148 research outputs found

    Polyhedral Approximations of Quadratic Semi-Assignment Problems, Disjunctive Programs, and Base-2 Expansions of Integer Variables

    Get PDF
    This research is concerned with developing improved representations for special families of mixed-discrete programming problems. Such problems can typically be modeled using different mathematical forms, and the representation employed can greatly influence the problem\u27s ability to be solved. Generally speaking, it is desired to obtain mixed 0-1 linear forms whose continuous relaxations provide tight polyhedral outer-approximations to the convex hulls of feasible solutions. This dissertation makes contributions to three distinct problems, providing new forms that improve upon published works. The first emphasis is on devising solution procedures for the classical quadratic semi-assignment problem(QSAP), which is an NP-hard 0-1 quadratic program. The effort begins by using a reformulation-linearization technique to recast the problem as a mixed 0-1 linear program. The resulting form provides insight into identifying special instances that are readily solvable. For the general case, the form is shown to have a tight continuous relaxation, as well as to possess a decomposable structure. Specifically, a Hamiltonian decomposition of a graph interpretation is devised to motivate a Lagrangian dual whose subproblems consist of families of separable acyclic minimum-cost network flows. The result is an efficient approach for computing tight lower bounds on the optimal objective value to the original discrete program. Extensive computational experience is reported to evaluate the tightness of the representation and the expedience of the algorithm. The second contribution uses disjunctive programming arguments to model the convex hull of the union of a finite collection of polytopes. It is well known that the convex hull of the union of n polytopes can be obtained by lifting the problem into a higher-dimensional space using n auxiliary continuous (scaling) variables. When placed within a larger optimization problem, these variables must be restricted to be binary. This work examines an approach that uses fewer binary variables. The same scaling technique is employed, but the variables are treated as continuous by introducing a logarithmic number of new binary variables and constraints. The scaling variables can now be substituted from the problem. Moreover, an emphasis of this work, is that specially structured polytopes lead to well-defined projection operations that yield more concise forms. These special polytopes consist of knapsack problems having SOS-1 and SOS-2 type restrictions. Different projections are defined for the SOS-2 case, leading to forms that serve to both explain and unify alternative representations for piecewise-linear functions, as well as to promote favorable computational experience. The third contribution uses minimal cover and set covering inequalities to define the previously unknown convex hulls of special sets of binary vectors that are lexicographically lower and upper bounded by given vectors. These convex hulls are used to obtain ideal representations for base-2 expansions of bounded integer variables, and also afford a new perspective on, and extend convex hull results for, binary knapsack polytopes having weakly super-decreasing coefficients. Computational experience for base-2 expansions of integer variables exhibits a reduction in effort

    Convex Hull Characterization of Special Polytopes in n-ary Variables

    Get PDF
    This paper characterizes the convex hull of the set of n-ary vectors that are lexicographically less than or equal to a given such vector. A polynomial number of facets is shown to be sufficient to describe the convex hull. These facets generalize the family of cover inequalities for the binary case. They allow for advances relative to both the modeling of integer variables using base-n expansions, and the solving of n-ary knapsack problems with weakly super-decreasing coefficients

    Algorithms in Intersection Theory in the Plane

    Get PDF
    This thesis presents an algorithm to find the local structure of intersections of plane curves. More precisely, we address the question of describing the scheme of the quotient ring of a bivariate zero-dimensional ideal I⊆K[x,y]I\subseteq \mathbb K[x,y], \textit{i.e.} finding the points (maximal ideals of K[x,y]/I\mathbb K[x,y]/I) and describing the regular functions on those points. A natural way to address this problem is via Gr\"obner bases as they reduce the problem of finding the points to a problem of factorisation, and the sheaf of rings of regular functions can be studied with those bases through the division algorithm and localisation. Let I⊆K[x,y]I\subseteq \mathbb K[x,y] be an ideal generated by F\mathcal F, a subset of A[x,y]\mathbb A[x,y] with A↪K\mathbb A\hookrightarrow\mathbb K and K\mathbb K a field. We present an algorithm that features a quadratic convergence to find a Gr\"obner basis of II or its primary component at the origin. We introduce an m\mathfrak m-adic Newton iteration to lift the lexicographic Gr\"obner basis of any finite intersection of zero-dimensional primary components of II if m⊆A\mathfrak m\subseteq \mathbb A is a \textit{good} maximal ideal. It relies on a structural result about the syzygies in such a basis due to Conca \textit{\&} Valla (2008), from which arises an explicit map between ideals in a stratum (or Gr\"obner cell) and points in the associated moduli space. We also qualify what makes a maximal ideal m\mathfrak m suitable for our filtration. When the field K\mathbb K is \textit{large enough}, endowed with an Archimedean or ultrametric valuation, and admits a fraction reconstruction algorithm, we use this result to give a complete m\mathfrak m-adic algorithm to recover G\mathcal G, the Gr\"obner basis of II. We observe that previous results of Lazard that use Hermite normal forms to compute Gr\"obner bases for ideals with two generators can be generalised to a set of nn generators. We use this result to obtain a bound on the height of the coefficients of G\mathcal G and to control the probability of choosing a \textit{good} maximal ideal m⊆A\mathfrak m\subseteq\mathbb A to build the m\mathfrak m-adic expansion of G\mathcal G. Inspired by Pardue (1994), we also give a constructive proof to characterise a Zariski open set of GL2(K)\mathrm{GL}_2(\mathbb K) (with action on K[x,y]\mathbb K[x,y]) that changes coordinates in such a way as to ensure the initial term ideal of a zero-dimensional II becomes Borel-fixed when ∣K∣|\mathbb K| is sufficiently large. This sharpens our analysis to obtain, when A=Z\mathbb A=\mathbb Z or A=k[t]\mathbb A=k[t], a complexity less than cubic in terms of the dimension of Q[x,y]/⟨G⟩\mathbb Q[x,y]/\langle \mathcal G\rangle and softly linear in the height of the coefficients of G\mathcal G. We adapt the resulting method and present the analysis to find the ⟨x,y⟩\langle x,y\rangle-primary component of II. We also discuss the transition towards other primary components via linear mappings, called \emph{untangling} and \emph{tangling}, introduced by van der Hoeven and Lecerf (2017). The two maps form one isomorphism to find points with an isomorphic local structure and, at the origin, bind them. We give a slightly faster tangling algorithm and discuss new applications of these techniques. We show how to extend these ideas to bivariate settings and give a bound on the arithmetic complexity for certain algebras
    • …
    corecore