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Abstract

This paper characterizes the convex hull of the set of n-ary vectors that are lexicographically less

than or equal to a given such vector. A polynomial number of facets is shown to be sufficient to

describe the convex hull. These facets generalize the family of cover inequalities for the binary case.

They allow for advances relative to both the modeling of integer variables using base-n expansions,

and the solving of n-ary knapsack problems with weakly super-decreasing coefficients.

Key words: convex hull, facets, n-ary optimization, knapsack problem.
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Chapter 1

Introduction

This work describes the convex hull of the set of n-ary vectors that are lexicographically

smaller than a given vector α ∈ R
p. An n-ary vector a is a vector whose components are integer

between 0 and n− 1, i.e., a ∈ {0, 1, . . . , n− 1}p. We say that a vector a is lexicographically smaller

than a vector b, and denote it with a � b, if the first nonzero entry of a− b is negative.

Let us define N = {0, 1, . . . , n− 1}. Given an n-ary vector α ∈ Np, the task is to compute

the convex hull of the set of n-ary vectors that is lexicographically less than or equal to α. In other

words, the task is to compute the convex hull of the set S, denoted by conv(S), where

S ≡ {x ∈ Np : x � α}, (1.1)

and Np denotes the set of integer p-vectors with components in N . We assume without loss of

generality that α1 6= 0 since otherwise we can fix x1 = 0. Similarly, we assume that αp 6= n− 1 since

otherwise the only restrictions on xp would be 0 ≤ xp ≤ n− 1.

The set S of (1.1) has relevance in computing base-n expansions of integer variables. Suppose

we are given a nonnegative integer variable y that is bounded above by some scalar β, where np−1 <

β ≤ np. Further suppose that the vector α is subsequently defined in terms of β so that β =

∑p

j=1
np−jαj . It is trivial to prove that for any β the vector α is unique. Then the n-ary expansion
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of y computed by the set

T ≡







(x, y) ∈ Np × Z : 0 ≤ x ≤ (n− 1)1, y =

p
∑

j=1

np−jxj , y ≤ β







, (1.2)

where 1 = (1, 1, . . . , 1), is equivalently expressed by the set

W ≡







(x, y) ∈ Np × Z : y =

p
∑

j=1

np−jxj , x ∈ S







. (1.3)

In other words, we study the set of all encodings x of the values of y such that y ≤ β by imposing

that x � α, where α is an n-ary encoding of β. Consequently, an explicit representation of conv(S)

gives us conv(T ) as

conv(T ) = conv(W ) =







(x, y) ∈ Np × Z : y =

p
∑

j=1

np−jxj , x ∈ conv(S)







. (1.4)

The convex hull representation for the base-2 expansion of integer variables was provided in [1] and

[2], but no mention was made of any other base. As we will see, the cuts required to compute

conv(W ) are substantially different from those found in [2] and are an extension thereof.

Now, given an n-ary vector α ∈ Np, an n-ary vector x will have x � α if and only if the

following condition is satisfied. For each i ∈ {1, . . . , p} having xi > αi, there must exist a j < i so

that xj < αj . Equivalently, we must have

i−1
∑

j=1

(max{0, αj − xj}) ≥ 1 ∀i ∈ {1, . . . , p} : xi > αi. (1.5)

Inequality (1.5) is not needed for any i having αi = n− 1. Furthermore, for the special case where

each αi is binary and all xi are restricted to be binary, inequalities (1.5) simplify to the minimal

cover inequalities

∑

j<i: αj=1

(1− xj) ≥ xi for all i ∈ {1, . . . , p} such that αi = 0, (1.6)

as found in [1, 2]. The challenge is to find inequalities in the spirit of (1.6) that model (1.5) for

n-ary αi and xi.
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Chapter 2

Facets and Convex Hull

Characterization

Given an n-ary vector α ∈ R
p, we begin by establishing properties of inequalities of the

form
∑

j γjxj ≤ β that are valid for S.

Lemma 2.0.1. Given any inequality of the form
∑

j γjxj ≤ β that is valid for S, the inequality

∑

j max{0, γj}xj ≤ β is also valid for S.

