuring that the required 

form of product is produced.  

 

NIR spectroscopy detects the light absorption of near-infrared region by vibrating 

the molecules. It is conducted in reflectance mode to measure the chemical 

information of solid samples. NIR spectroscopy is sensitive to crystal lattice and 

the changes in hydrogen band, which allows them to be used to analyse solid 

pharmaceutical powders. They can identify (Aldridge et al., 1996) and quantify 

the polymorphs (Stephenson et al., 2001; Luner et al., 2000), as well as determine 

the crystallinity (Hogan & Buckton, 2001) .  

 

Raman Spectroscopy detects the frequency shifts of scattered light. Frequency 

shift means the frequency differences between the scattered light and the incident 

beam. Raman spectroscopy can detect the symmetric vibration modes and has 

been applied to distinguish the forms of pharmaceutical powders (Langkilde et al., 

1997; Findlay & Bugay, 1998; Campbell Roberts et al., 2002; Al-Zoubi et al., 

2002;  Moynihan & O’Hare, 2002; Franco et al., 2003, Morel & Adar, 2005), 

quantify polymorphs (Pratiwi et al., 2002; Pelletier, 2003), and in situ monitoring 

of polymorphic transitions (Starbuck et al., 2002;  O’Brien et al., 2005; Ono et 
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al., 2004; Wikstrom et al., 2005; Ramtanen et al., 2005). Raman imaging also be 

used to detect the API distribution of a tablet (Webster & Baldwin, 2005a, 2005b; 

Sasic et al., 2005).    

 

The major advantages of Raman spectroscopy can be listed as below (Bugay, 

2001; Findlay & Bugay, 1998; Al-Zoubi et al., 2002; Pelletier, 2003; Murphy et 

al., 2005; Adar et al., 2004; Vehring, 2005; Wall et al., 2005; Yu et al., 2004): 

1) When low power is selected, Raman spectroscopy is non-destructive. It 

will not destroy or affect the sample during measurements. However, high 

power Raman Spectroscopy measurement will burn the samples.  

2) Raman spectroscopy only requires simple sample preparation and can 

directly measure gas, liquid and solid samples through plastic or glass 

packages. 

3) Raman spectroscopy is not affected by water and it can directly measure 

the aqueous suspensions.  

4) Raman spectroscopy can be used as in-line and non-invasive 

measurements if it is coupled with fiber optic probes. 

5) Raman spectrum can provide sharp features and contains a large amount 

of chemical information. This enables it to identify the constituents of 

complex mixtures and leads to the understanding of the process at a 

molecular level. 

6) The samples can be as small as individual particles with a mass of only a 
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few nanograms. 

Both Raman and NIR spectroscopy measure the vibrational mode, but Raman 

measures the changes in polarizability while NIR measures the changes in dipole 

moment. In general, Raman measures the symmetric vibration while NIR mainly 

measures the asymmetric vibration. Furthermore, Raman can measure the sample 

of aqueous suspension while NIR can detect an extremely large feature of water 

(Webster & Baldwin, 2005a, 2005b). 

 

2.2.4 Real-Time Imaging System for Crystallization  

In industry, most of the commercially available imaging sensors, such as the 

QICPIC Particle Size and Shape Analysis System from Sympatec, the Malvern 

Morphologi G3-ID Particle Characterization with Raman Chemical ID, and the 

Particle Shape & Size Analyzers from Occhio, are for off-line or on-line 

characterization of particle size and shape. These systems usually require 

preparation of samples or dispersion of the samples. There is a need to develop 

real-time on-line or in-line imaging systems.    

 

Four types of imaging systems have been reported in literature: (i) on-line 

microscope imaging system, (ii) non-invasive in-line imaging system, (iii) 

invasive in-line imaging system, and (iv) on-line imaging system for 3-D particle 

size measurements.   
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On-line Microscope Imaging System 

Microscope is a common instrument for process imaging which can be used not 

only in an offline fashion, but also in an online mode as well through a suitable 

sampling scheme (Patience, 2002; Patience & Rawlings, 2001),. The sampled 

solution from the crystallizer is placed in front of the lens of a microscope through 

which it is imaged. In this arrangement, the solution is not in continuous flow, but 

is stationary when photographed. Thus, the images are clear and can be processed 

automatically using image analysis software to identify particle size and shape for 

the purpose of on-line monitoring and control. However, several important 

questions arise when the on-line sampling scheme, which forms the bedrock of 

this stop-flow microscopy, has to be deployed in large-scale real-life settings: (i) 

does the sampled solution accurately represent the current process state? (ii) does 

the sampled solution affect the process when it flows back to the crystallizer? and 

(iii) does sampling aggravate the time delay associated with state identification? 

For these reasons, in situ measurements are now preferred and is the focus of this 

work.  

 

In-situ and high speed are the common requirements for video microscopy of 

real-time imaging systems. In the literature, two other types of real-time video 

microscopy have been reported for in-line imaging of crystallization processes: 

non-invasive and invasive.  
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Non-Invasive In-Line Imaging System 

High-speed CCD camera based non-invasive video microscopy is usually 

operated in synchrony with a strobe light source and fixed to an observation 

window on the external wall of crystallizer. Scientists at the pharmaceutical 

manufacturer GSK developed a special-purpose, non-invasive video imaging 

system for interrogating pharmaceutical crystallization (Wilkinson et al., 2000). 

An imaging system that includes a high-speed Sony XC55 CCD camera, a 

stroboscopic light source and video acquisition PC is used to monitor 

crystallization processes inside a glass reactor. In this setup, the camera is 

positioned perpendicular to the jacketed glass reactor and focused to its inner 

wall. A flat glass plate is attached between the camera and the outer wall of 

reactor to correct the distortion caused by the curved wall of the reactor. Roberts, 

Wang and coworkers have applied this kind of video microscopy to the 

crystallization of (L)-glutamic acid. They studied the polymorphic transformation 

(Calderon De Anda, et al., 2005a, 2005b), multi-dimensional growth rates (Ma et 

al., 2007; Wang et al., 2007), and also performed modeling and control of particle 

shape (Li et al., 2006; Wang et al., 2008; Wan et al, 2009). Rawlings and 

coworkers have also employed the GSK video microscopy to characterize the 

particle size distribution (PSD) of rod-like crystals in pharmaceutical 

crystallization (Larsen et. al., 2006a, 2006b, 2007, 2009). Simon et al. (2009b, 

2010a) introduced another kind of bulk video imaging method, which is based on 

Sony video camera and Pinnacle TV capture card, to detect nucleation and to 
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identify the width of the metastable zone for the batch cooling suspension 

crystallization of the model pharmaceutical compound caffeine. They have also 

applied it to the highly viscous crystallization from melt of palm oil. In these 

studies, the non-invasive in-situ video microscopy could acquire process images 

at a speed of up to thirty images per second. The typical pixel resolution is 480 x 

640 with a broad field of view from 140μm to 16mm. The advantage of 

non-invasive type video microscopy is that there is no problem related to sensor 

fouling and contamination. However, the shortcomings of this kind of imaging 

system are obvious. Since the camera is installed at the external wall of the 

jacketed reactor, an imaging window and a strobe light source are required to 

balance the convexity effect of crystallizer wall and to provide enough 

illumination respectively. This imaging setup requires high transparency of both 

bath fluids and the walls of crystallizer. The sampling is always in a fixed position 

of the crystallizer. These shortcomings limit its usage, especially for most of the 

cooling crystallization processes at low temperature where the condensate on the 

crystallizer wall will certainly worsen the image quality.  

 

Invasive In-Line Imaging System 

An invasive probe type design overcomes these shortcomings. It can be directly 

inserted into the solution, does not require any sampling, and so does not have the 

problems associated with microscope imaging. With a built-in illumination 

system, the probe can be inserted into any position inside the crystallizer, 
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permitting the monitoring of any location inside the vessel. Furthermore, it does 

not have strict requirements for the transparency of solution and bath fluids. 

Lasentec provides such an in situ camera for In-process video microscopy, called 

the PVM (shown in Fig. 2.4). PVM can be directly inserted into the solution to 

take real-time process images at a speed of up to 10 images/second. In a PVM 

system, six independent laser sources illuminate a fixed area and the light 

scattered back to the probe produces an image with the embedded CCD elements. 

The latest model of PVM (V819) has 1075µm x 825µm field of view of, with a 

resolution of 2µm. The PVM probe is now longer and slimmer (about 400mm in 

length and 19mm in diameter), which allows it to be more flexible to be inserted 

into vessels. PVM can be operated at pressures from vacuum to 150psi, and 

temperatures from -80oC to +120oC.  

 
 

Figure 2.4. Structure of PVM System. 

In a PVM system, the probe is connected to the control computer which also 

houses the control software. This makes it easy to store the captured images. No 

extra illumination equipment is needed since the probe contains six adjustable 
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laser diodes. Because of this probe design, issues such as on-line sampling and 

transparency of crystallizer wall are not significant. Barrett and Glennon (2002) 

describe the use of PVM to measure the meta-stable zone of a compound with 

human observation and decision making being an integral part of the operation. 

PVM is commonly used to monitor the process variables (Scholl et al., 2006a, 

2006b) and qualitatively infer the process state. In this thesis, the reliability of 

in-line PVM measurement has been validated with off-line microscope 

measurements, and successful application to on-line monitoring of MSG seeded 

batch cooling crystallization has been demonstrated.  

 

Qu et al. (2006) have applied another type of invasive in-line imaging system, 

named particle image analysis (PIA) 400 LUT video microscope, to analyse the 

effect of two potassium salt additives on the batch cooling crystallization of 

potassium dihydrogen phosphate.  PIA is probe type that can be directly inserted 

into a crystallizer, but requires an extra tube to fix its sensor head. This means two 

tubes need to be inserted together into crystallizer, one tube is for sensor and 

another tube is to fix the sensor head. Thus, PIA requires more space inside the 

crystallizer as well as at its opening, which makes it especially difficult for 

experimental setups involving small scale crystallizers.  

 

Another invasive probe type video microscopy is the in situ particle viewer (Li et 

al., 2008). This probe is 1.8m long and is suitable for large scale crystallizers. It 
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has a fixed field of view (about 8mm x 6mm) with a resolution of 40μm. This 

particle viewer has the similar design as PIA and it needs an extra tube to fix its 

sensor head and stroboscopic light source. This increases the probe dimension to 

50mm x 30mm. It has been effectively applied to a 20-L batch crystallizer to 

characterize the polymorphic phase transformation processes of L-glutamic acid. 

Simon et al. (2009a) applied endoscopy as an in-situ probe for bulk video imaging 

to identify the metastable zone of potash alum hydrate in a small scale 

calorimeter.  

 

All these studies demonstrated that invasive probe type in-situ video microscopy 

can help to monitor the crystal size and shape during crystallization. It can be 

installed even on sealed and covered reactors. The probe type is easy to install and 

has the flexibility to be inserted into different positions inside the crystallizer. 

Applying multiple probe-type in-situ video microscopes to one crystallization 

process will help to fully understand the process state, such as the mixing state. 

The obvious drawback of the invasive type video sensors is sensor fouling and 

contamination. In addition, it may require special opening and sealing for certain 

processes, where high pressure reactions or volatile chemicals are involved. 

 

On-Line Imaging Systems for 3-D Particle Size Measurements 

Irrespective of whether non-invasive or invasive in-situ video microscopy is 

applied, the above mentioned studies characterized particles from 2-D process 
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images from which it is hard to obtain reliable 3-D particle size. However, several 

studies presented recently have successfully characterized 3-D particle size and 

shape. Bujak and Bottlinger (2008) reconstructed 3-D particle shape of 

free-falling particles by simultaneously taking three images from three orthogonal 

directions. In their experimental setup, the 3 CCD-cameras and 3 light sources 

had to be precisely placed at certain positions. The particles freely fall between 

cameras and light sources and the projection of a particle could be registered by 

image capture in diffuse illumination. Similarly, Kempkes et al. (2010) tried to 

reconstruct the 3-D shape of particles in a suspension passing through flow 

channel. In this work, they did not apply multiple cameras for multiple images of 

the same particles. Instead, they arranged two mirrors at specific positions, so that 

the camera can take photos from the two mirrors at the same time. Thus, an image 

that shows a particle from two aspects is generated, and the particles’ 3-D shape 

can be reconstructed. Darakis et al. (2010) employed digital holography to 

reconstruct 3-D particle shape. It is pointed out that holography has no issues 

related to focusing - this is its unique advantage over classical imaging 

techniques.  

 

All these studies could successfully characterize 3-D particle shape, but they are 

on-line measurements and not in-situ instruments. In addition, all these designs 

need the particles or suspension to be with desired solid density to move through a 

fixed flow cell, so that the particles can be well imaged. 
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2.3 Process Imaging in Characterizing Particle Size 

and Shape 

Process imaging is a relatively new technology to monitor and control industrial 

processes by ‘seeing inside’ what’s happening in the process. Process imaging 

“refers to the use of image-based sensors, data processing concepts, and display 

methods for obtaining information about the internal state of industrial processes” 

(Scott & McCann 2005; Carlsohn, 2005). The obtained process information could 

be used for process monitoring and process control.  

 

The process images may be represented differently depending on the sensor type. 

They may be black-and-white presented by 256 gray levels, color images 

represented by 3 RGB (Red, Green, Blue) values, images directly taken by CCD 

or Complementary Metal Oxide Semiconductor (CMOS) cameras, process 

tomography taken by x-ray, gamma-ray, microwave, acoustic and ultrasonic 

methods such as the Computerized Tomography (CT) x-ray scanning systems that 

is commonly used in medical diagnostics.    

   

No matter how a digital image is obtained, it has to go through image processing 

steps so that one may extract as much process information as possible. The 

common image processing steps include image enhancement and object 

segmentation, etc. Image enhancement is usually the first step in image 

processing. The purpose of this step is to enhance the contrast of objects to 
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background and make the objects of interest to stand out in the image. The 

commonly used image enhancement methods include histogram analysis 

(Zuiderveld, 1994), gray-level transformation (Bovik, 2000), spatial filters for 

image smoothing or sharpening (Gonzalez & Woods,  2001) and image 

enhancement by frequency domain processing (Bovik, 2000). Object 

segmentation is the most important step in image processing and currently there 

are many available methods for this purpose. Examples imclude detecting the 

object’s edges by edge detection methods (Canny, 1986), detecting straight lines 

through Hough transform (Duda & Hart, 1972), labelling the object’s region 

through gray-level thresholding or region growing methods (Hojjatoleslami & 

Kittler, 1998), or generating pseudo images through multivariate statistical 

methods (Zhou, et al., 2007). Depending on the type of image and the different 

requirements of image processing, appropriate segmentation methods may be 

applied or combined together to process the digital images.    

 

To satisfy the requirements of digital process monitoring and control, each 

segmented object should be quantitatively represented by shape and size. This 

may involve fitting the segmented object area into a circle which has the same 

area or perimeter of the object, or using a rectangle bounding box to include the 

object, or using some predefined shape factors (Wanibe & Itoh, 1998). The 

quantitative representation could accurately describe process states, which is 

further used for process monitoring and control.    
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The obvious advantage of process imaging is that it can really ‘see inside’ 

processes. The obtained 2-dimensional images contain much more information 

than traditional measurements. For example, in order to monitor the temperature 

of fire flame in furnace, the traditional measurements can only show one 

temperature value at one particular time and sample point, while process imaging 

may show the temperature value distribution of a region at one same sampling 

time. The abundant information provided by process imaging would help to 

determine process state more accurately and rapidly. The information may also be 

used to develop new products and processes.  

 

2.3.1 Image Analysis Based Approach for PSD Estimation 

With the rapid development of in-situ high-speed imaging systems, the acquired 

process images can qualitatively show the crystallization process state in real-time. 

To further quantify particle size and shape, the image processing methodologies 

should be fast, accurate and reliable. They must be able to isolate each particle 

and subsequently characterize each particle’s size and shape. The biggest 

challenge of accurately isolating each particle is in clearly identifying each 

particle’s outline, i.e. precise particle segmentation. Some studies (Calderon De 

Anda et al. 2005a, 2005b, 2005c; Qu et al., 2006) segmented particles with a 

multi-scale image analysis technique, where particles were segmented by 
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combining the results of two Canny edge detections (at different scales). This was 

followed by morphological operation to obtain the area of each particle. This 

technique is successfully applied to study nucleation kinetics and on-line 

monitoring of the polymorph transition of crystallization process.  

 

Mazzotti and coworkers applied similar multi-scale image analysis techniques 

(Kempkes et al., 2008) to obtain the evolution of 2-D axis length distribution 

(ALD) in real-time. They then went on to restore 2-D PSD from 2-D ALD based 

on a genetic algorithm (Eggers et al., 2008). This technique was applied to 

monitor particle size and shape during cooling crystallization of ascorbic acid 

(Eggers et al., 2009). More, they developed a procedure to construct 3-D PSD 

with the innovation of their experimental setup (Kempkes, 2010).  

 

For long needle-shape particles that have high-aspect-ratio, Larsen et al. (2006b) 

advocated using line detection followed by clustering to segment crystals from 

images, instead of edge detection and morphology operations. The hallmark of 

this method is that straight lines are detected from images and then grouped 

together to get a high-aspect-ratio rectangle representing the particle. No 

morphological operations are performed. The method was demonstrated to be 

robust and efficient for monitoring processes with moderate solid concentration. 

However, this method is only specific to needle-shaped systems. Applications to 

other high-aspect ratio systems would need further refinement/extension. Even for 
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systems where the particle has a needle shape, at early stages of the crystallization, 

other shapes such as cubes or ellipsoid (that do not have high-aspect-ratio) may 

persist. The performance of the method for such shapes has not been established. 

Larsen et al. (2007) further refined the approach by grouping the straight lines 

according to pre-defined models of particle shape The improved method is more 

accurate, robust and reliable to suspend solutions with high solid concentration. In 

some crystallization processes, agglomeration may occur soon after nucleation, 

resulting in particle clots of random shapes. These cannot be easily handled even 

in the revised scheme.  

 

Hungerbuhler’s group detected nucleation and identified metastable zone of 

crystallization using process images. They used the mean gray intensity method to 

convert endoscopy images into 8-bit gray format, which were further processed 

with background subtraction, thresholding and noise elimination steps to detect 

the nucleation of the first crystal (Simon et al., 2009a, 2009b). Recently, they also 

developed a multivariate image analysis method, which is based on image feature 

descriptors, to perform on-line monitoring of nucleation (Simon et al. 2010a).    

 

Applying image analysis techniques to on-line process images not only provides 

the opportunity to monitor the particle size and shape (Kempkes et al., 2008), but 

additional factors that reveal the underlying crystallization kinetics can also be 

deciphered – for instance, the growth rates of each face of a particle (Ma et al., 
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2007; Wang et al 2007) can be obtained.  Similarly, population properties of 

different morphologies can be estimated since particles of different shapes can be 

segregated from the measured features. Zhou et al. (2007) showed that the aspect 

ratio is usually above 1.5 for long needle shape MSG crystals and in the range of 

1 - 1.3 for cubic salt particles. Additional 3-dimensional particle information 

(Wang et al., 2008) can also be extracted. 

 

2.4 Major Image Analysis Steps 

PVM images offer a snapshot of the process state. Each image may contain 

several particles – small and large, some distinct and others overlapping together. 

The objective, irrespective of the contents of the image, is to extract the size and 

shape of each particle from which the process state – particle shape and size 

distribution – can be calculated. The isolation of each particle from the image is 

termed as particle segmentation. IA techniques seek to automatically perform 

particle segmentation. Most publications in IA for PSD have used the same broad 

steps. In this section, we review these major steps and summarize the challenges 

in IA when applied to PVM images of crystallization systems.  
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(a) 
 

(b) (c) 

  

 

(d) (e) (f) 
Figure 2.5. Steps in image analysis. 

 (a) original PVM image (b) enhanced image (c) edge detection (d) morphology 
operation (e) isolated particle (f) feature extraction 

 

Each image ),( yxI , as shown in Fig. 2.5 (a), is a matrix of pixels. Each pixel at 

position ),( yx  has an intensity value I ranging from 0 to 255, which 

corresponds to the pixel color changing from black ( 0I ) through grey to white 

( 255I ). The size of the matrix (and the image) depends on the equipment and 

its setting. We use 640x480 pixels as the typical size for images, although the 

PVM can also be set at 320x240 pixels and 1280x960 pixels. The first step in 

particle segmentation is to detect the outlines in the image. For this purpose, the 

raw image I  may be first enhanced through background subtraction or other 

transformations to obtain an enhanced image I , as shown in Fig. 2.5 (b). 
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2.4.1 Edge Detection 

The operation of edge detection is a critical step that is intended to find the edges 

of objects of interest in the image. The most popular edge detectors are Sobel 

edge detector (Gonzalez & Woods, 1992), Prewitt edge detector (Pratt, 1991), 

Robert edge detector (Rosenfeld & Kak, 1982), and Canny edge detector (Canny, 

1986). The edge detectors compute the gradient magnitude of pixel intensity 

values, and find the edges when the gradient magnitude is greater than a threshold 

value. Canny edge detection is employed in this thesis since it detects both edge 

magnitude and edge direction. 

 

Canny edge detection consists of four steps. The first step is to filter the enhanced 