Proof. Consider any inequality of the form
∑

j γjxj ≤ β that is valid for S, and having an index t

with γt < 0. If every x ∈ S has xt = 0, then 0xt +
∑

j 6=t γjxj ≤ β is also valid. Otherwise, for each

x̄ ∈ S having x̄t > 0, the vector x̂ defined in terms of x̄ by x̂j = x̄j for all j 6= t and x̂t = 0 has

x̂ ∈ S so that 0x̄t +
∑

j 6=t γj x̄j =
∑

j γj x̂j ≤ β is also valid.

By virtue of the above Lemma, and provided that x ≥ 0 is enforced, we need only consider

those inequalities
∑

j γjxj ≤ β having γj ≥ 0 for all j. This consideration follows because any

inequality of the form
∑

j γjxj ≤ β having at least one γj < 0 is implied by
∑

j max{0, γj}xj ≤ β

and x ≥ 0. In the remainder of this paper, we assume that γj ≥ 0 for all j. Consider the following

result which addresses a special family of these inequalities.

Theorem 2.0.2. Given any n-ary vector α ∈ R
p, an inequality of the form

p
∑

j=1

γj(αj − xj) ≥ 0 (2.1)
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with γj ≥ 0 for all j = 1, . . . , p, is valid for S if and only if

γj ≥
∑

k>j

γk(n− 1− αk) ∀ j ∈ {1, . . . , p− 1} : αj 6= 0. (2.2)

Proof. (Only if )

Consider any inequality of the form (2.1) with γj ≥ 0 for all j = 1, . . . , p that is valid for S, and

select any t ∈ {1, . . . , p−1} having αt 6= 0. The vector x̄ ∈ S given by x̄j = αj for j < t, x̄t = αt−1,

and x̄j = n− 1 for j > t has

γt +

p
∑

j=t+1

γj(αj − n+ 1) ≥ 0

when inserted into (2.1), verifying (2.2).

(If)

Consider any inequality of the form (2.1) with γj ≥ 0 for all j = 1, . . . , p that satisfies (2.2).

Arbitrarily select x̄ ∈ S. The proof is to show that x̄ satisfies (2.1). If x̄ = α, then (2.1) is trivially

satisfied. Otherwise, let t be the first entry of x̄ having x̄j 6= αj , so that x̄t < αt as x̄ ∈ S. Then

p
∑

j=1

γj(αj − x̄j) = γt(αt − x̄t) +
∑

j>t

γj(αj − x̄j) ≥ γt +
∑

j>t

γj(αj − n+ 1) ≥ 0

where the equality results from x̄j = αj for all j < t, and the inequality follows from the nonnegativity

of γ, together with x̄t ≤ αt − 1 and x̄j ≤ n− 1 for all j > t. This completes the proof.

In the following, we prove that the only inequalities that are needed for our description are

those that satisfy condition (2.2) at equality. To this purpose, we consider a subset of p inequalities

of the form (2.1):

p
∑

j=1

γij(αj − xj) ≥ 0 ∀i = 1, 2, . . . , p : αi < n− 1, (2.3)

4



where

γij =































1 if j = i

0 if j > i or (j < i and αj = 0)

∑i

k=j+1
γik(n− 1− αk) if j < i, αj 6= 0.

(2.4)

Note that (2.4) satisfy (2.2) at equality if j < i and αj 6= 0.

Lemma 2.0.3. The definition of coefficients γij is equivalent to the following:

γij =































1 if j = i

0 if j > i or (j < i and αj = 0)

(n− 1− αi)
∏

j<k<i:αk 6=0
(n− αk) if j < i and αj 6= 0.

(2.5)

Proof. The proof is by induction. Suppose that there are only m nonzero elements of α, denoted

αjl , l ∈ {1, 2, . . . ,m}, where m is any integer between 1 and i, and 1 = j1 < j2 < · · · < jm ≤ i as

per our assumption that α1 6= 0. For j = jm, γi,jm = γii(n− 1− αi) = (n− 1− αi).