images with a Gaussian filter mask, 

         ),(*),(
~~~

yxGyxII                                 (2.6) 

where,  

  2

22

2
22

1
, 



yx

eyxG



                              (2.7)  

 

and   is the standard deviation of the Gaussian smoothing filter. Next, the edge 

magnitude and direction of each pixel are calculated by calculating the first 

derivative of the Gaussian filtered image I
~~ . At each pixel, the two partial 

derivatives xc and yc , in the x and y directions corresponding to the vertical and 

horizontal slope respectively, are obtained.  
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The edge magnitude defined as  
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and edge direction defined as    
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can be obtained.  

 

The third step is to find all the local maximum magnitudes along gradient 

direction, and mark these pixels as edge pixels. This step results in thinned edge 

line. The last step applies hysteresis thresholding to mark the final edges. In this 

step, two threshold values T1 and T2 (T1<T2) are used. An edge pixel is defined as 

a strong edge if its magnitude is greater than T2. If the edge magnitude is between 

T1 and T2, the pixel is marked as a weak edge. Weak edge pixels are incorporated 

into strong pixels if they are 8-connected. Edge pixels are linked to form an edge 

line. Edge detection thus converts the original gray-level image I(x,y) into a 

binary image B(x,y), where the edge points are labeled as 1 and background points 

as 0.  

 

Canny edge detection thus requires three parameters to be specified – the T1 and 

T2 threshold values and the standard deviation of the Gaussian filter,  . The 
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threshold values define the strong edge and weak edges and connect them 

together to denote the edge. The choice of   also has a significant effect on the 

processed image. A high value of   leads to a wider distribution and blurs the 

image, so that only the most prominent edges are detected. A small value of   

leads to a narrow distribution and flags not only the prominent edges but also the 

less prominent ones, as shown in Fig. 2.5 (c). 

 

2.4.2 Morphology Operation 

The objective of morphology operations is to extract objects of interest from the 

image. Dilation and erosion are fundamental morphological operations. These 

operations are performed by letting a predefined binary window of structuring 

element S slide across the binary image B. Dilation is the union of S and B - this 

means any elements belonging to either S or B will belong to the new dilation set, 

i.e., Dilation=OR[S,B]. Dilation operation fills in small holes and expands the 

object boundaries. The erosion operation generates the new set by finding all the 

elements that belong to both S and B, i.e. Erosion=AND(S,B). The erosion 

operation shrinks the object boundary (Bovik, 2000).  

 

Morphological closing and opening combine the operations of dilation and 

erosion. Image closing involves use of erosion followed by dilation. Closely 

adjacent objects are first merged together. Image filling is subsequently used to 
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fill the holes in the closed objects’ area and to make the objects smoother. 

Morphological opening, which involves the operation of dilation followed by 

erosion, is then performed to remove small isolated pixels. The operation of 

morphological closing followed by image filling and opening removes 

imperfections such as holes from the particle without affecting its shape or size.  

 

The predefined structuring element S, which gives the shape information of 

interest, is an important factor that affects the shape of the object obtained through 

morphology operations.  When the binary structuring element S slides across the 

binary image B, S must overlap with at least one 1-valued pixel of B. Therefore, 

the shape of S affects the objects’ outline in image B. There are a lot of choices to 

define S. For example, it could be defined as a disk, line, rectangle, diamond, 

square or octagon. Even for a given shape, various sizes and orientations can be 

used. As stated earlier, the shape and size of the structuring elements have to be 

pre-specified, and will affect the final outline and area of the segmented particles.  

 

After the morphology operations, as shown in Fig. 2.5 (d), all small objects with 

pixel area less than a pre-specified threshold are removed. Similarly, objects that 

touch the image border are eliminated from further consideration. Fig. 2.5 (e) 

demonstrates the isolated objects. The outlines of the remaining objects are 

obtained as n-point pairs in Cartesian coordinates [x1, y1; x2, y2; …; xn, yn] in 

clockwise or counterclockwise direction. Particle features are then extracted from 
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the outline. 

 

2.4.3 Feature Extraction 

There are several methods to measure the size of the particle from the outline 

(Wang, 2006). Two common methods are based on the maximum chord length 

and the best-fit minimum-area rectangle, as shown in Fig. 2.6. Both these methods 

are rotation-invariant. The maximum chord length method calculates the distance 

between any two points of a particle’s outline as a particle chord length. The 

maximum chord length is defined as the particle length.  

 

 

 

 

 

           (a)                     (b)                   (c) 

 

 

 

 

           (a’)                    (b’)                  (c’) 
Figure 2.6. Comparison of two kinds of bounding box. 

 (a) and (a’) are original PVM images; (b) and (b’) show the minimum area 
bounding boxes, (c) and (c’) show the bounding boxes obtained from major axis. 
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The particle width could be defined as the maximum chord length that is 

perpendicular to the particle length, as shown in Fig. 2.7. Alternatively, it can be 

defined as the width of a rectangle that has the same area as the segmented 

particle. In the best-fit minimum-area rectangle method, each extracted object is 

fit into a minimum-area rectangle using the rotating calipers method (Toussaint, 

1983; Pirzadeh, 1999; Chaudhuri & Samal, 2007), as shown in Fig. 2.5 (f). The 

particle size and shape is based on this rectangle. Once the particle length and 

width have been obtained, other derived features such as the aspect ratio (ratio of 

particle length to width) can also be calculated.  

 

 
Figure 2.7. Feature extraction of segmented particle. 

Particle length is defined as the maximum chord length; particle width is defined 
as the maximum chord length that is perpendicular to the particle length. 

 



Chapter 2 Real-Time Monitoring and Control of Crystallization Processes 

46 

 

2.5 Conclusions 

Desired particle shape and uniform particle size are the common requirements for 

good quality of crystallization product. The currently available in-situ PAT 

instruments are able to characterize particles in real-time. ATR-FTIR predicts the 

concentration of solution, FBRM measures CLD, Raman and NIR detect structure 

and PVM characterizes particle size and shape. These measurements and 

characterizations make it possible to monitor and control the crystallization 

processes.  

 

With the advancement of process imaging, there is a surge in interest to study 

crystallization process. The literature studies show that process imaging 

technology is capable to characterize particle size and shape in real time. It 

provides industry with more opportunities to monitor and control particle growth, 

understand polymorph transition, characterize metastable zone, etc.   
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Chapter 3.  Development Of New 

On-Line Image Analysis Methodologies 

 

In order to automatically characterize particle size and shape from in-line process 

images, certain image analysis steps are required to process images that are 

acquired from specific crystallization systems. This chapter will extend the basic 

image analysis steps reviewed in Section 2.4 and develop an image analysis (IA) 

methodology. These extensions are in image selection, image pre-processing and 

particle selection steps and account for the specific characteristics of PVM images, 

as described next.  

 

3.1 Image Selection 

The PVM takes images of particles as they come into the field of view. These 

in-process images may contain not only particles, but also bubbles and other 

aberrations caused by inadequate lighting. When the vessel contains no particles, 

the images merely show the background. While the developed method is fast and 

accurate enough for quantifying particles from images containing clear particles, 

significant computational time is entailed while identifying objects in blank or 
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poor quality images. Therefore, while dealing with processes that evolve from 

low (or no) solids concentration to high solids concentration, the first step is to 

automatically select good quality images. Since particles and background usually 

have different intensity values in the image, it is obvious that the intensity 

histogram of images containing clear particles would differ substantially from 

those without. Thus promising images can be identified quickly based on their 

intensity range ( minmax III  ).  

 

min min&    Image has particles
If 

Else                            Image does not have particles
kI T I T  


                  (3.1) 

where kT and minT  are user-specified thresholds. Images which match this 

criterion are selected for subsequent analysis. 

 

This is further demonstrated in Fig. 3.1 and 3.2. For the image in Fig. 3.1 (a), the 

maximum and minimum intensities are 238max I and 121min I  respectively, 

and the intensity range is 117minmax  III . On the other hand, for the image 

in Fig. 3.1 (e), the maximum and minimum intensities are 231max I  and 

17min I  respectively, and the intensity range is 214minmax  III . Hence it is 

easy to see that thresholds of intensity range ( KT ) and minimum intensity 

threshold ( minT ) should exist. Let us say for this set of images, only the images 

with intensity range greater than 150, i.e., 150KT   and minimum intensity less 

than 100, i.e., 100min T  will be selected for further analysis. 
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Figure 3.1. Comparison of the intensity histogram of images with and without MSG particles inside.  
(a) original image without particle; (b) the intensity histogram of image (a);  

(c) enlarge (b) at the intensity ranged from 0 to 150; (d) pixels of intensity <100 in (a); (e) original image with clear particle; (f) the intensity 
histogram of image (d); (g) enlarge (e) at the intensity ranging from 0 to 150; (h) pixels of intensity <100 in (e). 
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Even for process images in which the object-to-background contrast is not very high, 

this selection criteria works well. Fig. 3.2 demonstrates the process images of silica 

gel. In Fig. 3.2 (a), the image does not contain any particle. It has a 166max I and 

87min I . The intensity range is 79minmax  III . The image in Fig. 3.2 (e) has 

particles. Its 239max I , 47min I , and 192minmax  III . Similarly, the 

thresholds of 100KT and 70min T  could be set for image selection.   

 

3.2 Image Enhancement 

PVM images usually have systematic variation in the intensity across the image – 

the center is much brighter than the edge – due to the nature of illumination source 

in the probe. This systematic variation complicates threshold selection in the various 

IA steps. For example, if a high pixel value is used as threshold, the four corners 

will be considered as objects in the binary images, while a low threshold value will 

blank out the particle objects as well. Fig. 3.3 demonstrates this problem, where 

both the crystal and the four corners are transferred into black color in the binary 

image.  

 

To eliminate this, a reference image without particles Ref ( , )I x y  , as shown in Fig. 

3.4, is taken at the beginning of each experiment. All subsequent images are 

normalized by subtracting this reference image, i.e., 
~

Ref( , ) ( , ) ( , )I x y I x y I x y  .  
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Figure 3.2. Comparison of the intensity histogram of images with and without silica gel particles inside.  
(a) original image without particle; (b) the intensity histogram of image (a); (c) enlarge (b) at the intensity ranging from 0 to 150; (d) original 

image with clear particle; (e) the intensity histogram of image (d); (f) enlarge (e) at the intensity ranging from 0 to 150. 
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(a)        (b) 
 

Figure 3.3. Problem of non-uniform background.  
 (a) original image; (b) binary image by directly threshold original image, the four 

corner are threshold as objects as well. 
 

 

 

Figure 3.4. Reference image, Ref ( , )I x y .  

 

 

Further image enhancement using contrast-limited adaptive histogram equalization 

(Zuiderveld, 1994) was also evaluated. Fig. 3.5 illustrates the effect of image 

enhancement.   
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(a) (b) 

Figure 3.5. Effect of image enhancement.  
 (a) original image; (b) result of image enhancement. 

 

3.3 Particle Selection 

The output from the morphology operation is the outline of objects in the image. 

While most of these would be particles of interest, some would be bubbles and clots 

formed by aggregating particles arising from noise and other imperfections in the 

image. To get an accurate estimate of particle size, it is important to take into 

consideration only those sizes which can be definitely attributed to particle. 

Therefore, we include a particle selection step.  

 

Specifically, the signature curve (Gonzalez et al., 2004) is used to identify if the 

object outline obtained after morphology operations corresponds to a regular particle. 

First, the outline is smoothed using Discrete Fourier Transform (DFT) to obtain all 

the Fourier descriptors. Next, the outline is reconstructed using only the largest 

descriptors, thus resulting in a smoother boundary without high-frequency (curvy) 

edges, as shown in Fig. 3.6. A signature curve – which is a one-dimensional 

representation of the two-dimensional outline – is calculated for the reconstructed 



Chapter 3 Development Of New On-Line Image Analysis Methodologies 

54 

 

outline as follows: First the centroid of the object  YX


,  is calculated using the 

points in the outline.  
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                                      (3.2) 

 

Then, the points in the outline are described in a new polar coordinate system with 

the centroid as the origin. For the ith point in the outline,  

   22

YyXxr iii
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The ( ir , i ) plot of the outline points in clockwise or counter-clockwise direction is 

called the signature curve. Since the boundary is a closed curve, the angle would 

range from 0o (the start point) to 360o (the end point).  

 

The signature curve is a single-valued function of increasing angle and could be 

used to indirectly identify the quality of segmentation. Each geometrical shape has a 

specific signature curve. For instance, a spherical particle would have a circular 

outline, therefore its signature curve would be a straight line. Needle-shaped 

particles would have four local maxima – the two larger ones separated by about 

180o corresponding to the particle length and the smaller two corresponding to the 

particle width and also 180o apart. The signature curve is therefore used to confirm if 
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the outline after the morphology operation corresponds to a well segmented particle. 

Particle size resulting from an improperly segmented object whose signature curve 

is “noisy” and does not have the peaks separated by about 180o are therefore not 

used in subsequent calculations.  
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(c) (d) 

Figure 3.6. Signature curve for segmented and smoothed particles.  
(a) outline of a segmented particle; (b) signature curve of particle in (a); (c) 

smoothed particle outline obtained through Fourier transform; and (d) signature 
curve of particle in (c) 
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(50,8.3)B1'

3.4 Size Estimation 

The signature curve can also be used to estimate the particle size. As shown in Fig. 

3.6, the two larger peaks that are separated by about 180o correspond to the two 

points that are most separated. We use this as a computationally efficient means to 

estimate the particle length.  

 

A particle’s maximum chord length can be estimated from both coordinate positions 

and signature curve. From Fig 3.7(b), the two peaks (θi, ri) that are separated by 

about 180o are           and            . Hence, the maximum chord length 

can be estimated as:  

pixels130.2rrCLD 'P2'P1

'

Max                                  (3.5) 

 

The corresponding coordinate positions of 'p1  and 'P2  in Fig. 3.7(a) are P1(342, 

101) and P2(443, 181). This particle’s maximum chord length also could be 

calculated as: 

pixels128.8)y(y)x(xCLD 2

P2P1

2

P2P1Max                  (3.6)   

 

Similarly, the two bottom minimums (θi, ri) that are separated by about 180o in Fig. 

and          , the minimum chord length, 
'

MinCLD , can 3.7(b) are 

be estimated as 16.5 pixels. The corresponding coordinate positions of 'B1  and 

'B2  in Fig. 3.7(a) are B1(398, 135) and P2(388, 147), and the estimated minimum 

cord length CLDMin is 15.6 pixels.     

 

(229,8.2)B2'

)0.65,142(1P ' )2.65,322(P2 '
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The estimated maximum chord length, CLDMax, and minimum chord length, CLDMin, 

are considered as particle length and width, respectively.   
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(b) 
Figure 3.7. Particle size estimation from signature curve. 

(a) particle size estimated from particle’s coordinate position; (b) particle size 
estimated from particle’s signature curve.  
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3.5 Overall Steps of Image Analysis (IA) 

Methodologies 

Fig. 3.8 summarizes all the steps in the proposed IA methodology that is applied to 

each image acquired from the experiment. More examples of applying IA in 

different systems, such as silica gel, sea sand, sea salt, MSG and mixture of sea salt 

& MSG, are demonstrated in Fig. 3.9 to 3.13 respectively. By statistically 

combining the particle sizes from sets of adjacent images, size distributions and 

particle growth can be tracked as a function of time.  

 

 

Figure 3.8. Proposed methodology for on-line image analysis. 
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Figure 3.9. Steps in image analysis of silica gel PVM image. 

(a) original PVM image; (b) enhanced image; (c) edge detection; (d) morphology operation; (e) isolated particle; (f) feature extraction. 

   

(a) (b) (c) 

 

 
 

  

(d) (e) (f) 
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Figure 3.10. Steps in image analysis of sea sand PVM image. 
(a) original PVM image; (b) enhanced image; (c) edge detection; (d) morphology operation; (e) isolated particle; (f) feature extraction. 

   

(a) (b) (c) 

   

(d) (e) (f) 
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Figure 3.11. Steps in image analysis of sea salt PVM image. 

(a) original PVM image; (b) enhanced image; (c) edge detection; (d) morphology operation; (e) isolated particle; (f) feature extraction. 

   

(a) (b) (c) 

   

(d) (e) (f) 
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Figure 3.12. Steps in image analysis of MSG PVM image. 
(a) original PVM image; (b) enhanced Image; (c) edge detection; (d) morphology operation; (e) isolated particle; (f) feature extraction. 

   

(a) (b) (c) 

 
   

(d) (e) (f) 
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Figure 3.13. Steps in image analysis of sea salt & MSG mixture PVM image. 

 (a) original PVM image; (b) enhanced image; (c) edge detection; (d) morphology operation; (e) isolated particle; (f) feature extraction. 

 
 

  

(a) (b) (c) 

 
 

 
  

(d) (e) (f) 
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3.6 Conclusion 

Based on the major image analysis steps in literature, an extended image analysis 

(IA) methodology, mainly focused on PVM images acquired from crystallization 

process, is developed in this chapter. It improves the computing efficiency by 

selecting only non-blank images for further analysis, eliminates the non-uniform 

background that occurs in process images, evaluate isolated objects, and 

characterize particle size with signature curve. The examples demonstrate that IA 

could properly segment particles from PVM images.  
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Chapter 4. Experimental Studies 

 

This chapter describes the experimental setups for on-line monitoring of 

crystallization processes. PVM, FBRM and ATR-FTIR were employed to the 

crystallization system to acquire various process measurements in real-time. Two 

kinds of experiments were carried out with this experimental setup. One experiment 

was based on sea sand with known size range and size distribution. The purpose of 

this experiment was to correlate the in-line PVM measurements with off-line 

Microscopy measurements based on a system with know characteristics. Another set 

of experiments were conducted to monitor the particle growth in seeded MSG 

crystallization process by in-line analysis of the acquired PVM images.     

 

4.1 Experimental Setup 

The experimental setup is shown in Fig. 4.1. A 500ml jacketed flat-bottom glass 

reactor is used as crystallizer. A 4-bladed Teflon impeller driven by an overhead 

motor is used for mixing. Each blade is at a 45o angle to the horizontal, and the 

stirrer blade is located at about one-third of the height of liquid above the bottom of 

the vessel. 
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Figure 4.1. Experimental setup. 

 

PVM (model 700) and FBRM (model D600L) from Lasentec / Mettler Toledo were 

inserted into the solution at an angle of about 45o. They were connected to a 

Pentium III computer (CPU: 1G HZ; Memory: 256MB), where PVM instrumental 

software (Particle Vision Measurement PVM 700) and FBRM software (FBRM 

Data Acquisition Control Interface 6.0) were installed. The obtained image is 

480x640 pixels corresponding to a 645x860 µm2 field of view. This implies that one 

pixel is equal to 1.344 µm. Although the PVM software allows up to 10 images per 

second to be stored, this rate could not be really reached in actual operation. 

Therefore, a lower image acquisition speeds (up to 2 images /second) is used in our 
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experiments.  

 

FTIR spectrometer (Nicolet 4700 from Nicolet Instrument Co.) equipped with a 

Dipper-210 ATR immersion probe (manufactured by Axiom Analytical Inc.) were 

used to collect absorbance spectra. A conical ZnSe crystal was sealed into the probe 

with two ATR reflections. The spectra of DI water at room temperature were used 

as background. A spectrum was acquired every minute and each spectrum had 64 

scans in the range of 600 to 4000 cm-1.  

 

A Julabo circulator FP50-HL with capability to heat and cool is used to control the 

crystallizer temperature; a stainless steel Pt100 thermocouple is used for measuring 

the crystallizer temperature. This communicated with the control computer via 

RS232 interface.   

 

Fig. 4.2 shows the schematic of the experimental setup. Various in-situ instruments 

acquire different signals and send them to the control computers for further analysis. 

The obtained process information, such as the particle chord length distribution from 

FBRM measurements, solution concentration characterized from ATR-FTIR spectra, 

particle size distribution and shape estimated from PVM images, are passed on to a 

central control computer. The central control computer will monitor and control the 

process in real-time by adjusting the temperature of the circulator.  
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Figure 4.2. Schematic diagram of experimental setup. 

 

 

4.2 Experiments 

With the experimental setup in Fig 4.1 and 4.2, two experimental studies were 

performed for validating the PVM imaging system and the IA methodology – the 

first a simple study on sea sand (without variation of particle size and shape, as 

described in Section 4.2.1) and the second one which is a complex study of 

crystallization process (with growth of particle size, as described in Section 4.2.2). 
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In the first experiment, sea sand was separated into five different size ranges and put 

into DI water. The collected PVM images were compared with off-line microscopy 

images in order to validate the PVM imaging system. The second experiment dealt 

with the measurement and size estimation of a seeded batch cooling crystallization 

process of MSG from DI water.  

 

4.2.1 Experiments with Sea Sand 

The purpose of these experiments was to compare the accuracy of the particle size 

estimates from the PVM imaging system and determine its consistency with 

microscopy measurements. In the microscopy measurements, all particles are 

photographed on a flat plate, so the distance of particles from the lens is fixed and 

the particles are stationary. Compared to the PVM images, these microscope images 

are also much clearer, and therefore easier to process by image analysis. Therefore, 

we expect accurate measurements of particle size from microscopy and hence use it 

as a benchmark and to estimate the errors introduced by the PVM imaging system. 

The detailed experimental procedure is described as below: 

 
a) Sea sand was separated into five different size ranges with sonic sifter and 

sieves. From top to bottom, the edge sizes of square holes of the sieves are 

150μm, 125 μm, 106μm, 90μm, 75μm, 53μm respectively. The sea sand 

particles are then grouped into 5 sets with different particle ranges of 53 - 

75μm (Set A), 75 - 90μm (Set B), 90 - 106μm (Set C), 106 - 125μm (Set D) 

and 125 - 150μm (Set E). 

 
b) For each size range, an experiment was conducted separately. A small 
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amount of sea sand sample, (0.42 gram for Set A, 0.50 gram for Set B, 0.80 

gram for Set C, 1.30 gram for Set D and 1.10 gram for Set E), was mixed 

with 250ml DI water and poured into the crystallizer and stirred at 350rpm. 

The amount of sea sand sample is different for each set. The bigger particle 

size requires the more amount of sample to ensure that the numbers of 

particles are similar in each set.   

 
c) For each set, the experiment was conducted for about one hour, PVM images 

were saved at a speed of 2 images/second and over 3000 PVM images, (3149 

images for Set A, 3779 images for Set B, 4483 images for Set C, 7730 

images for Set D and 5077 images for Set E), were acquired; typical images 

are shown in Fig. 4.3. FBRM data was saved at a frequency of every 2 

seconds, as shown in Fig. 4.4.  

 
d) Off-line images of small amount of samples from each of the five sets of 

sieved sea sand were also taken using an Olympus BX51 microscope. 500 

microscopy images (about 2000 sea sand particles) were acquired for each 

set. Fig. 4.5 shows some typical microscopy images. 

 

4.2.2 Seeded Cooling Crystallization of MSG from DI Water 

With the same experimental setup described in Section 4.1, detailed investigation of 

IA’s accuracy was performed by monitoring particle growth in seeded 

crystallization experiments.  
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Figure 4.3. PVM images of sea sand particles of various size ranges. (a) set A (sieve size: 53-75μm); (b) set B (sieve size: 75-90μm);  

(b) set C (sieve size: 90-106μm); (d) set D (sieve size: 106-125μm); (e) set E (sieve size: 125-150μm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Set A (b) Set B (c) Set C 

 

 

 

 

 

 

 

 

 

 

 

 

(d) Set D (e) Set E 
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Figure 4.4. FBRM measurements of sea sand particles of various size ranges. (a) set A (sieve size: 53-75μm); (b) set B (sieve size: 75-90μm); 
(c) set C (sieve size: 90-106μm); (d) set D (sieve size: 106-125μm); (e) set E (sieve size: 125-150μm) 

 

(a) Set A (b) Set B (c) Set C 

  

(d) Set D (e) Set E 
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Figure 4.5. Microscopy images of sea sand particles of various size ranges. (a) set A (sieve size: 53-75μm); (b) set B (sieve size: 75-90μm);  
(c) set C (sieve size: 90-106μm); (d) set D (sieve size: 106-125μm); (e) set E (sieve size: 125-150μm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Set A (10X) (b) Set B (10X) (c) Set C (4X) 

 

 

 

 

 

 

(d) Set D (4X) (e) Set E (4X) 
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4.2.2.1 Monosodium Glutamate 

MSG (L-Glutamic Acid Monosodium Salt Monohydrate from Sigma-Aldrich; 

≥98.0% TLC) is selected as the chemical for case study. MSG is a flavor-enhancing 

compound that provides the savory taste in food. The substance was discovered and 

identified in the year 1866, by the German chemist Karl Heinrich. It is widely used 

as additive in food industry to produce fermented or aged food such as soya sauce, 

fermented bean paste and cheese.  

 

MSG is a sodium salt consisting of sodium cations and glutamate anions. The 

formula of MSG is C5H8NNaO4.H2O and the molecular structure of MSG is shown 

in Fig. 4.6. MSG appears as white crystalline powder. Its molecular weight is 

187.14 AMU and melting point is 225oC.      

 

Figure 4.6. Molecular structure of l-glutamic acid monosodium salt monohydrate. 

 

Solubility 

MSG is very soluble in water (even in saliva). With the experimental setup 

described earlier, experiments were conducted to measure its solubility from 10oC to 

80oC by both in-line ATR-FTIR approach and off-line evaporation approach. One 

experiment is conducted at every 5oC interval. The measured solubility at each 

temperature is shown in Fig. 4.7. Both approaches are consistent at most (12 out 16) 

of the measurements, except the 3 experiments at 15oC, 60oC and 65oC. If off-line 



Chapter 4 Experimental Studies 

75 

 

evaporation approach is considered as more reliable, the deviation of ATR-FTIR 

measurements may due to its sensitiveness to unknown ambient factors or 

experimental conditions.   
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Figure 4.7. Solubility measured by ATR-FTIR and evaporation approaches. 

 

For each experiment, a large amount of MSG is added to 400 ml DI water, the slurry 

is kept at a fixed temperature and stirred overnight to make it saturated and stable. 

Then, ATR-FTIR measures the spectrum of the slurry at a speed of 1 measurement 

per minute for 30 minutes. After that, 3 samples are taken with syringes that are 

equipped with filter (0.20µm syringe driven filter unit from Millipore Corporation). 

The 3 samples are weighted and dried in an oven at 45oC for 1 week. MSG 

solubility was calculated from the weight change before and after drying.    
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ATR-FTIR measures the absorbance of infrared light and only spectra data is 

acquired. It is well known that ATR-FTIR spectrum vary with the solutions 

concentration and temperature. For example, Fig. 4.8 shows the typical ATR-FTIR 

spectra that are collected at certain concentration and temperature from the solution 

of MSG in DI water.  

0 500 1000 1500 2000 2500 3000 3500 4000
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Frequency

A
bs

or
ba

nc
e

 

Figure 4.8. ATR-FTIR spectra collected at certain concentration and temperature 
from the solution of MSG in DI water.  

 

To calibrate solution concentration and temperature with ATR-FTIR spectrum, a 

series of spectra are collected from solution with known concentration and 

temperature. Table 4.1 lists the experiments conducted for calibrating ATR-FTIR 

spectra. Principal component regression (PCR) is then applied to construct the 

calibration model between concentration, temperature and ATR-FTIR spectrum, 

which is represented as 
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C = bTx                                                       (4.1) 

where, C is the solution concentration (predicted variable or output), x is the vector 

of predictor variables (spectra and temperature), which serve as the inputs and b is 

the regression coefficient.  

 

The total 432 spectra (as listed in Table 4.1) were divided into training sets and 

validation sets. All the even numbered spectra belong to the training sets. All the 

odd numbered spectra belong to the validation sets. 10 principal components were 

extracted from a range of frequency (800 – 1200 cm-1) and temperature 

measurements (total 174 predictor variables x) to build PCR model. 

 

Table 4.1: Experiments for Calibrating ATR-FTIR 

Expt. # 
Fixed Concentration 
(gMSG/gDIWater) 

Temperature 
Range (oC) 

Cooling Rate 
(oC/min) 

Number of 
Spectrum 
collected 

1 0.6625 20 – 5 0.5 33 

2 0.6750 25 – 10 0.5 31 

3 0.6875 30 – 15 0.5 31 

4 0.7000 35 – 20 0.5 29 

5 0.7125 40 – 25 0.5 30 

6 0.7250 45 – 30 0.5 31 

7 0.7375 50 – 35 0.5 31 

8 0.7500 55 – 40 0.5 31 

9 0.7625 60 – 45 0.5 32 

10 0.7750 65 – 50 0.5 31 

11 0.7875 70 – 55 0.5 31 

12 0.8000 75 – 60 0.5 31 

13 0.8125 80 – 65 0.5 31 

14 0.8250 85 – 70 0.5 29 

4.2.2.2 Experimental Procedures 

The temperature profile for all the MSG experiments is shown as in Fig. 4.9.  
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a) 320g of MSG is added to 400ml DI water at room temperature, heated in 30 

minutes to 80oC and maintained there for additional 30 minutes to ensure that 

all the MSG is dissolved.  

b) The solution is then cooled to 50oC at a rate of 1oC/min, and then to 30oC at 

0.5oC/min.  

c) Subsequently, the solution is held at 30oC until the end of the experiment (up 

to 118 hours). 

d) To prepare the seed, a small amount of MSG is ground and sieved. Particles 

within sieve size of 38-45µm are set aside as seeds. 1g of the seed is added to 

initiate crystallization when the solution is at 40oC (stirring speed 350 rpm). 

Typical microscopy images of prepared seeds are shown in Fig. 4.10. 

e) At the end of the experiment, the final solution is filtered, the product dried at 

40oC for 24 hours and weighed.  
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Figure 4.9. Temperature profile for MSG seeded crystallization process. 
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Figure 4.10. Microscopy images of prepared MSG seeds with 50X magnification. 

  

(A) (B) 

  

(C) (D) 
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PVM images are acquired throughout the experiment. The PVM was set to 

auto-adjust for light and contrast every minute. Without this adjustment, the images 

tend to get darker as the crystallization proceeds and more solids get formed in the 

solution. Occasionally, the PVM probe also had to be removed for cleaning. 

 

As shown in Table 4.2, although every effort was made to maintain the same 

experimental conditions in all the runs (except Experiment X), differences were still 

apparent in the results of the experiments. The variations could have originated from 

the (manual) seeding step or unknown disturbances that affect the crystallization 

mechanism (Samant & O’Young, 2006). The variations became evident during the 

course of the experiment (e.g. difference in PVM image quality) and at the end of 

the crystallization (different amounts of final product). The variation could also be 

due to small changes in the positioning of the PVM probe, the stirrer, or their 

relative positions in the crystallizer.  

 

Corresponding to Table 4.2, Fig. 4.11 to 4.15 depicts the PVM images acquired 

from different experimental runs of MSG seeded cooling crystallization process. 

The images are sampled at evenly-distributed time points based on the total process 

time of each experimental run.     
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Table 4.2 : Comparison of Different Runs of MSG Seeded Cooling Crystallization 

Experiments 

Experiment 
No. 

Seed Size 
( by sieve 

size ) (µm) 

Weight of 
Products 

(g) 

Rate of 
Image 

Acquisition 
(image/sec)

Experiment 
Duration 

No. of 
PVM 

Images 

X Not sieved 
Not 

measured 
2 22 hr 20 min 29,898 

A 38-45 5.41 0.5 93 hr 41 min 51,141 

B 38-45 7.2574 1 117 hr 36 min 62,129 

C 38-45 15.9126 0.5 69 hr 22 min 42,304 

D 38-45 14.6119 0.5 71 hr 14 min 43,156 

E 38-45 
Not 

measured 
2 10 hr 27 min 61,007 

 

4.3 Discussion 

4.3.1 Comparison of Image Quality  

Microscopy Images to PVM Images 

As shown in Fig 4.3 and Fig. 4.5, there are obvious differences between microscopy 

and PVM images. Microscopy is an off-line measurement, where in the sample 

crystals are well separated on a static and flat surface. The image is clear and there 

is almost no noise effect on the measurements. Compared to microscopy images, the 

PVM images are less sharp, with non-uniform background, and have artifacts like 

ghost images. PVM is at a fixed position in the stirred slurry and randomly acquires 

process images at specific frequency. Only when crystals are within PVM’s field of 

view, they can be imaged. The motion of the liquid solution and solid crystals, as 

well as the light illuminance of PVM probe, may cause the low quality of acquired 
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images. 

 

PVM Images Acquired from Different Runs 

When the images from Experiment X are compared with those from Experiment A 

to D, the images, as shown in Fig. 4.11, are quite clear. The contrast of crystal 

objects to background is quite high and the growth of the crystals (especially the 

long needle shape MSG crystals) is distinct. However, the PVM image acquired 

from Experiments A to D, as shown in Fig. 4.12, 4.13, 4.14 and 4.15 respectively, 

are not as clear as those taken from Experiment X. The images are relatively faded, 

the crystal objects are not clear in the images and there are many more darker clots 

or objects without clear edges. Specifically, images from Experiment X contain only 

needle shape (β form) MSG crystals which grow quite long by the end of the 

experiment (after 21 hours). However, the images from Experiment A to D contain 

not only needle- shape (β form) MSG crystals, but also rhombus-shape (α form) 

crystals. Furthermore, the particles obtained at the end of these experiments (from 

66 hours to 116 hours) are not as big as those from Experiment X. The image 

quality, particle shape and size in Experiment A to D are quite different from 

Experiment X, one possible reason is the seeding particles are ground before adding 

to the processes in Experiment A to D. The grinding may modify the surface 

properties of the particle and lead to different particle growth kinetics. 

 

PVM Images Acquired from the Same Run 

During each MSG experimental run, the image quality varies with process time. As 

shown in Figures 4.11 to 4.15, the images that are acquired at the 1st hour of each 

experiment are almost blank, and contain very few small particles. With the progress 
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of each experiment, more particles are imaged and the quality of images gets poorer 

and poorer. The increase in solid concentration is suggested as the major reason for 

this. If there are more solids in the solution, the particles will have more chance to 

overlap or aggregate together to form particle clots. In a high solid concentration 

solution, there are too many particles around the lens of instruments and these 

particles may corrupt the image quality because they may be out of focus to be 

clearly imaged. The higher the solid concentration, the darker the images tend to be, 

since the external source of light is not able to get into the field of view for imaging 

- the illumination provided by instrument itself is not sufficient to take clear images. 

 

To quantify this problem, Experiment X is selected as a case study. Fig 4.16 shows 

more PVM images that are acquired at different process times from Experiment X. 

It is obvious that the quality of image varies from the beginning to the end.   

 

The histogram intensity value of each image in Fig. 4.16 is calculated and the results 

are shown in Fig. 4.17. It is obvious that the intensity values are confined to lower 

values as time progresses. Since intensity value 0 represents black and 255 

represents white, it shows that the image is getting dark and blur and this is 

consistent with Fig. 4.16 as well. 
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Figure 4.11. PVM images acquired at evenly-distributed process time from experiment X of MSG seeded cooling crystallization. 

 

   

(a) 1st Hour (Image No. 2598) (b) 5th Hour (Image No. 13407) (c) 9th Hour (Image No. 19366) 

   

(d) 13th Hour (Image No.23804) (e) 17th Hour (Image No.27336) (f) 21st Hour (Image No.29272) 
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Figure 4.12. PVM images acquired at evenly-distributed process time from experiment A of MSG seeded cooling crystallization. 

   

(a) 1st Hour (Image No. 1326) (b) 19th Hour (Image No.19473) (c) 37th Hour (Image No.30172) 

   

(d) 55th Hour (Image No.37960) (e) 73th Hour (Image No.44726) (f) 91st Hour (Image No.50315) 
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Figure 4.13. PVM images acquired at evenly-distributed process time from experiment B of MSG seeded cooling crystallization. 

   

(a) 1st Hour (Image No. 1742) (b) 24th Hour (Image No.26312) (c) 47th Hour (Image No.38189) 

   

(d) 70th Hour (Image No.47778) (e) 93th Hour (Image No.55610) (f) 116thHour(Image No.61727) 
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Figure 4.14. PVM images acquired at evenly-distributed process time from experiment C of MSG seeded cooling crystallization. 

   

(a) 1st Hour (Image No. 1301) (b) 14th Hour (Image No.15544) (c) 27th Hour (Image No.23954) 

   

(d) 40th Hour (Image No.30928) (e) 53th Hour (Image No.36299) (f) 66thHour(Image No.41081) 
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Figure 4.15. PVM images acquired at evenly-distributed process time from experiment D of MSG seeded cooling crystallization. 

   

(a) 1st Hour (Image No. 1345) (b) 15th Hour (Image No.16668) (c) 29th Hour (Image No.25236) 

   

(d) 43th Hour (Image No.32136) (e) 53th Hour (Image No.37786) (f) 66thHour(Image No.43049) 
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Figure 4.16. Time series PVM images acquired from experiment X. 
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Figure 4.17. Intensity histogram variations corresponding to Figure 4.16. 
(Horizon axis represents intensity values, vertical axis represents the counts)  
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Further quantification is based on the whole set of 29,898 PVM images that are 

acquired from Experiment X. The mean intensity value of each image in Experiment 

X is calculated, as shown in Fig. 4.18. It is obvious that the mean intensity value 

goes down as the experiment progresses. This is consistent with the results shown in 

Fig. 4.16 and 4.17 and indicates that the images get darker and blurred. 

 

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

250

Image No

M
ea

n 
In

te
ns

ity

MSG in Crystallizer

 

Figure 4.18. Mean intensity variations with time corresponding to experiment X. 
 

4.3.2 Speed of PVM Imaging 

With image-based methods to quantify particle size distribution, if more particles 

are segmented in a certain time window, a higher accuracy in system 

characterization can be achieved. Hence the fastest possible image acquisition speed 

is desirable. PVM is stated to have a maximum image acquisition speed of 10 
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images per second. With different settings of image acquisition speed for each MSG 

experiment (as listed in Table 4.2), the number of images that are collected in each 

hour is plotted in Fig. 4. 19. It is observed that in the first few hours, with higher 

speed setting, more images are collected. However, for all settings of image 

acquisition speed, the number of acquired images drops dramatically with time 

going on. After 5 hours, any of the settings may collect more or less the same 

number of images per hour and it reaches a value of about 500 images per hour after 

40 hours of process time.   

 

Furthermore, the performance of each setting is studied. As an example, when the 

image acquisition speed is set to 2 images per second, 7,200 images are expected to 

be collected for each hour. It is observed that during the first hour, only about 4,400 

images are collected and this means a “performance” of about 60%. The hourly 

performances of different settings are plot in Fig. 4.20. It is obvious that lower 

setting of image acquisition speed results in higher hourly performance. Also, all the 

hourly performances drop dramatically after the first 20 hours and stabilize at the 

10% to 20% performance level.  

 

The above studies indicate that PVM is able to collect and store reasonable number 

of images and has acceptable performance during the first few hours of image 

acquisition. Both the number of collected images and the hourly performance drop 

dramatically and reach to unsatisfactorily low values after 20 to 40 hours of 

non-stop image acquisition. This may be considered as the main limitation of PVM 

usage as an inline measuring instruments.  
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Figure 4.19. Number of images acquired in each hour with different settings of 
image acquisition speed. 
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Figure 4.20. Hourly performance with different settings of image acquisition speed. 
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4.4 Conclusion 

This chapter described the experimental setup and the two experiments that were 

conducted with it. Five sets of sea sand samples with different ranges of particle 

sizes in DI water were studied to compare the measurements made with PVM and 

microscope. In addition, seeded cooling crystallization experiments of MSG were 

conducted to monitor the particle growth.   

 

PAT instruments were used to gather process information in real time from the 

experiments. ATR-FTIR predicts solution concentration from the collected spectrum, 

FBRM directly measures the chord length of particles and PVM acquires process 

images that contain many individual particles. Despite its usefulness, the quality of 

PVM images varies from one to another run of experiment. Even within one run of 

experiment, the quality of the images tends to vary from the beginning to the end of 

the experiment. These measurements and characterizations are expected to provide 

more detailed information to enable better process monitoring and control.    
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Chapter 5. Metrics for Evaluating PVM 

Imaging System and IA Methodology 

 

None of the available process imaging systems or proposed image analysis 

approaches is applicable to all processes. Different methodologies are more or less 

suitable for a particular application. It is therefore necessary to evaluate the PVM 

imaging system and IA methodology for application in crystallization processes.    

 

There are three general evaluation methods: analytical, empirical goodness and 

empirical discrepancy (Zhang, 1996 & 2006; Mao & Kanungo, 2001; Martin et al., 

2001). Analytical methods usually require formal models of an image and 

priori-knowledge, such as processing strategy, processing complexity and efficiency 

and segmentation resolution. These methods directly qualitatively examine and 

assess the segmentation algorithms themselves. Empirical goodness methods 

subjectively evaluate and assess segmented images according to human intuition. 

Typical goodness measures are intra-region uniformity, inter-region contrast, and 

region shape. For example, images that are segmented correctly should have 

intra-region uniformity and high inter-region contrast. Empirical discrepancy 

methods require an ideal segmentation as reference and find the discrepancy 

between the reference and the actual segmented images to evaluate and assess image 

segmentation algorithms.  
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When these three evaluation methods are compared, the analytical methods are 

simple, direct and fast, but require priori-knowledge and formal models, which are 

not always available. The empirical goodness methods are reliable only when 

suitable goodness measures are properly selected. For complex process images, it is 

hard to define such goodness measures. The empirical discrepancy methods are 

objective and quantitative and provide precise result except the influence of human 

factors. But these are complex and require manual or automatic reference 

segmentation that presents the ideal or expected results.  

 

Empirical discrepancy methods are the most reliable despite their complexity. In this 

thesis, one such method is used to evaluate the PVM imaging system and IA 

methodologies. Manual segmentation is considered as the ground truth and used as 

the reference to evaluate IA methodology. Manual segmentation is reliable and 

accurate, but cumbersome. It is known that segmentations of the same image by 

different persons, even the same person at different times, may be different, but the 

statistical results of manual segmentations for a wide variety of images are highly 

consistent (Martin et al., 2001). From each set of PVM images acquired from sea 

sand experiments (as described in Section 4.2.1), about 1000 are selected for manual 

segmentation. The manually segmented particles are used as a reference template for 

evaluating the PVM imaging system and IA methodology.  

 

In Section 5.1, the evaluation criteria of Extent of Matching and Cumulative Error 

are mathematically defined. Section 5.2 evaluates the PVM imaging system and IA 

methodology based on the five sets of sea sand experiments (as described in Section 

4.2.1). In the experiments of sea sand in DI water, there is no variation of particle 
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size and shape through the process time. Firstly, the PVM imaging system is 

evaluated with microscopy measurements. The median particle sizes that are 

obtained from microscopy measurements are compared with those from manual 

segmentation of PVM images. Secondly, the IA methodology is evaluated with 

manual segmentation using the evaluation metrics that are defined in Section 5.1. 

Lastly, the conclusions are given in Section 5.3.   

 

5.1 Metrics for Evaluating IA Results 

We evaluate the accuracy of IA results from PVM images through manual 

segmentation of the particles.  A human operator enables the size estimation by 

segmenting the particle(s) visible in the PVM images. Specifically, the operator 

locates the particle outline in the image, as shown in Figure 5.1. We evaluate the 

similarity of the size estimates to quantify the accuracy of the IA results where the 

algorithm automatically segments the particles from the PVM image. Here, we 

propose metrics for evaluating the similarity between automated and manual 

segmentation.  

 

(a)  (b)  

Figure 5.1. Segmentation of a MSG particle 
by (a) image analysis, and (b) human operator. 
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An identified particle, irrespective of whether it is segmented manually or through 

the automatic image analysis algorithm, will have an outline which consists of a 

series of (x, y) values of the boundary pixels. However, the set of particles identified 

in the two segments may not completely match, i.e., certain particles in the manual 