Suppose that, for jl, where j1 ≤ jl ≤ jm,

γi,jl =
∑

jl<j≤i:αj 6=0

γij(n− 1− αj) = (n− 1− αi)
∏

jl<j<i:αj 6=0

(n− αj).

Then for every preceding coefficient γi,jl−1
we have

γi,jl−1
=

∑

jl−1<j≤i:αj 6=0
γij(n− 1− αj)

= γi,jl(n− 1− αjl) +
∑

jl<j≤i:αj 6=0
γij(n− 1− αj)

= γi,jl(n− 1− αjl) + γi,jl

= γi,jl(n− αjl)

= (n− 1− αi)(n− αjl)
∏

jl<j<i:αj 6=0
(n− αj)

= (n− 1− αi)
∏

jl−1<j<i:αj 6=0
(n− αj).

The proof is complete.
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Now consider the following polytope F :

F ≡







x ∈ R
p : 0 ≤ x ≤ (n− 1)1,

p
∑

j=1

γij(αj − xj) ≥ 0 ∀i = 1, . . . , p







. (2.6)

Note that for each i such that αi = n − 1, we have γij = 0 for all j < i so that the associated

inequality reduces to the upper bounding restriction n− 1− xi ≥ 0.

We now follow up on Theorem 2.0.2 to further restrict the set of valid inequalities for S.

We prove that the p inequalities

p
∑

j=1

γij(αj − xj) ≥ 0 ∀i = 1, 2, . . . , p

are sufficient to describe S and that any other inequality can be obtained as a conic combination of

inequalities from this family.

Theorem 2.0.4. Any inequality of the form

p
∑

j=1

βj(αj − xj) ≥ 0, (2.7)

with βj ≥ 0 for all j = 1, . . . , p, that is valid for S can be expressed as a conic combination of the

inequalities (2.3).

Proof. Without loss of generality, we assume βp = 1. Otherwise, the inequality can be normalized

or, if βp = 0, we can simply consider the inequality
∑p−1

j=1
βj(αj − xj) ≥ 0 . Let us also recall that

γpj =
∑

k>j γpk(n− 1− αk) ∀j = 1, 2, . . . , p : αj 6= 0

βj ≥
∑

k>j βk(n− 1− αk) ∀j = 1, 2, . . . , p : αj 6= 0,
(2.8)

which implies that βj ≥ γpj for all j = 1, 2, . . . , p. Subtracting the p-th inequality of (2.3) from (2.7)

yields

p
∑

j=1

(βj − γpj)(αj − xj) ≥ 0. (2.9)
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Let ηk = βk − γpk, for k = 1, 2, . . . , p. Note that ηp = 0 and, for all j = 1, 2, . . . , p such that αj 6= 0,

ηj = βj − γpj ≥
∑

k>j

(βk − γpk)(n− 1− αk) =
∑

k>j

ηk(n− 1− αk)

Therefore the ηj ’s satisfy (2.2). If ηj = 0, ∀j = 1, 2, . . . , p, then the proof is complete. Otherwise,

suppose that q < p is the largest index such that ηq > 0. Now re-set all ηj ’s by dividing them by

ηq. The new vector η is such that ηq = 1. The procedure can be repeated on the inequality

q
∑

j=1

ηj(αj − xj) ≥ 0

by subtracting from it the q-th inequality in (2.3),
∑q

j=1
γqj(αj − xj) ≥ 0. Because this replicates

the conditions described above on β and q < p, the procedure terminates in a finite number of steps

and allows us to construct (2.7) as a conic combination of (2.3).

The argument below shows that the inequalities of (2.6), together with integral restrictions

on x, define S of (1.1). Here, we let I ≡ Z
p ∩ F denote the set of integral vectors in F.

Lemma 2.0.5. I = S.

Proof. We have S ⊆ I by Theorem 2.0.2 since the inequalities defining (2.6) are valid for S. To show

that I ⊆ S, consider any x̄ ∈ I. If x̄ = α, then x̄ ∈ S. Otherwise, let q be the first entry of x̄ having

x̄j 6= αj . Then we have

αq − x̄q = γqq(αq − x̄q) =
∑

j≤q

γqj(αj − x̄j) ≥ 0, (2.10)

where the first equality follows from the definition of γqq = 1 in (2.5), the second equality follows

since αj = x̄j for all j < q, and the inequality follows from (2.6) with i = q. Thus, x̄q < αq, and the

proof is complete.