segmentation may not be identified by the IA or vice versa – hence a direct 

comparison would be erroneous. Therefore, to estimate the quality of IA 

segmentation, two related problems have to be solved: (1) establishing the particles 

that have been identified in both segmentations, and (2) estimating the difference in 

particle lengths calculated from the two segmentations. We solve the first problem 

by recognizing that when both the manual and IA segmentations detect the same 

particle in an image, the particle centroid should be similar (within a small distance 

of each other), as described in detail below. Based on this, for the second problem, 

we propose metrics to quantitatively measure the agreement between the two 

segmentations. 

 

Consider an image G with several particles that have been segmented by two 

different approaches – denoted as A and B – resulting in two different sets of 

particles SA and SB. Each set contains the outlines of the constituent particles. 

Consider a particle p in SA described by its outline .   is an ordered set of the 

coordinates (2-d) of the pixels that form the outline of p. Let the number of pixels in 

  be n. So 

 ni  ,,, 21                                             (5.1) 

 Ty
i

x
ii                                                     (5.2) 

where, x
i and y

i are the x- and y- coordinates of the ith outline pixel i . The 
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distance between two pixels can be measured by the Euclidean distance between 

them.  

     22
, y

j
y
i

x
j

x
ijid  

                             (5.3) 

The length of particle p, in the sense of maximum chord length, as calculated from 

outline  , can be defined as: 

  ji
ji

d  ,max
,


                                      (5.4) 

The position of p as calculated from outline   can be characterized by the centroid 

as: 
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                               (5.5) 

In this work, the length  and location   of the particle as derived from its 

outline, completely characterize the particle. Other attributes such as the angle of the 

major axis can also be included, if necessary. This characterization enables the 

systematic comparison of particles identified by the two segmentations.  

 

Two particle outlines, 1  and 2 , from different segmentations of the image, can 

be said to correspond if:  

 

  




1

21,


d

                                         (5.6) 

where,   is an user-defined threshold. Since larger particles would have larger 

offset in the centroid, the above equation includes a normalization based on the 

length of the particle. All corresponding particles can be identified in an image, as 

well as all images in a set. If a total of SA particles have been segmented by 

approach A and SB particles by approach B, a subset of SAB particles may be found 
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to correspond.  

 min ,AB A BS S S                                        (5.7) 

A quantitative measure of correspondence is given by the extent of matching, 

defined as the percentage of particles in a segmentation with corresponding particles 

in the other segmentation: 

AB
A

A

S
M

S
                                                       (5.8) 

ABS and AM  are dependent on the choice of  as shown in Chapter 6. A high 

extent of matching indicates that most of the particles identified by the manual 

segmentation is also located by IA. 

 

For any particle p that has corresponding outlines in the two segmentations, the 

error in the length estimate is given by: 

1

21







p

                                       (5.9) 

Statistical properties such as median error can be calculated from the errors of all 

corresponding particles in the two segmentations of image G: 

 p
Gp

G medianE 



                                               (5.10) 

Similarly, the cumulative error can be calculated from all the images in the set.  

 G
G

EmedianE



                                               (5.11) 

A small cumulative error indicates a close match between the particle size results 

from IA. Next, we experimentally evaluate the accuracy of the PVM imaging 

system and the IA methodology. 
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5.2 Evaluation of PVM Imaging System and IA 

Methodology 

First we evaluate the accuracy of the PVM imaging system by comparing the 

microscopy and the manual segmentation of the PVM images. For this purpose, 

about 165 PVM images were randomly selected by the operator to manually build 

templates. These templates contained about 200 particles. Table 5.1 lists the median 

particle sizes and standard deviation for the five sets as estimated by the various 

measurement methodologies. As expected, the microscopy measurements correctly 

show that the particle sizes increase from Set A to Set E. The measurements from 

the manual segmentation of PVM images also demonstrate the same trend. It is 

noticed that the PVM measurements are always smaller than those from microscopy, 

and the difference between these two measurements increases with particle size 

(with mean and median values of the difference about 11% and 12.5%, 

respectively). This is to be expected since during PVM imaging, sea sand is moving 

in the crystallizer and is oriented randomly vis-à-vis the PVM probe. Since the PVM 

may image a particle from any perspective, the particle’s biggest chord length may 

not be visible in the resulting 2-d image, thus leading to under-estimation of particle 

size. Multiple PVM probes can help us to get a better estimation of particle size 

distribution. However, even this may not completely overcome the under-estimation 

of particle size. The under-estimation problem is a key shortcoming of PVM that 

may be overcome by correlating PVM measurements with microscope 

measurements. Both methodologies have similar standard deviation indicating a 

systematic error across the particle size range. The consistency in the measurements 
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from microscopy and manually segmented images indicates that as an imaging 

system, the PVM is a reliable tool to estimate particle size. 

 

As discussed in Section 2.2.4, although microscopy yields high accuracy, it is 

limited to off-line measurements and cannot be used as an in-line instrument to 

estimate particle size in real-time. Also, manual segmentation is tedious and is 

impractical for large-scale real-time applications. Automated image analysis of 

PVM images to yield size estimates is therefore essential. So, we evaluate the 

accuracy of the IA methodology to estimate the particle size from PVM images by 

comparing it with the manual segmentation.  

 

Table 5.1: Size Estimates of Sea Sand Particles using Microscopy and Image 
Analysis 

Evaluation 
Methodology 

Set A Set B Set C Set D Set E 

Sieve Size in μm 53 - 75 75 - 90 90 - 106 106 - 125 125 - 150 

Microscopy 
Median (Std) in μm 

130 (27) 174 (35) 208 (34) 231 (34) 260 (43) 

Manual Segmentation 
of PVM images 
Median (Std) in μm 

123 (34) 153 (41) 182 (41) 202 (38) 225 (40) 

Difference between 
Microscopy & PVM 
imaging 

5.4% 12.1% 12.5% 12.6% 13.5% 

Image Analysis of 
PVM images 
Median (Std) in μm 

116 (47) 135 (58) 160 (63) 190 (71) 190 (87) 

Error of IA to 
Template (%) 

3.8 2.1 2.1 1.7 2.2 

Extent of Matching 
(%) 

89.3 94.5 91.1 94.8 93.3 
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The IA methodology automatically processes all the PVM images and identifies 

thousands of particles for each set. It also finds the particle size to be increasing 

from Set A to Set D. Most of the manually segmented particles (92.6%) could also 

be identified by the IA methodology. A one-on-one comparison based on these 

matched particles show that the measurements from IA are almost the same as those 

from the manual segmentation (difference of about 2.4%). The median size of the 

IA results for Set E breaks the trend. A visual inspection of the IA segmentation 

reveals incorrect segmentation of big particles into several small ones in all sets, 

possibly due to background noise in the image, thus leading to a decrease in the 

median particle size. This leads to the higher standard deviation of the IA results as 

well. However, when these sub-particles are ignored, as is done in the calculation of 

the cumulative error, the results are acceptable. Overall, it can be concluded that the 

IA methodology can reasonably estimate particle size.  

 

5.3 Conclusion 

In this chapter, we have focused on the accuracy of the results which can be 

obtained from image analysis. We have shown that there is a noticeable difference 

between the true particle size as seen under the microscope and that extracted from 

PVM images even with the human eye. PVM images lead to an estimated particle 

size that is about 11% less than that obtained from microscopy analysis, possibly 

because of the random orientation of the particles during in-situ imaging. While this 

is a significant measurement error, it should not obviate particle size identification 

using PVM because of the numerous benefits and potential advanced control 

applications that easy, real-time size measurements would entail.  
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We have also sought to quantify the errors introduced by automated image analysis. 

Basic image analysis is well-established in literature, however, its accuracy in any 

application depends highly on various parameters that have to be pre-specified by 

the user. We have used manual segmentation of the image as a basis for evaluating 

the results from automated image analysis. We have proposed two metrics – extent 

of matching and cumulative error – to compare automated and manual 

segmentations. These serve as a quality measure to evaluate the effect of various 

parameters. Our results with 5 sets sea sand images have shown that 92.6% of the 

manually segmented particles could be identified by IA methodology, which leads 

an error about 2.4% in estimating particle size.
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Chapter 6. Evaluation of IA Methodology 

for Real-Time Monitoring of Particle 

Growth in Seeded MSG Crystallization 

This chapter further evaluates the IA methodology using a manually segmented 

template. In contest to Chapter 5, the experiments in this chapter are based on real 

crystallization processes, where the particles grow with time. As discussed in 

Section 2.4 and chapter 3, image analysis incorporates several steps, each of which 

require certain parameters to be specified by the user. The choice of parameter 

settings can considerably affect the resulting particle segmentation. The first section 

presented in this chapter focuses on quantitatively studying the effects of the 

different parameters on IA performance and identifying the best set of parameters 

for good particle segmentation leading to more accurate particle size estimation. In 

the second section, the obtained optimal parameters were applied to monitor the 

particle growth in seeded MSG crystallization process.  

 

6.1 Effect of Image Analysis Parameters on PSD 

Estimates 

Quantitative study of the effects of the parameters on the resulting quality metrics 

proposed in Section 5.1 is taken up here. For this, the PVM images from Experiment 
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X (as described in Section 4.2.2.2 and Table 4.2) were manually segmented. Two 

operators identified clear particles in the PVM images and located their outlines to 

build two independent templates. Template 1 consists of 2781 images out of a total 

of 29,898 PVM images collected during the run. These images were selected evenly 

from different times in the course of the experimental crystallization run. 4970 

particles were manually segmented from these images. The other operator 

developed a more comprehensive Template 2, segmenting 69,048 particles from 

25,352 images. The two templates give us the particle size information as evident to 

the human eye – the results from the automated IA methodology are benchmarked 

against these.  

 

Fig. 6.1 shows some examples of IA, Template 1 and Template 2 segmentation as 

applied to the same PVM images. It is noticed that IA segments much more particles 

than the two manual templates. Template 1 segments only a few big and clear 

particles, while Template 2 segments all clear particles regardless of the particle 

size.  

 

The effects of ten IA parameters were studied: intensity range and lowest pixel 

threshold during the image selection step; low threshold, high threshold and sigma 

from the canny edge detection step; the four structuring elements during 

morphology operations on the image; and the area threshold during the particle 

selection step. The effect of varying each of these was studied while keeping the 

others constant as summarized in Table 6.1.  

 

The intensity range and the lowest pixel threshold parameters lead to a PVM image 
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being selected for further processing only when their values exceed a pre-defined 

threshold. These can be set to any integer between 0 and 255, the intensity range of 

grey-scale images. We varied the intensity range from 100 to 150, and the lowest 

pixel threshold from 90 to 255. In the corresponding image analysis results, the 

cumulative error varied from 31.4% - 33.3%, and the extent of matching from 

34.9% - 66.0% which shows that the two parameters do have an effect on image 

analysis results.    

    

(a) (a1) (a2) (a3) 

    

(b) (b1) (b2) (b3) 

    

(c) (c1) (c2) (c3) 

    

(d) (d1) (d2) (d3) 

Figure 6.1. Examples of IA, Template 1 and Template 2 segmentation of the same 
PVM images (a)-(d) original PVM images acquired at the 1st, 6th, 11th and 22nd hours 

of Experiment X ; (a1)-(d1) corresponding IA segmentation; (a2)-(d2) 
corresponding Template 1 segmentation; (a3)-(d3) corresponding Template 2 

segmentation. 
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Table 6.1: Effects of IA Parameters on Image Analysis Performance 

 IA Step Tuned 
Parameters 

Value 
Range 

Fixed Parameters Cumulat
ive 
Error 
(%) 

Extent of 
Matching 

(%) 

1 Image 
Selection 

Intensity 
Range 
 

100- 
150 

Canny = ([0.1 0.2], 2) 
Se1 = (Diamond, 15); 
Se2 = (Square, 15) 
Area Threshold = 200 
Without adaptive 
histogram equalization 
step 
 

31.4-33.3 34.9-66.0 

Lowest Pixel 
Threshold 

90- 
255 

2 Canny 
Edge 
Detection 

Low 
Threshold 
(Canny-T1) 

0.01- 
0.2 

Intensity Range = 120 
Lowest Pixel 
Threshold = 200 
Se1 = (Diamond, 15); 
Se2 = (Square, 15) 
Area Threshold = 200 
Without adaptive 
histogram equalization 
step 
 

30.2-52.8 26.4-83.6 

High 
Threshold 
(Canny-T2) 

0.05- 
0.6 

Sigma  
(Canny-Sigm
a) 

1 – 3 

3 Morpholo
gy 
Operation 

Structuring 
Elements for 
Morphologic
al Operation, 
SE1 & SE2 
(SE1-Shape, 
SE1-Size 
SE2-Shape, 
SE2-Size) 

See 
Table 
6.2 

Intensity Range = 120 
Lowest Pixel 
Threshold = 200 
Canny = ([0.1 0.2], 2) 
Area Threshold = 200 
Without adaptive 
histogram equalization 
step 
 

8.0-60.5 0.5-94.3 

4 Particle 
Selection 

Area 
Threshold 

100- 
800 

Intensity Range = 120 
Lowest Pixel 
Threshold = 200 
Canny = ([0.1 0.2], 2) 
Se1 = (Diamond, 15); 
Se2 = (Square, 15) 
Without adaptive 
histogram equalization 
step 

22.7-31.9 56.0-65.3 
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Table 6.2: Effects of Morphology Structuring Elements on Image Analysis 
Performance 

 Parameter Result 
 SE1  SE2  Cumulative 

Error (%) 
Extent of 
Matching 
(%) 

1 Diamond 15  
 

 

Square 1  9.0 80.9 
2 Square 2  9.1 82.9 
3 Square 3  9.0 83.2 
4 Square 4  8.9 83.5 
5 Square 5  9.0 84.0 
6 Square 10  19.3 71.7 
7 Square 20  43.4 54.2 
8 Square 15  Diamond 5  16.4 76.0 
9 Diamond 10  35.9 61.1 
10 Diamond 20  47.9 24.6 
11 Line 10, 45  Square 5  13.2 85.0 
12 Square 10  45.9 52.1 
13 Square 15  54.5 34.5 
14 Square 20  55.3 19.0 
15 Line 5, 45  Square 15  22.1 4.8 
16 Square 5  14.5 45.9 
17 Square 15  Line 10, 45  10.4 82.4 
18 Diamond 5  Square 15  

 
47.1 49.6 

19 Diamond 10  36.8 62.5 
20 Diamond 20  29.6 65.3 
21 Square 5  Diamond 15  42.7 5.7 
22 Square 10  48.6 31.9 
23 Square 15  46.1 40.6 
24 Square 20  45.8 46.3 
25 Square 5  Line 5, 45  11.7 78.2 
26 Square 15  8.0 84.9 
27 Diamond 5  Square 5  

 
9.1 88.6 

28 Square 5  12.4 78.3 
29 Diamond 10  8.3 86.8 
30 Diamond 20  10.3 80.9 

(Other parameters are Area Threshold=200, Intensity Range = 120, Lowest Pixel 
Threshold=200, Canny parameter=([0.1 0.2], 2), and without adaptive histogram 

equalization) 
 

 

Among the three parameters used in Canny edge detection, the first two are the low 

and high threshold values to detect an edge, and can be defined as any real number 

in the range [0 1]. The third parameter is the standard deviation, σ of the Gaussian 
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filter. We varied the low threshold from 0.01 to 0.2, the high threshold from 0.05 to 

0.6 and σ from 1 to 3. In the corresponding image analysis results, the cumulative 

error varied from 30.2% to 52.8%, and the extent of matching from 26.4% to 73.6% 

indicating that these Canny Edge Detection parameters have a considerable effect on 

image analysis results.  

 

There are many choices for the four structuring elements in the image opening and 

closing operations of the morphology operation step, as described in Section 2.4.2. 

We selected 30 combinations as listed in Table 6.2. It was noticed that the 

cumulative error ranged from 8.0% to 55.3% and extent of matching from 4.8% to 

88.6%. This shows that the four structuring elements in the morphology operation 

step have a significant effect on image analysis results, and several (8) settings lead 

to a high (> 80%) extent of matching and low (< 10%) cumulative error.  

 

The minimum area threshold in the particle selection step defines the smallest 

particle that would be further processed, i.e. an object will not be considered as a 

particle if its pixel area is less than the threshold. With a minimum area threshold 

value of 200 pixels, objects whose projected area in the image is less than 361µm2 

will be ignored. We studied the effect of several values of the minimum area 

threshold from 100 to 800 pixels, and the corresponding IA results varied from 

cumulative error of 22.7% to 31.9%, and extent of matching varied from 56.0% to 

65.3%.  

 

The effect of image enhancement was also studied. It was found that without the 

contrast-limited adaptive histogram equalization, the cumulative error and extent of 
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matching varied from 8.0% to 19.3% and 45.9% to 88.6%, respectively. With the 

adaptive histogram equalization, the cumulative error ranged from 8.0% to 26.1% 

and the extent of matching from 62.2% to 94.3%. It was noted that while in some 

cases, adaptive histogram equalization improves the results, in others it degrades 

performance with no discernible pattern. 

 

Overall, every IA parameter studied was found to affect the image analysis results, 

and therefore a careful consideration is warranted. By comparing the complete set of 

results, we concluded that the parameters shown in Table 6.3 are the best suited for 

the MSG seeded Crystallization experiments.  

 

Table 6.3: Optimal IA Parameters for PVM Images from MSG Crystallization 
 IA Step Parameters Parameter Value
1 Image Selection Intensity Range 

 
120 

Lowest Pixel Threshold 
 

200 

2 Image Enhancement With/Without the 
Contrast-Limited Adaptive 
Histogram Equalization 
 

With 

3 Canny Edge Detection Low Threshold 
 

0.1 

High Threshold 
 

0.2 

Sigma  
 

2 

4 Morphology Operation Structuring Element for 
Morphological Closing, 
Se1 
 

Diamond 5 

Structuring Element for 
Morphological Opening, 
Se2 
 

Square 5 

5 Particle Selection Area Threshold 
 

200 
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With these settings, the IA methodology automatically identifies 105,118 particles 

from the 29,898 PVM images in Experiment X with high quality – at most 8.0% 

cumulative error, and up to 94.3% extent of matching, with a  of 0.7. Even at a 

strict 1.0 , the extent of matching is 67% and the cumulative error is as low as 

4.1%. The effect at intermediate values of   is shown in Fig. 6.2 (a) and (b) where 

the smooth variation testifies to the validity of the metrics.  

 

Fig. 6.3 shows the hourly values of the extent of matching and the cumulative error 

as crystallization proceeds. As can be seen there, the extent of matching and 

cumulative error vary only within short ranges as crystallization proceeds although 

the quality of PVM images varies significantly due to the presence of more particles 

in the later stages (see Fig. 4.11 (a) and Fig. 4.12). This shows the image analysis 

parameters are adequately robust (vis a vis the human eye based segmentation) to 

the solid concentration.   

 

Finally, these image analysis parameters selected using Template 1 were also 

validated using the independently developed Template 2. As shown in Fig. 6.2(b), 

the cumulative error is also consistently low (4.2% to 6.7%). The much lower extent 

of matching (22% to 30%) is due to the much larger (13x) number of particles in 

this template compared to Template 1. From these studies, it is clear, that with the 

selected parameters, accurate, consistent, and robust particle size estimation can be 

obtained automatically by the IA methodology. These studies also demonstrate that 

the IA procedure with optimal parameters obtained by training with big well-shaped 

particles (Template 1) can provide good results when applied to more challenging 

situations (e.g. Template 2). Next, we use these settings for monitoring crystal 
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growth during several crystallization runs.  
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(b) 
Figure 6.2. Quality of image analysis results  

as measured by (a) Template 1 and (b) Template 2. 
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Figure 6.3. Time evolution of extent of matching and cumulative error  
during experiment X. 

 

6.2 IA-Based Real-Time Monitoring of Particle Growth 

in Seeded MSG Crystallization 

With the optimal setting of parameters obtained in Section 6.1, we apply IA for 

real-time monitoring of particle growth in seeded MSG crystallization processes. 

According to the experiments described in Section 4.2.2.2 and Table 4.2, we studied 

the growth of MSG crystals by examining the particle size distribution at various 

times during the crystallization. The size (length) distribution was derived for each 

hour by statistically combining the particle size information from the images 

captured during that hour. These give hourly snapshots of the process evolution. Fig. 

6.4 shows the evolution of the median particle size during Experiment X as obtained 
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from the IA methodology. In order to validate these, we also extracted (in a similar 

fashion) the size from the particles segmented by operator 2 from the same images. 

The median size from the IA methodology was found to be highly consistent with 

that obtained from Template 2. Both results clearly indicate that MSG crystals are 

growing in length throughout the course of the experiment.  
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Figure 6.4. Median particle size during experiment X estimated from image analysis 

and manual segmentation 

 

The estimated particle size distribution at every hour obtained from IA methodology 

is shown in Fig. 6.5 and provides further insights into the crystallization kinetics. 

The particle width was also measured from these images (not shown here) and 

found to not vary significantly during the course of the experiment indicating that 

the kinetics of the two faces of the crystal are in fact significantly different.  
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Figure 6.5. Bi-hourly particle size distribution during Experiment X.  
In each subplot, x-axis represents particle size in µm, and y-axis represents the count 

number. 
 

 

Images from the four other experimental runs, Experiments A, B, C and D as 

described in Section 4.2.2.2 and Table 4.2, were also similarly analyzed. In the 

interest of space, only a summary is presented here. Fig. 6.6 shows the evolution of 

the median particle size for each experiment. Particle growth is clearly evident in all 

the experiments. However, there are some variations in the growth rate – the median 

particle size during Experiment A is different from that in Experiment B in the first 

50 hours, but overlaps for the next 50 hours. Experiment C and D are consistent 

with each other for the entire duration. Several possible reasons, as discussed earlier, 

may contribute to these variations. Overall, similar growth rates are observed in all 

the runs.  



Chapter 6 Evaluation of IA-Based Real-Time Monitoring of Particle Growth in Seeded MSG 
Crystallization 

117 

 

0 10 20 30 40 50 60 70 80 90 100 110 118
60

80

100

120

140

160

180

Time (hr)

Le
ng

th
( 

m
)

 

 

Expt A

Expt B

Expt C

Expt D

 

Figure 6.6. Growth of particles during four MSG crystallization experiments. 
 

6.3 Conclusion 

The results show that although all image analysis parameters have some effect, the 

four structuring elements in morphology operation step have the most significant 

effect. These determine the shape information of the objects (particles) to be 

extracted from the image. This reveals that for segmenting needle-shaped MSG 

particles, the diamond and square are the most suited structuring elements. Further 

study is required to establish the generality of this conclusion to other systems.  

 

This work has also demonstrated that when tuned suitably, automated image 

analysis can estimate particle sizes with high accuracy (about 4-8% error) relative to 

that seen by the human eye. Image analysis using the PVM system is therefore a 

reasonably accurate approach to track particle growth. At the initial stage of 
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working with a new system, we need to manually segment particles from one 

experimental run and establish an optimal set of parameters for PVM based image 

processing by using systematic perturbation to the IA parameters based on the 

theory of design of experiments. In production plants where a large number of 

similar crystallization runs would be carried out, despite the high one-time cost of 

manual segmentation, the large benefits incurred from a certifiably accurate 

particle-size distribution available in real-time would make the proposed scheme 

attractive. Furthermore studies are required to formulate a systemic procedure for IA 

parameter optimization that would reduce the parameter optimization effort so as to 

make it workable with as little human effort as is possible.  
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Chapter 7. Optimization of Image 

Processing Parameters  

 

7.1 Introduction 

Common image processing algorithms usually involve a number of parameters in 

each step. Examples include the parameters in an image filter, the threshold values 

in edge detection, and the options of shape and size for structuring elements in 

morphology operations. The setting for each of these parameters may have a 

significant effect on the final image processing result. Manual tuning is commonly 

applied to select optimal image processing parameters, but such an approach may be 

time consuming and challenging when the image set is large, quality of images 

varies and the image processing parameters may be sensitively related to each other. 

Manual tuning of image processing parameters is especially difficult for industrial 

processes where the quality of the images varies as the process evolves. For 

example, in batch crystallization operations that are conducted in chemical or 

pharmaceutical industries, the process images are acquired at a speed of up to 10 

images per second and each batch can last for a few days or weeks. It is usual to 

analyze tens of thousands of images in real-time to characterize particle size 

distribution and shape information for certain process period. In each batch, as 
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crystals form and grow, the image quality changes from images with clear 

background to images with a lot of overlapping particles. Even for the same 

crystallization process, the image quality changes from batch to batch owing to the 

complexity of the process. It is hard to manually tune the image processing 

parameters and find an optimal set of values for parameters that are not only suitable 

for images of the entire duration of a particular batch but also suitable for images 

obtained from different batches. The problem of manually tuning image processing 

parameters can be more complicated if the involved parameters are highly 

interacting with each other. The manual tuning approach is usually done in “one 

parameter at a time” manner and this will very likely reach a sub-optimal solution. 

Hence, it is necessary to develop a systematic and automatic methodology to 

optimize a set of image processing parameters for a large set of process images.  

 

There are several ways to solve the problem of optimizing image processing 

parameters. In model-based optimization approaches, one constructs models 

between image processing parameters (input factors) and performance metrics 

(output responses), so the optimal parameters are obtained by solving the models. In 

the direct search approach, optimal image processing parameters are determined in a 

model-free manner by searching the parameter space using heuristics. Note that in 

this chapter, the words “parameter” and “factor” will be used interchangeably.  

 

Model-based optimization approaches require building reliable and robust 

mathematical models to accurately predict the optimal parameters. To generate 

enough information to construct models, Design of Experiments (DOE) is 
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commonly applied. DOE is a well-structured, generic and organized methodology. It 

designs a set of experiments by systematically varying the input factors. The 

designed experiments cover the permissible factor space efficiently with only a few 

experimental runs and provide significant information about the system being 

studied. The results obtained from designed experiments can be used to fit a model 

that will quantify the effects of each input factor on the output responses, as well as 

determine the interaction between factors and identify the most influential factors. 

Such analysis can help in conducting further experiments or in arriving at the 

optimal values for the input factors. As long as the input and output factors are 

identified and the variation ranges of each input parameter are known, this approach 

can be applied to any system that exhibits smooth behavior. Model-based 

optimization approaches with DOE has been applied to improve product quality in 

large-scale manufacturing lines, to find optimal reaction conditions in experimental 

R&D systems (Verran et al., 2008; Yamashita et al., 2010), as well as to solve 

difficult production problems (Kenny, 1997). As DOE extracts process knowledge 

by conducting only a few systematically designed experiments, it is time- and 

cost-effective. Furthermore, since the designed DOE experiments cover the whole 

permissible factor space, the predicted optimal parameters could be globally 

optimum and not destined to be a local one (Lucas et al., 2006; Matsopoulos et al., 

1999).  

 

Optimization, in conjunction with DOE, has been applied for image processing with 

a view to improve image quality (Taner & Sezen, 2007; Trivedi & Kurz, 1992), 

optimize input parameters for various image processing algorithms (Chen & Wu, 

2004; Wu et al., 2005; Lucas et al., 2006), as well as detect nucleation in 
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crystallization by histogram matching (Simon et al., 2010b) . These studies show 

that optimization with DOE is a powerful statistical technique to evaluate the effect 

of parameters so that they can be tuned to get best outcomes from image processing 

algorithms. Although research articles have begun to address problems where 

processing of large number of images is needed, the quality of the images in these 

studies is found to have low variability. As stated, in certain chemical and 

pharmaceutical batch processes, image quality varies significantly from batch to 

batch. Even in the same batch, image quality varies with time. There is a relative 

lack of literature on optimizing image processing parameters for such large sets of 

process images which are of varying quality. There are also fewer studies showing 

the validation of the obtained optimal parameters on other batches of images 

acquired from the same process. In this chapter, we investigate these problems and 

the results demonstrate that optimization of image processing parameters using DOE 

concepts can successfully locate good parameter values using only few in silico 

experiments.   

 

As an alternative to the model-based DOE approach, direct search for the optimal 

values of image processing parameters in the parameter space can also be attempted. 

In this case, there is no explicit mathematical model to relate input factors with the 

system response. Direct search methods, such as sequential simplex search (SSO), 

are typically applied to solve optimization problems in a ‘model-free” manner. 

Simplex method requires only function evaluations and the optima is reached by 

adjusting input factors according to a pre-set algorithm. Simplex progresses 

according to empirical experimental response without the complexity of 

mathematical modeling and can be regarded as an automatic optimization method. 
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Simplex search method is simple but powerful. It has been widely applied to image 

processing-related areas. It has been used to register various kinds of medical 

images (Matsopoulos et al., 1999; Xia et al., 2008), to calibrate or correlate stereo 

vision systems (Yocky & Jakowatz, 2007; Chesi, 2009), to design filters for image 

processing (Dellamonica et al., 2007), and also to optimize parameters for certain 

image processing algorithms (Kamoun et al., 2009; Welch et al., 2003). These 

studies show that simplex is an efficient, robust solution for a wide range of 

image-related optimization problems. Simplex requires only limited experimental 

runs in the initial design and is capable of optimizing several parameters 

simultaneously. Despite these benefits and applications, there are no studies on 

using simplex search for optimizing image processing parameters for large sets of 

process images that are characterized by changing image quality.  

 

In this chapter, we will combine model-based optimization with DOE and direct 

search optimization to determine optimal values of image processing parameters. 

The obtained optimal parameters will be validated with a fresh batch of process 

images. This chapter adopts Uniform Design (UD) (Liang et al., 2001) as the 

specific DOE algorithm and SSO (Walters et al., 1999) as the specific direct search 

method.  

 

The rest of this chapter is organized as follows. In Section 7.2, we will summarize 

the optimization procedure with model-based UD approach followed by a 

description of optimization with the simplex search approach. In section 7.3, the two 

optimization approaches are combined to locate optimal sets of IA parameters for 
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large sets of process images, which are obtained from batches of MSG 

crystallization process. Conclusions will be provided in Section 7.4.       

 

7.2 Methods for Parameters Optimization 

Model-based optimization with DOE is a common solution to parameter or factor 

optimization problems. The major DOE methods include factorial design, fractional 

factorial design, orthogonal design, D-optimal design, uniform design, etc. Usually, 

these methods will pre-define input parameters into different levels and suggest 

certain runs of experiments according to the chosen experimental design plan (e.g. 

2k or 2k-f). By analyzing the results of designed experiments, the model-based 

optimization methods will correlate the relationship between input parameters and 

output responses in the form of mathematical equations which subsequently predict 

the optimal values of parameters. To build a reliable and robust model with the 

minimum number of experimental runs, the designed experiments should be 

well-structured and efficiently map the whole experimental domain. UD is such a 

DOE method and its major advantage over other similar experimental designs is its 

capability of designing high representative experiments in the studied experimental 

domain [27]. UD is cost-efficient, robust and flexible.   

 

As for the direct search optimization approach, the variable-size SSO algorithm is 

selected to optimize the parameters of the image processing algorithm. SSO 

approach is easy to understand and is very efficient for practical applications. SSO 

directly searches for the optimal parameters step by step in the multidimensional 

parameter space. There is no need for a mathematical model to relate input factors 
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and output responses; instead the SSO adjusts the input factors and optimizes them 

based on the systems’ response. For a process with n input factors, SSO will initially 

design n+1 runs of experiments. Using these experimental results, SSO will search 

for a new set of parameter values that can generate a better output response. This 

search procedure will be repeated until an ideal set of parameter values (optimal 

parameters) is obtained. Normally, SSO will converge to a small region in the 

parameter space and the values from this region are considered as optimal parameter 

values. To fully understand the relationship between input parameters and output 

response in this optimum region, researchers may prefer to build a mathematical 

model in this region and estimate the optimal parameters. However this modeling 

step is not necessary; normally any set of parameters in the region to which the SSO 

converges is good enough. The efficiency and accuracy of SSO often depends on the 

starting simplex that is constructed.   

 

The detailed procedure of optimization with UD and SSO are explained below. 

 

7.2.1 Model-Based Optimization with Uniform Design 

As shown in Fig. 7.1, the optimization with DOE includes three parts: (i) the DOE 

part that designs certain runs of experiments to get informative data from the system; 

(ii) the modeling part that will construct system models with the data and relate the 

input factors with system responses; and (iii) the prediction part that will determine 

the optimal input parameters using the model. Predicted optimal values of 

parameters are usually verified by conducting a confirmatory experiment.  
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Figure 7.1. Procedure of optimization with design of experiments. 

 

UD is employed here as the DOE method. The first step with UD is setting the 

number of levels for each input factor. The levels, which are the different values of a 

factor, should be within the experimental domain. The gap between two successive 

levels of a factor should be relatively large so as to overcome the effects of random 
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error.  

 

The next UD steps are to design the experimental runs and conduct the designed 

experiments on the system of interest. As the purpose of UD is to understand the 

system behavior using least number of experiments, the designed experiments must 

be most representative, uniformly spread over the whole space of experimental 

factors and contain the most information between input factors and output response. 

As stated in Liang et al., (2001), there are several algorithms to fulfill this task. 

Instead of using computationally intensive methods to compute the UD, there are 

well-designed UD tables that in the literature (Liang et al., 2001; Website, 2004). 

These UD tables are carefully designed according to different number of parameters 

and different levels of each parameter. One can directly apply these UD tables to 

design experiments and execute them on the physical system.   

  

The next step is to analyze the experimental results and construct mathematical 

models which quantitatively represent the relationship between input factors and 

output responses. Different modeling paradigms are possible. Here, as not much a 

prior knowledge exists about the model structure, we use a genetic programming 

(GP) tool described by Rao et al. (2009) to automatically assemble an appropriate 

mathematical model.   

 

The last step in this model-based optimization method is to predict an optimal set of 

input parameter values from the constructed models and verify it by conducting an 

experiment with those predicted values. If the experimental result is consistent with 

model prediction, one may conclude the procedure and declare that the optimal 
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values of parameters have been obtained. Else, the additional “experimental result” 

is added to the data set and another model is constructed to determine the optimal 

parameters. If the predicted optima could not be validated even after a few iterations, 

one may consider performing another round of experiments.  

 

7.2.2 Variable-Size Sequential Simplex Optimization 

SSO is a step by step procedure to search for the optimal values in the parameter 

space. For a system with n input factors, [x1, x2, …, xn], and 1 output response, y, 

the SSO iteration procedure is shown in Fig. 7.2 and described below: 

 

Step 1: Here, the starting vertices of SSO are designed. There are many ways to 

design the initial n+1 vertices for an n-parameter optimization problem. According 

to Kamoun et al. (2009), a typical initial design representing n+1vertices in 

n-dimensional simplex is listed in Table 7.1. There is one row for each of the n+1 

vertices, one column for each of the n parameters. Assume the initial guess for each 

parameter is Xi, that is [X1, X2, X3, …, Xn] for the n parameters respectively. Define 

the step size Si for each parameter, that is [S1, S2, S3, …, Sn] respectively. In Table 

7.1, the symbol vi,j represents the value of  ith parameter in jth vertex, vi,j is 

calculated with the equations given below.   
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Figure 7.2. Procedure of variable-size sequential simplex optimization. 
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Table 7.1: Typical Initial Design of Simplex 

Vertex 
Parameters 

x1 x2 x3 … xn 

0 v1,0 v2,0 v3,0 . vn,0 

1 v1,1 v2,1 v3,1 . vn,1 

2 v1,2 v2,2 v3,2 . vn,2 

3 v1,3 v2,3 v3,3 . vn,3 

… . . . . . 

n v1,n v2,n v3,n . vn,n 

 

 

Step 2: In this step, one calculates the reflection vertex of the vertex with worst 

response. From the designed n+1 vertices, the vertex giving the best response is 

named as B; the vertex giving the worst response is named as W and the ith 

parameter in the W vertex is defined as Wi; the vertex giving the next-to-the-worst 

response is named as N. Simplex assumes the optimal parameters should exist at the 

opposite direction of the worst vertex, so it reflects W through the centroid of the 

remaining n vertices (except the worst vertex of the n+1 vertices) with an identical 

distance. The centroid point of the ith parameter is defined as Pi, which is calculated 

as: 

        
n

v

P

n

j
ji

i


 1

,

                                            (7.2)               

where, j=1 to n, includes all the vertices except the W vertex. The reflected 

coordinate Ri for the ith parameter is calculated as below: 

        )( iiii WPPR                                        (7.3)    
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Step 3: Here, we evaluate the reflection point according to the following criteria: 

A) If N ≤ R ≤ B, it implies that the reflected vertex is not better than B and not 

worse than N. We have no clue whether R is in the right direction. In this 

case, SSO will discard W and include R to form a new set of n+1 vertices.  

B) If R > B, it implies that R is in the same direction as the optimal point. We 

would like to go further in this direction and evaluate the response. The 

expansion vertex is named as E and the coordinate of ith parameter in E is 

defined as Ei and calculated as  

        )()(2 iiiiiii WPRWPPE                          (7.4) 

                                                    

a) If E ≥ B, we have a successful expansion. In this case, SSO will discard 

W and include E to form a new set of n+1 vertices.  

b) If E < B, the expansion is not successful. In this case, SSO will discard 

W and include R to form a new set of n+1 vertices.  

 

C) If R < N, it implies that the reflected vertex is worse than the 

next-to-the-worst vertex indicating that R is not in the correct direction to 

reach the optimal value. So we would like to contract this large movement to 

a small one and gradually search for a better point in this direction. The 

contraction could be either at the R side or at the W side. 

 

a) If R ≥ W, it implies that the reflected point is not worse than the worst 

point and the contraction should be at the R side. In this case, SSO will 
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discard W and include the contraction vertex CR to form a new set of n+1 

vertices. The coordinate of the ith parameter in contraction point CR is 

defined as: 

         2/)( iiiR WPPC
i

 .                 (7.5) 

 

b) If R < W, it is clear that the reflected point is worse than the worst point 

and the contraction should be at the W side. In this case, SSO will 

discard W and include the contraction vertex Cw to form a new set of n+1 

vertices. The coordinate of the ith parameter in Cw is defined as  

2/)( iiiw WPPC
i

 .                 (7.6) 

 

Step 4: With the newly formed n+1 vertices, steps 2 and 3 are iterated until either an 

optimal point is reached or the responses of the n+1 vertices converge to a small 

region without further improvement of the performance.  

 

7.2.3 Integration of Two Optimization Approaches 

It is obvious that each optimization approach has its own advantages and 

shortcomings: Model-based optimization with UD could cover the whole parameter 

space in initial design, while it requires more effort for modeling and prediction. 

Direct search optimization with SSO does not involve such mathematical modeling 

and verification, but it possibly searches for local optima only.  

In this chapter, we propose to integrate the two optimization approaches: 1) The 

mathematical models built from UD will be solved by SSO approach; 2) SSO adopts 
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multiple initial guesses from UD. This integration will save the effort to solve 

complex UD models, as well as enable SSO to have a better chance of locating the 

global optima.   

 

Next, either the two optimization approaches or the integrated version will be 

applied to our previously developed multi-step IA algorithm (Zhou et al., 2009).  

 

7.3 Optimization of IA Parameters 

Chapter 3 developed an IA algorithm to estimate particle size in real-time by on-line 

analysis of PVM images that are acquired from crystallization processes. As shown 

in Fig. 3.8, the developed IA methodology involves six key sequential steps to 

identify particles from PVM images and estimate the corresponding particle size.  

Each IA step involves certain parameters - the study (Chapter 6) shows that the 

setting of the parameters can dramatically affect IA performance. With correct 

settings of these parameters, IA can be successfully applied to the images acquired 

from large scale seeded MSG crystallization and it leads to good tracking of the 

evolving particle size.  

   

Previous studies (Chapter 6) manually tuned the 10 IA parameters and concluded 

that only 7 parameters coming from Canny edge detection and morphology 

operation steps significantly affect IA performance. The seven factors are: 

Canny-T1, Canny-T2, Canny-Sigma, SE1-Shape, SE1-Size, SE2-Shape and 

SE2-Size. The details of these parameters are listed in Table 6.1. In this chapter, 

with the same set of images, instead of manual search, we will automatically 
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optimize these 7 IA parameters using the two methods discussed in Section 7.2.  

 

7.3.1 Optimization with Uniform Design Method: Model Solving by 

Simplex 

The IA parameter optimization problem can be cast as a 7 factors 6 levels UD 

problem. As listed in Table 7.2, the 7 parameters are denoted as input factors u1 to 

u7 and each parameter is assigned to 6 levels according to its range. It should be 

noted that u4 and u6 only have 4 values (corresponding to the four shapes 

considered as defined in Table 2) instead of 6 values. Thus, levels 5 and 6 in u4 and 

u6 are considered as infeasible experiments and omitted from consideration. E (y1) 

and AM  (y2) are the two output responses of this optimization problem. At least 

nine UD based experimental plans are available for this 7 factors 6 levels problem. 

A close examination of these plans confirmed that some of the experimental runs 

suggested in these plans are not feasible due to the constraint conditions given in 

Table 6.1.  

 

After eliminating such unfeasible experimental runs, a total of 105 feasible 

experiments are identified. The parameters and corresponding results of the 

finalized 105 runs of experiments are depicted in Fig. 7.3.  

 

About half of the experimental runs (56 runs) are randomly selected to build 

mathematical models that relate 7 input parameters with 2 output responses. The 

models, as listed below, are built with the software GeMS-Genetic Modeling 

System described in Rao et al. (2009).  
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(7.7)   

 

 

The RMSE for 1y  and 2y  are 10.32 and 10.84 respectively. These models are 

verified with the remaining 49 experimental runs, as shown in Fig. 7.4. For the 

validation set, the RMSE for the two models are 10.75 and 14.15 respectively. It is 

evident that the built models are reasonable.  

 

 

Table 7.2: 7 Factors 6 Levels Uniform Design of IA Parameters 

 Levels 1 2 3 4 5 6 

Canny Edge 
Detection 

Low Threshold: 
Canny-T1 (u1) 

 

0.00 0.05 0.1 0.15 0.2 0.25 

High Threshold: 
Canny-T2 (u2) 

 

0.05 0.15 0.25 0.35 0.45 0.55 

Sigma: 
Canny-Sigma (u3) 

 

1 1.5 2 2.5 3 3.5 

Morphology 
Operation 

Close Shape: 
SE1-Shape (u4) 

 

1 2 3 4 NA NA 

Close Size: 
SE1-Size (u5) 

 

0 5 10 15 20 25 

Open Shape: 
SE2-Shape (u6) 

 

1 2 3 4 NA NA 

Open Size: 
SE2-Size (u7) 

0 5 10 15 20 25 
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 Figure 7.3. Parameters and responses of 105 experimental runs of UD.
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Figure 7.4. Comparison of model prediction and experimental validation 

(a) cumulative error (b) extent of matching. 
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The next step is to predict the optimal parameters from the built models. Both 

exhaustive search method and simplex optimization method may be employed for 

this purpose. Using an exhaustive search, that is, search of the whole parameter 

space with step size of [0.01, 0.1, 1, 1, 1] for [u2, u3, u5, u6, u7] respectively,  ten 

sets of parameters that are likely to result in %51 y  and %852 y  are 

identified and listed in Table 7.3. It is noticed that the 10 parameter sets are quite 

similar with differences only in 2u  and 5u . When these sets of parameters are 

verified, the results show that all of these 10 sets of parameters can give better 