Example. Suppose n = 3 so that we are considering ternary vectors, and let p = 5 with αT =

7



(1, 1, 0, 2, 1). Further let

























1 0 0 0 0

1 1 0 0 0

4 2 1 0 0

0 0 0 1 0

2 1 0 1 1

























denote the lower-triangular 5× 5 matrix whose (i, j)th

entry for i ≥ j records γij from (2.5), and whose (i, j)th entry for i < j is set to 0 to denote that

the associated terms do not appear in the generated inequalities. Then (2.6) becomes, in matrix

notation,

F ≡















































x ∈ R
5 : 0 ≤ x ≤ 2,

























1 0 0 0 0

1 1 0 0 0

4 2 1 0 0

0 0 0 1 0

2 1 0 1 1

















































(1− x1)

(1− x2)

(0− x3)

(2− x4)

(1− x5)

























≥

























0

0

0

0

0







































































.

Finally, observe that by placing integrality restrictions on the variables x in F, we have I = (x ∈

Z
p ∩ F ) to obtain I = S.

Lemma 2.0.5 shows that an integral x has x ∈ F of (2.6) if and only if x ∈ S. It turns

out, however, that F is also an integral polytope so that conv(x ∈ (Zp ∩ F )) = F, giving us that

conv(S) = F .

We now present our main result.

Theorem 2.0.6. Given any p ≥ 1 and any n-ary vector α ∈ R
p, we have conv(S) = F, where S

and F are as given in (1.1) and (2.6) respectively.

Proof. Since the bounding restrictions 0 ≤ x ≤ (n− 1)1 of (2.6) are trivially satisfied for all x ∈ S,

and since the remaining inequalities of (2.6) are valid for S by the sufficiency (If) portion of Theorem

2.0.2, we have that conv(S) ⊆ F. We show that F ⊆ conv(S) by demonstrating that all the extreme

points of F are integer, using an inductive argument on the number p of variables x.

For k = 1, F is simply F1 = {x ∈ [0, n− 1] : x1 ≤ α1} = [0, α1], and its extreme point are 0

and α1, both integer.

For k = 2, we have F2 = {(x1, x2) : x1 = 0, 0 ≤ x2 ≤ α2} if α1 = 0 (but we remind that

this case is excluded by assumption) and F2 = {(x1, x2) : 0 ≤ x1 ≤ α1, 0 ≤ x2 ≤ n − 1, (n − 1 −

8



α2)x1 + x2 ≤ (n − 1 − α2)α1 + α2} if α1 6= 0, both sets of which can be readily shown to have all

integral extreme points for α1, α2 ∈ N2.

Consider now the generic k. The set Fk is the polyhedron obtained by intersecting [0, n−1]k

with the inequalities (2.3) for i = 1, 2, . . . , k. By the induction hypothesis, the extreme points of Fk

are all integer. An extreme point can be constructed by choosing k linearly independent inequalities

from those defining Fk (note that Fk is defined by 3k inequalities: k inequalities (2.3), k lower

bounds, and k upper bounds on x1, x2, . . . , xk).

Assume that αk+1 < n − 1. Otherwise, (xk, xk+1) � (αk, αk+1) if and only if xk � αk,

which is implied by the induction hypothesis. Fk+1 is then a polyhedron in R
k+1 constructed with

the inequalities defining Fk and amended with the following:

0 ≤ xk+1 ≤ n− 1

∑

j≤k+1
γk+1,j(αj − xj) ≥ 0. (2.11)

We want to prove that if the above procedure generates a feasible extreme point, then it is integer.

We have the following four ways of constructing an extreme point by intersecting k + 1 linearly

independent inequalities.

(a) k inequalities from Fk plus xk+1 ≥ 0 (resp. xk+1 ≤ n− 1). Suppose the k inequalities from Fk

yield x. If x /∈ Fk, nothing else is needed. Otherwise, this extreme point is obtained as (x, 0)

(resp. (x, n− 1)), which is integer since x is an extreme point of Fk. If x ∈ Fk but (x, n− 1) is

infeasible, again the result holds.