output response for y1 while worse output for y2 than what the models predict, with 

the best result of 8.55% and 91.73% for E and AM  respectively.  

 

Depending on the step size of each parameter, the exhaustive search to locate best 

parameter values can be quite time consuming, especially with more parameters and 

a broader parameter search. Simplex optimization can also be utilized to locate 

optimal parameter values from the model. Since simplex can optimize only one 

objective, the two measures of E and AM  are combined into one by 

defining EMER A / . ER  will be maximized by using the simplex algorithm as 

described in Section 7.2.2. The optimal parameter sets obtained are shown in Table 

7.3, with the best result of 7.23% and 90.40% for E and AM  respectively. These 

parameters result in better experimental responses than that predicted by the model. 

Table 7.3 summarizes the results from the exhaustive search and simplex search.   
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Table 7.3 Validation of Predicted Optimal Parameters for Uniform Design 

 

u1 u2 u3 u4 u5 u6 u7

Predicted Experimental  

y1 
(%) 

y2 
(%) 

y1 
(%) 

y2 
(%) 

ER 

E
xh

au
st

iv
e 

S
ea

rc
h 

0.13 0.24 3.20 2 6 1 1 4.99 85.03 8.55 91.73 10.73

0.13 0.24 3.30 2 6 1 1 4.92 85.13 8.84 91.49 10.35

0.13 0.24 3.40 2 6 1 1 4.86 85.23 8.70 91.10 10.47

0.13 0.24 3.50 2 6 1 1 4.80 85.33 9.13 90.84 9.95 

0.13 0.25 3.50 2 6 1 1 4.60 85.04 9.09 90.24 9.93 

0.13 0.26 3.30 2 7 1 1 4.97 85.17 8.94 88.51 9.90 

0.13 0.26 3.40 2 7 1 1 4.91 85.27 9.34 88.79 9.51 

0.13 0.26 3.50 2 7 1 1 4.86 85.37 9.47 88.73 9.37 

0.13 0.27 3.50 2 7 1 1 4.68 85.03 9.30 88.37 9.50 

0.13 0.28 3.50 2 8 1 1 4.91 85.04 9.29 87.10 9.38 

S
im

pl
ex

 S
ea

rc
h 

0.10 0.20 2.00 1 5 1 1 7.12 83.49 8.25 93.50 11.33

0.10 0.20 2.00 2 6 1 1 7.69 84.49 9.00 90.58 10.06

0.16 0.28 2.09 2 8 1 1 5.96 83.52 7.84 89.07 11.36

0.12 0.28 1.99 1 7 1 1 5.67 82.98 7.75 91.12 11.76

0.16 0.29 2.07 2 6 1 1 4.97 81.94 7.23 90.40 12.50

0.14 0.29 2.03 1 5 1 1 4.62 80.60 7.45 91.95 12.34

 

These results demonstrate that optimization with uniform design is a good method to 

search for an optimal combination of several IA parameters. This approach initially 

considers the whole parameter space and its performance depends on building and 

solving models. Furthermore, both exhaustive search and simplex optimization 

could be applied to obtain optimal values for the parameters. To obtain more 

accurate parameters, smaller step size is required for exhaustive search and this 

means more computing time required. Simplex search greatly improves the 

efficiency in computing the optimal parameter values. In the next section, we will 

discuss how to directly find optimal IA parameters without involving any models.    
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7.3.2 Optimization with Sequential Simplex Optimization 

As mentioned in Section 7.2.2, SSO can directly search for an optimal combination 

of several parameters but it cannot directly deal with multiple objectives. Therefore, 

maximizing ER (the ratio of AM  to E) is used as the sole objective for SSO. The 

first step of SSO is related to initial guess and step size of each parameter, it also 

relates to the constraints and boundary conditions. Each of these can affect SSO 

performance, as will be demonstrated and discussed later.  

 

7.3.2.1 Initial Guess of Parameters 

Simplex optimization is a local optimization methodology and the initial design will 

affect its convergence rate and precision (Matsopoulos et al., 1999). Only when 

good prior knowledge of the system is available, the initial guess could be possibly 

set to the optimal region and the optimal values will be reached within a few 

iterations. Otherwise, with a poor initial guess, the simplex may restrict the 

parameters into a bounded poor region and could not break out to search for better 

parameters. This can be illustrated with the following example. As shown  in Row 

23 and 24 of Table 7.4, with the IA algorithm studied here, an expert with good 

knowledge of the system may choose the initial values of the 7 parameters as [0.1, 

0.2, 2, 1, 5, 1, 5] and step size for each parameter as [0.05, 0.05, 0.1, 1, 5, 1, 5] 

respectively. With this initial guess and step size, the 8 runs of initial design, as 

listed in Table 7.4, will give the best ER response of 7.92 ( %35.11E  and 

%92.89AM ) and the worst ER response of 3.94 ( %04.20E  and 
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%93.78AM ). Only after one more simplex step, the ER response is improved to 

11.98, with %89.7E  and %61.94AM . This result is already better than the 

published result ( %03.8E , %35.94AM  and 74.11ER ). On the contrary, 

when the initial guess for parameters is [0.05, 0.5, 0.5, 3, 2, 2, 1] and with the same 

step size as above, SSO converges to a region with ER about 1.54 after another 26 

moves. This shows that initial guess is very important for simplex search.    

 

For a system without any prior knowledge, we suggest to use any experimental run 

(e.g. a run from uniform design) as initial values. In this paper, the parameters from 

the first 22 runs of uniform design are used as initial guesses in turn. For each set of 

these initial guesses, a maximum of 20 SSO iterations will be performed. Table 7.4 

lists the results with these different initial guesses. As stated in Section 7.3, each 

iteration may involve 3 motions of reflection, expansion and contraction, and each 

motion means a new experimental run. The column titled “Vertex No.” in Table 7.4 

indicates the number of experiments conducted to reach the optima.  It is seen that 

with different initial guesses, SSO will converge to different regions in the 

parameter space. Furthermore, all the results with the exception of run number 17, 

demonstrate that after certain number of iterations, the ER will be better than the 

best ER from initial design.    

 

The results in Table 7.4 demonstrate that initial guess for parameters will 

significantly affect the SSO performance. The effect of the step size in SSO is 

studied next.     
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Table 7.4:  SSO Performance with Different Initial Guess and Step Size (1st set of images) 

 

No. 

Initial Guess Step Size [0.05, 0.05, 0.1, 1, 5, 1, 5] Step Size [0.1, 0.1, 0.2, 2, 10, 2, 10] 

u1 u2 u3 u4 u5 u6 u7 
ER from Initial Design Best ER Obtained from SSO Iteration ER from Initial Design Best ER Obtained from SSO Iteration 

Best Worst ER E MA Vertex No. Best Worst ER E MA Vertex No. 

In
it

ia
l G

ue
ss

 f
ro

m
 U

ni
fo

rm
 D

es
ig

n 

1 0.25 0.35 2 2 20 2 5 6.58 3.27 11.54 7.63 88.07 38 7.97 1.87 12.59 6.45 81.24 39 

2 0.15 0.45 1 1 20 4 20 1.63 0.25 2.25 29.26 65.85 31 1.70 0.17 10.07 7.85 79.13 28 

3 0.05 0.25 2.5 4 3 1 10 2.70 0.39 11.25 8.04 90.42 28 3.49 0.29 12.72 6.86 87.26 35 

4 0.10 0.25 2.5 1 1 4 3 9.84 0.49 12.17 7.47 90.92 15 10.59 0.42 11.66 7.89 91.97 31 

5 0.10 0.45 1.5 3 15 1 25 0.52 0.21 2.37 25.67 60.96 31 0.58 0.13 12.68 7.07 89.66 28 

6 0.05 0.25 3.5 1 10 1 5 8.71 3.46 10.29 8.85 91.06 12 9.56 2.16 10.32 8.47 87.46 39 

7 0.25 0.45 2.5 4 15 4 3 9.77 2.17 12.39 6.60 81.83 31 10.50 1.41 10.61 7.53 79.92 35 

8 0.20 0.35 3.5 2 25 3 25 0.80 0.51 1.48 35.06 51.84 9 1.16 0.51 2.67 26.95 72.07 38 

9 0.01 0.25 1 3 25 4 6 0.81 0.24 4.63 16.61 76.92 30 0.89 0.11 7.19 10.43 74.96 31 

10 0.10 0.45 1 2 1 2 5 3.73 0.48 11.74 7.36 86.36 24 6.63 0.27 11.96 7.64 91.39 33 

11 0.20 0.45 2 4 6 3 20 0.82 0.08 1.52 36.45 55.24 35 0.64 0.10 1.66 34.51 57.38 22 

12 0.01 0.55 1.5 4 21 1 15 1.33 0.86 8.21 8.25 67.78 32 1.55 0.70 9.61 7.84 75.39 37 

13 0.10 0.15 2 1 25 1 20 1.41 1.09 7.54 10.30 77.62 33 1.44 0.81 11.10 7.52 83.46 34 

14 0.10 0.55 3 4 9 4 21 1.18 0.14 2.36 27.15 64.08 35 1.37 0.08 6.81 8.21 55.95 36 

15 0.05 0.15 1 3 1 3 25 0.42 0.01 1.69 37.49 63.37 34 0.41 0.01 1.68 35.79 60.27 34 

16 0.01 0.15 2 4 6 2 1 10.21 2.39 12.37 7.72 95.55 25 10.40 1.58 11.97 8.00 95.75 18 

17 0.25 0.55 3 1 1 3 15 0.46 0.12 0.28 13.38 3.78 9 0.50 0.12 0.35 16.48 5.72 9 

18 0.20 0.45 3 1 15 1 10 2.35 1.58 9.96 7.91 78.79 33 2.87 1.04 10.42 7.58 78.97 33 

19 0.15 0.55 3.5 3 25 2 1 7.08 5.82 7.41 8.27 61.28 40 7.02 3.00 7.68 8.33 64.00 36 

20 0.01 0.05 3 1 20 3 10 0.37 0.00 1.96 34.00 66.75 24 0.82 0.00 5.29 15.38 81.30 21 

21 0.05 0.35 3 3 5 2 20 0.64 0.09 2.40 29.84 71.56 20 0.74 0.03 11.19 7.72 86.32 26 

22 0.01 0.55 2 2 5 4 9 5.03 0.47 10.19 7.02 71.56 33 0.35 6.64 12.50 7.29 91.10 31 

Random 

Guess 

23 0.1 0.2 2 1 5 1 5 7.92 3.94 11.98 7.89 94.61 9 11.71 1.72 13.13 7.07 92.80 34 

24 0.05 0.5 0.5 3 2 2 1 1.10 0.31 1.54 46.25 71.32 34 1.25 0.26 1.96 33.54 65.65 25 
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7.3.2.2 Step Size  

To study the effect of step size on SSO performance, each of the 24 initial guesses 

are assigned with two sets of step size. The first set of step size, s1 is smaller in 

magnitude and is taken as [0.05, 0.05, 0.1, 1, 5, 1, 5] for the 7 parameters under 

study. The second set, s2 has twice the magnitude of the first set. The details of 

parameters and the corresponding responses are listed in Table 7.4. If we compare 

the ER values from the same initial designs for the two step sizes, it is noticed that 

for the same set of initial guess, a bigger step size may lead to a bigger difference 

between the best and worst ER in initial design. This bigger difference in initial 

design indicates that the starting vertices cover a broader region in the parameter 

space and this helps SSO to go forward in the direction of the optimum, instead of 

being bounded in a small bad region. The obvious examples are initial guesses 

numbered 2, 5 and 21. With a small step size, all sets locate the best ER to be 

around 2.4. While when the step size is doubled, the best ER could be improved to 

10.07, 12.68 and 11.19 respectively.  

 

Fig. 7.5 demonstrates the effects of step size on SSO performance. For the same 24 

sets of initial guesses and different step sizes, the obtained best ER, E, AM  and the 

number of vertices required to reach this best response are plotted in Fig. 7.5 

(subplots a, b, c and d respectively).  With a larger step size, 20 out of the 24 sets 

(83%) of initial guess will provide better ER (Fig. 7.5(a)), 17 sets (71%) will 

decrease E (Fig. 7.5(b)), 15 sets (63%) will increase AM (Fig. 7.5(c)) and 13 sets 

(54.17%) will decrease the number of vertex moves to reach the best response (Fig. 
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7.5(d)). Fig. 7.5 shows that step size is important in SSO initial design. For a system 

without prior knowledge, a bigger step size may be better to start with since the 

initially designed vertices will cover a broader region in parameter space.  

 

(a) ER (b) E 

(c) MA (d) Number of Vertex to Reach 
Optima 

Figure 7.5. Effect of step size in sequential simplex optimization. 
 

 

Starting with big step size for random initial guess may be suitable for a system 

without much prior knowledge. However, for a system where good prior knowledge 

of optimal parameter region is available, small step size should be applied. For 

example, the sets numbered 4, 7 and 16 in Table 7.4, the best ERs of initial design 
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are all above 9.7. This high ER value for the initial design appears to be outcome of 

an expert estimation of initial guess. All the three sets show that a higher ER can be 

reached with a smaller step size rather than with large step size. If the initial design 

vertices are already in the optimal region, a small step size will help to thoroughly 

search the region and get even better ER response. A big step size may overlook 

such optimal regions and explore less profitable regions.  

 

Next, the effect of constraints and boundary conditions are investigated.   

 

7.3.2.3 Constraints and Boundary Conditions 

Constraints and boundary conditions have to be considered in SSO -- they have to 

be correctly handled to obtain optimal IA parameters. It is noticed from Table 6.1, 

that the first 3 parameters (u1 to u3) are continuous, while the other 4 parameters (u4 

to u7) are positive integers (discrete). In SSO movements of reflection, extension 

and contraction, the new calculated parameters of u4 to u7 may often not result in 

positive integer values. When this happens, the parameters are rounded to the 

nearest positive integer value. Once a parameter is out of the boundary of parameter 

space, it will be forced back to the boundary. For example, if the new value for u5 is 

calculated to be -1.95, it would be rounded to 1 for the new vertex. Furthermore, 

when u4 or u6 turns out to be 4, the corresponding u5 or u7 will be rounded to the 

nearest positive multiple of 3. These approximations will certainly affect the SSO 

performance. Even with these approximations and constraints, SSO is still able to 

come out with “optimal” IA parameters. As shown in Table 7.4, all the results are 

generated by considering constraints and boundary conditions with necessary 

approximations. 
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7.3.2.4 Regions of Good Parameters 

The regions of the optimal IA parameters obtained will be compared in this section. 

As shown in Table 7.4, the studies of SSO with different initial guesses and step 

sizes have generated several optimal situations (vertices) with high ER. To find out 

the optimal regions in the parameter space, all the vertices with ER > 11 are plotted, 

as shown in Fig. 7.6. It is noticed that parameter SE2-Size (u7) is limited to a small 

range (from 1 to 4) and SE1-Size (u5) is confined to the range 4 to 14 (compared to 

the defined u7 and u5 ranges of 1 to 25). The other five parameters cover almost the 

whole parameter space that is defined in Table 6.1. Fig. 7.6 demonstrates that there 

are many acceptable good combinations of IA parameters in the parameter space.  

 

 

With the effect of initial guess, step size, constraints and boundary conditions, SSO 

is an applicable method to directly search for optimal IA parameters. From Table 

7.4, SSO reaches the best ER of 13.13 (Row 23, with initial guess of [0.1, 0.2, 2, 1, 

5, 1, 5] and step size of [0.1, 0.1, 0.2, 2, 10, 2, 10] ), where the corresponding E and 

AM  are 7.07% and 92.80% respectively. In Table 7.4, with the 24 sets of initial 

guess and 2 sets of step size for each set of initial guess, there are total 48 sets of 

data. 11 sets (22.92%) out these 48 sets can iterate to a better ER than 11.79, the 

result from the best manual tuned image processing parameters in [31], where 

%0.8E  and %3.94AM . It can be concluded that SSO is a useful approach to 

directly search for optimal IA parameters. Its shortcoming of attaining the local 

optima can be overcome by designing several initial guesses. 
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Figure 7.6. IA parameters and responses of all optimal vertexes (With ER>12). 
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7.3.2.5 Validation of Optimal Parameters Using a New Image Set 

With both approaches providing estimation of optimal parameters, the next question 

is “are they robust?”. That is, if the obtained optimal parameters are applied to a 

new set of images from the same process, are they still optimal or close to optimal 

parameters? Would the quality of the results change significantly? This is 

investigated next. As stated in Section 4.3.1, the quality of process images varies 

with process time (intra-batch variation) and from batch to batch (inter-batch 

variation) for batch processes. We would like to apply the obtained optimal 

parameters on a new set of images (2nd set of images) that are acquired from another 

batch of the same process. From the SSO studies on the 1st set of images, all sets of 

parameters which yielded ER > 12 are considered as optimal sets of parameters (see 

Table 7.5) and will be tried on the new set of process images.  

 

In the 2nd set of images, there are 7,878 process images from which 39,031 particles 

are manually segmented out. Compared to the performance of ER > 12, 6 < E < 8 

and 80 < AM  < 96 on the first set, the performance with the optimal parameters 

turns out to be lower: ER drops to a range of 3.5 to 5, with E increasing to between 

15 and 20 and AM  decreasing to a 70 – 80 range. When we actually observe the 

two sets of images, this drop in performance is reasonable. As shown in Fig. 7.7, the 

first set of images is quite clear with little background noise and it is easy for human 

and the IA algorithm to segment particles out with a high level of consistency 

between them. Relatively speaking, the images in the 2nd set have a lot of 

background noise and it is hard to identify clear boundaries for the particles. This 

leads to less agreement between IA and human segmentation causing a low ER for 
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the validation run. Despite the drop in performance on the new set of images, the 

results are deemed to be good enough for practical application.  

 

Table 7.5 Performance of 1st Set Images’ Optimal Parameters on 2nd Set Images 

 
No. 

Optimal Parameters  1
st
 Set of Image  2

nd
 Set of Image 

u1  u2  u3  u4  u5  u6  u7  ER  E  MA  ER  E  MA 

1  0.03 0.17 2.0 3 6 1 1 12.01 7.96 95.53 4.79 16.37 78.41 

2  0.05 0.19 2.0 3 6 1 1 12.37 7.72 95.55 4.85 16.06 77.96 

3  0.01 0.17 2.0 3 6 1 1 12.18 7.84 95.47 4.77 16.43 78.31 

4  0.02 0.15 2.0 3 6 1 1 12.10 7.91 95.69 4.68 16.72 78.25 

5  0.01 0.19 2.0 3 6 1 1 12.11 7.88 95.41 4.87 15.90 77.46 

6  0.03 0.18 2.0 3 6 1 1 12.26 7.77 95.33 4.86 15.95 77.45 

7  0.09 0.41 1.6 4 9 2 1 12.27 6.91 84.77 3.52 20.35 71.65 

8  0.11 0.29 2.4 2 6 1 1 12.17 7.47 90.92 3.87 19.37 75.02 

9  0.14 0.40 2.5 3 12 1 1 12.33 6.73 82.91 3.90 18.17 70.91 

10  0.11 0.41 2.5 2 8 1 1 12.39 6.60 81.83 3.71 19.00 70.45 

11  0.04 0.34 2.0 1 7 1 1 12.17 7.32 89.09 3.74 19.99 74.61 

12  0.11 0.38 2.0 1 8 1 1 12.48 6.93 86.50 3.80 19.27 73.25 

13  0.16 0.31 1.9 1 6 1 1 12.24 7.41 90.68 4.34 17.37 75.48 

14  0.09 0.33 2.1 1 5 1 1 12.50 7.29 91.10 4.62 16.25 75.02 

15  0.13 0.25 2.1 1 6 2 1 12.13 7.59 92.09 3.71 20.46 75.88 

16  0.08 0.25 2.0 2 5 2 1 12.75 7.33 93.44 4.40 17.55 77.25 

17  0.07 0.28 2.1 2 5 2 1 13.13 7.07 92.80 4.57 16.82 76.93 

18  0.11 0.28 2.1 1 5 2 4 12.46 7.49 93.32 4.96 15.47 76.76 

19  0.05 0.26 2.1 1 5 2 3 12.58 7.46 93.82 4.92 15.63 76.91 

20  0.10 0.25 2.1 2 5 2 3 12.74 7.34 93.50 4.88 15.84 77.25 

21  0.09 0.31 2.1 2 5 2 1 12.92 7.11 91.85 4.70 16.22 76.18 

22  0.07 0.30 2.1 1 6 2 3 12.50 7.36 91.93 4.65 16.36 76.11 

23  0.09 0.25 2.0 1 5 2 2 12.23 7.64 93.46 4.47 17.20 76.89 

24  0.13 0.45 2.1 3 11 1 1 12.59 6.45 81.24 4.34 16.23 70.42 

25  0.16 0.46 2.1 2 6 1 1 12.03 6.72 80.78 4.56 15.27 69.60 

26  0.11 0.33 2.5 4 6 2 1 12.40 7.12 88.29 3.83 19.23 73.75 

27  0.12 0.35 2.5 4 6 2 4 12.58 7.02 88.35 4.36 17.02 74.24 

28  0.12 0.35 2.5 4 6 2 1 12.57 6.95 87.36 3.97 18.47 73.32 

29  0.11 0.35 2.4 4 6 2 1 12.63 6.97 88.03 3.95 18.67 73.68 

30  0.09 0.36 2.3 4 6 2 1 12.72 6.86 87.26 3.97 18.59 73.79 

31  0.16 0.34 2.5 4 6 2 1 12.01 7.30 87.68 3.99 18.35 73.28 

32  0.10 0.36 1.6 1 7 1 1 12.68 7.07 89.66 4.14 18.10 75.01 

33  0.01 0.38 1.5 1 6 1 1 12.46 7.20 89.64 4.38 17.11 75.00 
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(a) 

 
(c) 

 
(b) 

 
(d) 

 
(e) 

 
(g) 

 
(f) 

 
(h) 

Figure 7.7. Comparison of original image and human segmentation for two image 
sets. (a-b): original images of 1st image set; (c-d): dorresponding human 

segmentation of (a-b); (e-f): original images of 2nd image set. (g-h): corresponding 
human segmentation of (e-f). 
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To compare IA performance on the two sets of images, we further study the 2nd set 

of images by applying SSO with the same 23 sets of initial guesses and step sizes as 

those applied to the 1st set of images. The results obtained with the 2nd set of images 

(summarized in Table 7.6) are compared to those obtained with the 1st set of images 

(summarized in Table 7.4). It is noticed that three sets of initial guesses (serial 

numbers 8, 11 and 17 in Table 7.6) applied to the 2nd set of image converge to a bad 

point with both small and big step sizes, while one set of initial guess (serial number 

15) converges to an unattractive solution with small step size. These sets of initial 

guesses lead to the similar results as those obtained with the 1st set of images i.e. low 

ER (high E and low AM ).  

 

The results from other initial guesses are compared. For the 2nd set of images, the 

obtained optimal ER varies from 2.96 to 6.02, with E varying from 11.47 to 17.24, 

and AM  varying from 48.84 to 76.47. The required number of vertex explorations 

to reach the optima varied from 10 to 60. For the 1st set of images, the optimal ER 

values ranged from 1.68 to 12.72, with E varying from 6.45 to 35.79, and AM  

varying from 55.95 to 95.75 and the required number of vertex explorations to reach 

the optima varied from 9 to 40. It is obvious that with the same initial guess and step 

size, the results with the 1st set of images are often better than the corresponding 

results with the 2nd set of images – this further proves the fact that the quality of the 

2nd set of images is worse than that of the 1st set of images. The expected 

performance of optimal IA parameters on the 2nd set of images should be much 

lower.   
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Table 7.6: SSO Performance with Different Initial Guess and Step Size (2nd set of images) 

 

No. 

Initial Guess Step Size [0.05, 0.05, 0.1, 1, 5, 1, 5] Step Size [0.1, 0.1, 0.2, 2, 10, 2, 10] 

u1 u2 u3 u4 u5 u6 u7 
ER from Initial Design Best ER Obtained from SSO Iteration ER from Initial Design Best ER Obtained from SSO Iteration 

Best Worst ER E MA Vertex No. Best Worst ER E MA Vertex No. 

In
it

ia
l G

ue
ss

 f
ro

m
 U

ni
fo

rm
 D

es
ig

n 

1 0.25 0.35 2 2 20 2 5 4.14 1.55 5.13 13.39 68.69 45 4.00 1.07 4.97 13.29 66.04 38 

2 0.15 0.45 1 1 20 4 20 2.74 0.03 4.94 12.05 59.48 53 2.84 0.01 6.02 11.47 69.07 43 

3 0.05 0.25 2.5 4 3 1 10 3.93 0.94 4.15 16.18 67.09 53 3.15 0.54 4.47 16.62 74.30 56 

4 0.10 0.25 2.5 1 1 4 3 4.60 0.89 4.85 15.75 76.40 48 3.07 0.48 4.49 15.85 71.23 27 

5 0.10 0.45 1.5 3 15 1 25 0.35 0.04 4.96 14.08 69.75 36 0.45 0.01 4.89 13.53 66.21 41 

6 0.05 0.25 3.5 1 10 1 5 3.18 1.67 4.35 17.01 73.97 52 3.21 1.08 4.34 17.08 74.11 53 

7 0.25 0.45 2.5 4 15 4 3 3.95 2.25 4.15 15.61 64.77 10 3.82 1.74 4.23 15.92 67.32 29 

8 0.20 0.35 3.5 2 25 3 25 0.73 0.11 Converges to ER=0.17 0.22 0.10 Converges to ER=0.17 

9 0.01 0.25 1 3 25 4 6 1.00 0.16 4.27 13.49 57.63 45 1.00 0.11 5.13 13.06 67.04 60 

10 0.10 0.45 1 2 1 2 5 4.80 0.87 5.44 12.14 66.04 28 4.91 0.34 5.50 12.83 70.58 52 

11 0.20 0.45 2 4 6 3 20 1.43 0.03 Converges to ER = 0.20 0.50 0.03 Converges to ER = 0.20 

12 0.01 0.55 1.5 4 21 1 15 1.90 1.27 3.86 13.39 51.74 16 2.34 0.64 4.59 14.02 64.36 33 

13 0.10 0.15 2 1 25 1 20 0.37 0.18 4.62 14.08 64.99 40 0.49 0.11 5.36 13.57 72.66 28 

14 0.10 0.55 3 4 9 4 21 1.90 0.02 3.84 16.41 63.01 48 2.03 0.00 3.64 17.24 62.72 33 

15 0.05 0.15 1 3 1 3 25 0.08 0.00 Converges to ER = 0.00 0.10 0.00 5.57 12.88 71.80 32 

16 0.01 0.15 2 4 6 2 1 4.66 0.74 4.75 16.09 76.47 24 4.68 0.44 5.03 14.77 74.33 43 

17 0.25 0.55 3 1 1 3 15 0.54 0.09 Converges to ER = 0.20 0.70 0.09 Converges to ER = 0.21 

18 0.20 0.45 3 1 15 1 10 2.80 2.13 4.64 14.73 68.32 34 2.88 1.35 4.44 16.09 71.39 28 

19 0.15 0.55 3.5 3 25 2 1 2.46 1.36 3.21 16.20 51.96 45 2.25 1.28 2.96 16.49 48.84 54 

20 0.01 0.05 3 1 20 3 10 0.14 0.04 3.92 16.58 64.96 31 0.30 0.04 4.41 16.80 74.04 48 

21 0.05 0.35 3 3 5 2 20 0.76 0.02 3.61 16.99 61.35 51 0.94 0.00 4.77 15.29 72.91 53 

22 0.01 0.55 2 2 5 4 9 4.38 0.73 5.22 12.95 67.65 37 4.23 0.30 5.35 13.32 71.25 58 

Random 
Guess 

23 0.1 0.2 2 1 5 1 5 4.92 2.84 5.37 14.12 75.82 32 5.18 1.65 5.38 13.90 74.83 51 
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By further examining the results in Tables 7.4 and Table 7.6, several sets of initial 

guesses (serial numbers 1, 3, 4, 10, 16 and 23) that lead to good IA results on the 1st 

set of images also lead to optimal results on the 2nd set of images. This certifies that 

the optimal IA parameters on the 1st set of images are also optimal to the 2nd set of 

images. Hence, the robustness of the developed approach is verified.    

 

7.3.3 Comparison of the Two Optimization Methods 

The results presented earlier show that both integration methods, i.e. model-based 

optimization with SSO, or adopting designed experimental runs as initial guess for 

SSO, are capable of systematically finding out optimal sets of parameters. Both 

integration methods could locate optimal parameter sets with ER greater than 12.5.  

 

The model-based optimization with uniform design approach employed a total 106 

runs of experiments to determine and verify the optimal value for the parameters. In 

UD designs, the experiments cover the full parameter space and there is no need for 

initial guess. The modeling step clearly relates the input parameters and output 

response using mathematical relationships, which render them convenient for further 

analysis. The main disadvantage of this method is at the modeling step. Building 

reliable and robust models particularly with limited experimental data is always a 

challenge. When the number of parameters (factors) is increased, the number of 

experimental runs required for model development will increase as well. Overall, 

UD is a suitable method to find reasonably good IA parameters and its performance 
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will depend significantly on the built models.  

 

With proper initial guess, the SSO method is able to locate optimal sets of 

parameters within a few iterations. Since each step is based on actual 

“experimental” runs, the obtained results are direct, clear and need no separate 

validation step. The drawback is that it generates comparatively less process 