(b) k inequalities from Fk plus (2.11). For this case, since all k inequalities have coefficient 0 on

xk+1, we can first compute xk = (x1, x2, . . . , xk) using the first k inequalities. By the induction

hypothesis, if xk is feasible, then it is integer. If it is infeasible, nothing else is needed. Then we

solve for xk+1 by substituting the integer xk into (2.11). Since the coefficient of xk+1 in that

inequality is 1, we get xk+1 =
∑k+1

j=1
γk+1,jαj −

∑k

j=1
γk+1,jxj , which is integer. If xk+1 > n−1

or xk+1 < 0, then x = (xk, xk+1) is infeasible. Otherwise, x = (xk, xk+1) provides an integer

extreme point.

(c) k − 1 inequalities from Fk plus xk+1 ≤ n− 1 and (2.11).

(d) k − 1 inequalities from Fk plus xk+1 ≥ 0 and (2.11).

9



The last two cases need to be treated separately. Note that the case that combines k−1 inequalities

from Fk plus xk+1 ≥ 0 and xk+1 ≤ n − 1 can be omitted since it does not form k + 1 linearly

independent inequalities.

Proof for case (c). Let αk be the subvector of α with its first k components, and define xk

similarly. Let αk+1 = (αk, αk+1), and suppose there are only m nonzero elements in αk, denoted

αij , j ∈ {1, 2, . . . ,m}, where m is any integer between 1 and k, and 1 = i1 < i2 < · · · < im ≤ k

as per our assumption that α1 6= 0. Fix xk+1 = n − 1. Consider the vector α⋆
k ∈ Nk such that

α⋆
k ≺ αk and there is no a ∈ Nk : α⋆

k ≺ a ≺ αk, i.e., the vector α⋆
k that is lexicographically one

less αk. Then (xk, n− 1) � (αk, αk+1) if and only if (i) αk+1 = n− 1 and xk � αk or (ii) xk � α⋆
k.

The first case is trivial and we do not discuss it. Because αik 6= 0 for k = 1, 2, . . . ,m, we have

α⋆
k = (αi1 , . . . , αi2 , . . . , αim − 1, n− 1, . . . , n− 1). We rewrite all inequalities of Fk+1, except for the

inequalities written for αi = 0 and i < im, as follows:

ik
∑

j=1

γik,j(αj − xj) ≥ 0 ∀k = 1, 2, . . . ,m− 1

im
∑

j=1

γim,j(αj − xj) ≥ 0 (2.12)

im
∑

j=1

γi,j(αj − xj) + (αl − xl) ≥ 0 ∀i : im < i ≤ k (2.13)

im
∑

j=1

γk+1,j(αj − xj) + (αk+1 − (n− 1)) ≥ 0. (2.14)

Dividing (2.14) by αk+1 − (n− 1) yields

im
∑

j=1

γ̄k+1,j(αj − xj) + 1 ≥ 0, (2.15)

where γ̄k+1,j = γk+1,j/(αk+1 − (n− 1)).

Let us write the inequalities for the set F ⋆
k . Recall that F

⋆
k is the set of vectors xk such that

xk � α⋆
k.

ik
∑

j=1

γik,j(α
⋆
j − xj) ≥ 0 ∀k = 1, 2, . . . ,m− 1

10



im
∑

j=1

γim,j(α
⋆
j − xj) ≥ 0 (2.16)

xi ≤ n− 1 ∀i : im < i ≤ k

Note that (2.16) and (2.15) are the same, and we want to show that F ′
k+1

and F ⋆
k are

identical, where F ′
k+1

:= {x ∈ Fk+1 : xk+1 = n − 1}. Note that the first im − 1 inequalities

from the two sets are the same. We see that (2.12) can be constructed by multiplying (2.15) by

(n− 1− αim)/(n− αim) and adding (xim − n + 1 ≤ 0) multiplied by 1/(n− αim), and is thus

redundant. Also, we can show that (2.13) can be constructed by multiplying (2.15) by (n− 1− αl)

and adding (xl ≤ n − 1 − αl), and the last inequality holds because αl = 0. Thus, (2.13) is

redundant for l = im + 1, im + 2, . . . , k. Hence, the two sets F ′
k+1

and F ⋆
k are identical. Since, by

the induction hypothesis, F ⋆
k is a polyhedron with integer extreme points only, the feasible extreme

points generated by this case are all integer.