knowledge. Also, SSO is a local optimization method and the initial guesses and 

choice of step size are very important.  

 

One can envisage ways to integrate the two methods. Combining the two methods 

will overcome the disadvantages of each individual method and improve the 

efficiency. As shown in this chapter, SSO can be applied to determine the optimal 

parameter values from the generated models in the model-based optimization with 

UD. This is very efficient and saves time especially for complex models. On the 

other hand, UD can be applied to generate the initial guesses to provide multiple 

start points for the SSO.  

 

Overall, any of the two optimization methods discussed here or their integration 

could be employed to systematically locate optimal IA parameters for huge sets of 

images obtained from crystallization processes. The obtained optimal IA parameters 

will offer a reliable estimate of the state of the process via on-line image analysis 

and ensure improved process operation and constant product quality via monitoring 

and control.  
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7.4 Conclusion 

The integration of two optimization approaches, model-based optimization with 

uniform design and direct sequential simplex search optimization, have been 

successfully applied to systematically optimize image processing parameters for a 

large set of batch process images. Since the quality of images from batch 

crystallization processes suffers from both intra- and inter-batch variability, 

automated methods such as those proposed here can be quite useful in identifying 

the best IA parameters. Our studies show that both the methods considered here are 

capable of finding optimal sets of IA parameters for use in real-time crystallization 

applications.  

 

The obtained IA parameters are robust and this implies better image processing 

results for on-line process monitoring and control. The optimal parameters obtained 

from one set of process images are able to provide good performance on another set 

of images that are acquired from another batch of the same process. This indicates 

that the proposed methodology is highly suited for real-time monitoring and control 

of crystallization processes. 

 

 

 

 

 

 



Chapter 8 Conclusions and Future Works 

156 

 

 

Chapter 8. Conclusions and Future Works 

 

8.1 Conclusions 

On-line monitoring of particle shape and size distribution through image-based 

approaches is a challenge in the pharmaceutical and fine chemical industries. This 

thesis focused on improving the accuracy of the results which can be obtained using 

currently available image processing algorithms. We have shown that there is a 

noticeable difference between the true particle size as seen under the microscope 

and that extracted from PVM images even with manual segmentation. PVM images 

lead to an estimated particle size that is about 11% less than that obtained from 

microscopy analysis, possibly because of the random orientation of the particles 

during in-situ imaging. Despite this significant measurement error, it should 

facilitate particle size identification using PVM because of the numerous benefits 

and potential advanced control applications that easy, real-time size measurements 

would entail.  

 

We have also sought to quantify the errors introduced by automated image analysis. 

Basic image analysis is well-established in literature. However, its accuracy in any 

application depends significantly on various parameters that have to be pre-specified 
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by the user. We have used manual segmentation of the image as a basis for 

evaluating the results from automated image analysis. We have proposed two 

metrics – extent of matching and cumulative error – to compare automated and 

manual segmentations. These serve as a quality measure to evaluate the effect of 

various parameters. Our results show that although all image analysis parameters 

have some effect, the two structuring elements in morphology operation step are the 

most important. These determine the shape information of the objects (particles) to 

be extracted from the image. Our study reveals that, for segmenting needle-shaped 

MSG particles, the diamond and square are the most suited structuring elements. 

Further study is required to establish the generality of this conclusion to other 

systems.  

 

We have also shown that when tuned suitably, automated image analysis can extract 

particle sizes with high accuracy (about 4-8% error) which is similar to that obtained 

by manual segmentation. Image analysis using the PVM system is therefore a 

reasonably accurate approach to track particle growth. At the initial stage of 

working with a new system, we need to manually segment particles from one 

experimental run and establish an optimal set of parameters for PVM based image 

processing. This is achieved by systematically perturbing the IA parameters based 

on the theory of design of experiments. In production plants where a large number 

of similar crystallization runs would be carried out, despite the high one-time cost of 

manual segmentation, the large benefits incurred from a certifiably accurate 

particle-size distribution available in real-time would make the proposed scheme 

attractive.  
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We have shown that a systemic procedure for IA parameter optimization would 

reduce the parameter optimization effort so as to make it attractive in the first 

context as well. The integration of two optimization approaches, model-based 

optimization with uniform design and direct sequential simplex search optimization 

have been successfully applied to systematically optimize image processing 

parameters for a large set of batch process images. Since the quality of images from 

batch crystallization processes suffer from both intra- and inter-batch variability, 

automated methods such as those proposed here can be quite useful in identifying 

the best IA parameters. Our studies show that both the methods considered here are 

capable of finding optimal sets of IA parameters for use in real-time crystallization 

applications.  

 

The obtained IA parameters are robust and this implies better image processing 

results for on-line process monitoring and control. The optimal parameters obtained 

from one set of process images are able to provide good performance on another set 

of images that are acquired from another batch of the same process. This indicates 

that the proposed methodology is highly suited for real-time monitoring and control 

of crystallization processes. 

 

8.2 Future Work 

Each image processing methodology has its own advantages and limitations, some 

are good at eliminating certain types of noise whereas they fail with other types of 

noise. Any reasonable image processing methodology will accurately segment 

particles that are clearly imaged. It would be desirable to locate these clearly imaged, 



Chapter 8 Conclusions and Future Works 

159 

 

as well as accurately segmented, particles by integrating two or more image 

processing methodologies. Currently, IA works well to segment single particles that 

have obvious boundaries, while additional improvement, such as further image 

enhancement, segment particles from overlapped or aggregated clots by solidity 

filter or rectangle shrinking methods, is required to segment particles that do not 

have clear boundaries in the images. This methodology also needs to be improved to 

process images taken from high solid concentration solutions in crystallization 

processes. More effort is needed to develop new methodologies for image based 

sensors, such as manually building a particle template library from a set of training 

images and using this library to identify particles in future process images. 

Furthermore, among the available in-situ sensors, each instrument has its advantages 

and limitations. Hence, calibration for all kinds of sensors is required to get a more 

accurate in-situ measurement. Once an accurate and reliable imaging sensor is 

developed, it can be used for closed loop control of particulate processes.  

 

8.2.1 Segment-Based Image Fusion 

Each image processing methodology follows a sequence of image processing steps 

and its success depends on the choice of a number of parameters at each step. The 

optimal sets of parameters could be manually tuned by intuitively observing the 

segmentation result, or automatically tuned by quantitatively comparing the 

segmentation result with that of manual segmentation. Whichever approach is 

adopted, manpower and time are required. This investment can be significant for a 

large set of images with different background and quality. Human observation or 

segmentation for the whole set of images may not be feasible. Thus, new image 
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processing methodologies that are reliable, robust and require less manual work are 

desired. 

 

Furthermore, no matter how optimal the parameters are set, each image processing 

methodology has its advantages and limitations. As already pointed out, some may 

be good at eliminating certain types of noise while may fail with other types of noise. 

For example, an image processing methodology may identify the bubbles with 

bright light reflection as particles, while another image processing methodology 

may segment the darker noisy background objects as particles. Such false 

segmentation and identification will certainly affect the accuracy and reliability in 

characterizing particle size from in-process images. The question is how to make 

sure the segmented objects are the needed representative particles. A representative 

particle should be a whole particle with accurate outline and area in the image. Due 

to the complexity of process images, the typical errors that occur with image 

analysis include: (i) a big particle being segmented as few small objects, (ii) a few 

overlapped particles being identified as a big object, (iii) a clear particle being 

affected by process noise and segmented as an object with irregular shape, and (iv) 

some bubbles, background and lighting effects may be identified as objects, etc.  

 

When two or more image processing methodologies are applied to process the same 

set of process images, it is found that they can accurately segment particles that are 

clearly imaged. However, they may result in different segmentations for noisy 

objects and particles that do not have clear outlines in the image. As shown in Fig. 

8.1, different image processing methodologies (IA and Multivariate Image Analysis 

(MIA)) may segment different objects from the same process image. Among these 
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objects, most of them are clear particles, while some objects are particles that could 

not be clearly imaged and some objects are just noise, bubbles or other uncertainties 

that should not be accounted for. Nevertheless, both methods could correctly 

segment out the particles that have clear outline. If an object could be identified by 

multiple image processing methodologies, it should be a well imaged particle with 

clear outlines. These particles could be selected as representative particles and they 

are more reliable in characterizing particle size and shape.  

 

As an immediate future work, we propose to identify the clearly imaged 

representative particles by fusing the segmentations from different image processing 

methodologies. More reliable and accurate particle characterization is expected from 

these representative particles. Two fusion methods, feature-based image fusion 

(FBF) and region-based image fusion (RBF), are being investigated currently to 

identify these representative particles. Both fusion methods are developed with 5 

sets of sea sand images and further verified with images from MSG seeded batch 

cooling crystallization. When the fusion results are compared with those of manual 

segmentation, significant improvement in measurement of PSD and hourly median 

particle size could be obtained.      
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(a) PVM image #20143 
 

(a’) PVM image #19980 
 

(b) IA segmentation 
 

(b’) IA segmentation 
 

(c) MIA segmentation 
 

(c’) MIA segmentation 
 

(d) clear particles are identified by 
both IA & MIA 

 

(d’) clear particles are identified by both 
IA & MIA 

 
Figure 8.1. Clearly imaged representative particles can be identified by multiple 

image processing methodologies. 
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The estimated PSD from the 5 sets of sea sand images (as described in section 4.2.1) 

are plotted in Fig. 8.2 (a), (b), (c), (d) and (e) respectively. It is obvious that IA has 

identified too many small particles and its estimated PSD would not match with that 

of the template for any of the 5 sets of images. MIA performs better than IA, 

especially for Set A, the PSD estimated by MIA is comparable with that of the 

template. While for the other four sets, MIA also identifies too many small particles 

and its estimated PSDs shows mismatch with those of the templates. However, both 

fusion results show a great improvement in estimating PSD, where the estimated 

PSDs are almost the same as those of the templates for all the 5 sets of images. FBF 

and RBF are capable of improving the accuracy of PSD estimation for all the 5 sets 

of sea sand images.   

 

From the images acquired from MSG seeded cooling crystallization process (as 

described in section 4.2.2), PSD estimates obtained at 4-hour intervals by different 

image processing methodologies are compared with those of Template 2 (as stated 

in section 6.1), as shown in Fig. 8.3. In the beginning 4 hours of process time, IA, 

MIA, FBF and RBF could estimate PSD, which match closely with that of Template 

2. With advancing process time, there will be more and more big particles, Template 

2 will have less and less fraction of small particles in its PSD. It is obvious that IA 

and MIA are not able to follow this trend, because they always tend to have high 

fraction of small. However, the FBF and RBF are able to follow Template 2’s PSD 

trend quite well throughout. This result reflects that the two fusion methods are 

effective to select representative particles from IA and MIA segmentations, which 

leads to a more accurate PSD estimation.  
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(e) Set E 
 

(f) Legend for subplot 

Figure 8.2. Estimated PSD for 5 sets of sea sand images. 
(a), (b), (c), (d) and (e) demonstrate the estimated PSD for 5 sets of sea sand images. 
For each set, the PSD estimated by Template, IA, MIA, Region-Based Fusion and 

Feature-Based Fusion are plotted. 
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Figure 8.3. Improvement in PSD estimation for MSG seeded cooling crystallization 

obtained by fusing the segmentations from IA and MIA. Each subplot is for the 
hours shown in the caption of each subfigure. Legend of each subplot is shown in 

Fig. 8.2(f). 
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8.2.2 Further Methods for Particle Segmentation  

For clear images in which particles have clear outlines, IA works well to segment 

out particles. However, the acquired images are with complex situations: i) the 

particle’s outline in the image are usually not so clear, ii) a few particles may 

overlap or agglomerate together, and iii) process noise and bubbles may affect the 

quality of PVM images. Under these circumstances, the particles could not be 

accurately segmented. Further processing is required. We are currently looking on 

designing a solidity filter to get rid of the objects that are not in desired particle 

shape. After that, a rectangle shrinking approach to cut out the stand out stings to the 

particle. 

  

Solidity Filter 

From the image processing steps described in Section 2.4 and Chapter 3, it is 

common to obtain a particle’s boundary as shown by the blue borders in Fig. 8.4. A 

convex polygon enclosing it could be obtained as shown by the red borders. Solidity 

of the identified object is defined as:   

 

Solidity  = (Area of Object) / (Area of Convex Polygon) 

        = (Area included by blue boarder)/(Area included by red border)   (8.1) 

 

For a well segmented particle, it is observed that it will have a regular shape and the 

bounding polygon will fit well. Thus, its solidity value should be quite high. For a 

badly segmented particle, the bounding polygon cannot fit the object tightly and the 

solidity value would be low. As shown in Fig. 8.5, (a) and (a’) are the original PVM 

images, (b) and (b’) show the segmented particles, (c) and (c’) show the segmented 
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particles with solidity value greater than 0.8. It can be observed that the particles 

with irregular shape are ignored and will not be considered for further processing. 

Further work is needed to see if the use of solidity filter provides more accurate 

PSD. 

 

 

 

 

 

 

 

 

 
 

 
Figure 8.4. The segmented particle & its boundary box. 

 
 

 
(a) 

 
(b) (c) 

 
(a’) 

 
(b’) (c’) 

 
Figure 8.5. Application of solidity filter to ignore particles with irregular shapes. 

(a) and (a’) are the original PVM images; (b) and (b’) show the segmented particles; 
(c) and (c’) show the segmented particles with solidity value greater than 0.8. 
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Shrink Bounding Box 

Another common problem in particle segmentation is that an excess part, such as an 

extra sting, is attached to the particle (See Fig. 8.6(a)). To handle this type of 

segmentation artifacts, we would like to shrink the bounding rectangle to make it a 

better fit to the shape of a single particle and cut out the excess part. 

 

 
(a) Original segmented particle with 

sting 
 

(b) Original segmented particle fit to a 
bounding box 

 
(b) Rotate image (a) to make the 

major axis of the particle align 
with the horizontal direction 

 

(d) Rotate image (b) to make particle in 
horizontal direction 

(e) Shrink bounding box to cut out the sting on the particle 
 

Figure 8.6. Single particle segmentation by shrinking bounding box. 
 

In this approach, the image is rotated to make sure that the major axis of the particle 

being processed is parallel to x-axis. Then each pixel inside the rectangle bounding 
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box is scanned line by line and the number of pixels in each line labeled as being 

occupied by particle is recorded. If the number is lower than the threshold limit, this 

line should be deleted from the object area. This step is repeated until all the lines 

are scanned. Fig. 8.6(b) shows the original noisy particle and its bounding box, after 

rotation (Fig. 8.6(c)), and deleting the lines whose percentage of object pixels to 

background pixels is equal or less than 10% (Fig. 8.6(d)). The final result is shown 

in Figure 8.6(e).   

 

8.2.3 Improving the Methodology to Analyze Complex Images 

PVM images taken from high solid concentration crystallization processes may 

exhibit non-uniform background and contain highly aggregated particles that are 

difficult to recognize. The background “noise” may also be high. Figure 8.7 gives 

samples of such images. The first image has many long needle shaped crystals that 

are highly aggregated; the image does not have a high object-to-background contrast 

and it is hard to segment the crystals out. The second image has a very dark and blur 

red background and a few clear crystals in light colour can be identified. The third 

image also has many long needle-shaped crystals, but it is relatively easier to 

segment the crystals out compared to image 1 because image 3 has a relatively high 

object-to-background contrast, the needle-shaped crystals are not as long as those in 

image 1 and the crystals are not highly aggregated. The forth image depicts a 

polymorph transition process from diamond-shaped crystals to needle-shaped 

crystals, and this will cause difficulties in recognizing particles in different shapes 

since the morphology operation identifies particles according to the pre-defined 

shape of an object.   
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(a) Image 1 
 

(b) Image 2 

(c) Image 3 (d) Image 4 
 

Figure 8.7. Samples for 4 sets of complex images. 
 

By fine tuning the IA parameters, IA can process the type of images that are similar 

to image 2, 3 and 4 to segment particles, as shown in Fig. 8.8. However, it fails for 

image 1 due to the low object-to-background contrast and high aggregation of solid 

crystals.  

 

Observing image 1, there are many long needle-shaped crystals and the main idea is 

to find all lines in the images by Hough transform and cluster the parallel lines that 

fall within a short distance. Figure 8.9 shows an example of each step in this method. 

Canny edge detection is first applied to find the clear boundaries, Hough transform 

is then applied to find all the lines and finally line clustering is used to segment long 

lines. There are some difficulties in this method, such as defining the distance 
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between two lines to decide if they should be clustered together. In some cases, the 

distance between two lines belonging to the same particle is longer than the distance 

between two lines belonging to two different particles and this will cause either 

over-clustering or under-clustering. In some images, the clear crystals are not 

identified while artifacts are sometimes identified as crystals. The step causing this 

mistaken identification is the Hough transform, which transforms the edge 

information into distance and angle. Further work is needed to develop a practical 

method for this kind of images.  

(a) 
 

(b) 

(c) 
 

(d) 

(e) (f) 
 

Figure 8.8. IA segments particles from the type of images that are similar to images 
2, 3 & 4 in Fig. 8.7.  
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(a) 
 

(b) 

(c) 
 

(d) 

(e) (f) 
 

Figure 8.9. Identify long needle-shape particles by finding lines. 
(a) original image; (b) edge detection; (c) boundary; (d) lines identified by 

Hough transform; (e) clustered lines; (f) segmented particles.  
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8.2.4 Calibrating the Measurements of Microscope, FBRM and 

PVM 

Both PVM and FBRM are applied to the experiments conducted in chapter 4. PVM 

and microscope measurements of 5 sets of sea sand samples in DI water are also 

compared. There is some difference among the measurements since the measuring 

methods and conditions are different. FBRM measures particle chord length and the 

difference between chord length and actual particle size depend on particle shape. 

PVM measures particle size and shape, but the sampling rate and representation of 

particles will affect its accuracy. Microscope measures both particle shape and size 

with higher accuracy, but most often is used offline and it has to be manually 

operated. It is required to calibrate the measurements of microscope, FBRM and 

PVM, so that the on-line measurements with FBRM and PVM can be accurate and 

reliable.  

 

8.2.5 New Methodology: Using Manually Built Templates 

Currently published methodologies of image based sensors are quite specific to 

certain systems. Thus, they can only be used to analyze images with 

high-aspect-ratio crystals. Methods still need improvement to be able to analyze 

more complex images with overlapped or aggregated particles.  

 

In future, it may be worthwhile to develop a template based method to be used as a 

general methodology to identify particles from on-line images. A template library 

could be built by manually identifying particles from a series of test experimental 
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images. The manually built template library could function as training data for 

pattern recognition to identify particles from images for future crystallization 

processes. The more particles there are in the library, the better it will be for pattern 

recognition and PSD estimation in future rans. Hopefully, this methodology can 

identify particles even in challenging systems (e.g. when solid concentration is 

high).    

 

8.2.6 Closed Loop Control of Crystallization Processes Using 

Image-Based Sensors 

Currently, image based sensors are commonly used for process monitoring or open 

loop process control. Monitoring particle polymorphic transformation using image 

based sensors is one of the most common applications in particulate processes.  

 

As future work, one might pursue closed loop control of particulate processes by 

quantifying the particle size and shape distributions online. A schematic diagram of 

this is as shown in Fig. 4.2. Product quality variables, such as particle shape, size 

and size distribution, would be the controlled variables. Temperature, pressure, 

super-saturation, flow rate for continuous or semi-batch process, cooling rate for 

cooling crystallization, etc. would be the manipulated variables.     

 

Data driven approaches have been very successful in the chemical and related 

industries to monitor processes, detect abnormalities and pinpoint problem sources. 

Based on the data of past crystallization experiments, one can develop monitoring 

systems that are capable of detecting the process fault(s) early and identify the fault 
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components so that an early control decision can be made. A reliable monitoring 

system can increase product quality, reduce product cost and improve overall 

business productivity. Development of such systems based on data from traditional 

and image based sensors would be very interesting and useful for crystallization 

processes. Multiway principal component analysis may be used in this regard.  
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