Example. Consider the example shown above, where αT = (1, 1, 0, 2, 1). Then α⋆
4 = (1, 1, 0, 1),

and

F ⋆
4 ≡



































x ∈ R
4 : 0 ≤ x ≤ 2,



















1 0 0 0

1 1 0 0

4 2 1 0

2 1 0 1





































(1− x1)

(1− x2)

(0− x3)

(1− x4)



















≥



















0

0

0

0





















































.

We notice that the first three inequalities of F5 and F ⋆
4 are the same and the fifth inequality of F5,

when substituting x5 = 2, is just the fourth inequality of F ⋆
4 , thus F

′
5 = F ⋆

4 .

Proof for case (d). If αk+1 > 0, we want to prove that (2.11) after letting xk+1 = 0 is redundant,

so that this subcase does not generate feasible extreme points.

Suppose there are m nonzeros among the first k elements of α, where m is any integer

between 1 and k. Let us index them with the set {ij : j = 1, 2, . . . ,m}, and denote them as

αi1 , αi2 , . . . , αim 6= 0, where i1 < i2 < · · · < im. Then after letting xk+1 = 0, (2.11) becomes:

m
∑

j=1

γk+1,ij (αij − xij ) + αk+1 ≥ 0. (2.17)
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since γk+1,j = 0 for j /∈ {i1, i2, . . . , im}. We can prove that (2.17) is redundant by proving that

m
∑

j=1

γk+1,ij (αij − xij ) ≥ 0 (2.18)

is redundant. To this purpose, define ξih,j =
∏h

q=j+1
(n−αiq ). This implies that ξim,j = γk+1,j/(n− 1− αk+1)

for all j ≤ im such that αj 6= 0, and that ξim,im = 1. Therefore, (2.18) is equivalent to

m
∑

j=1

ξim,ij (αij − xij ) ≥ 0. (2.19)

It is easy to show that ξim,j = γim,j + ξim−1,j for j < im such that αj 6= 0, while ξim−1,im = 0 since

ξim,im = γim,im = 1. As a result, (2.19) is the sum of the two inequalities

∑m

j=1
γim,ij (αij − xij ) ≥ 0

∑m−1

j=1
ξim−1,ij (αij − xij ) ≥ 0,

where ξim−1,im−1
= 1. The first inequality is analogous to (2.19) and hence subject to the same

decomposition step. By repeating this procedure on the second inequality, we can prove that (2.18)

can be obtained by a conic combination of the m inequalities for αij 6= 0, j = 1, 2, . . . ,m, since

all multipliers are positive. Because αk+1 > 0, (2.17) is redundant. If αk+1 = 0, then let α =

[αi1 , . . . , αi2 , . . . , αim , . . . , 0], and since xk+1 = 0, we denote x = (xk, 0), α = (αk, 0), and therefore

x � α is equivalent to xk � αk. This completes the inductive step and hence the proof.

Example. Consider one more time the example described above, where αT = (1, 1, 0, 2, 1). The

fifth inequality of F5, after fixing x5 = 0, is

2(1− x1) + (1− x2) + (0− x3) + (2− x4) ≥ −1. (2.20)

It is easy to see that

2(1− x1) + (1− x2) + (0− x3) + (2− x4) ≥ 0

can be constructed by summing the first three inequalities of F5, which implies that (2.20) is redun-

dant.
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Chapter 3

Conclusions

In this paper, we study the convex hull of the set S of n-ary vectors that are lexicographically

less than or equal to a given such vector α. Because of the nature of lexicographic orderings, we

first show that this set is equivalent to a set I defined by a polynomial number of inequalities whose

coefficients satisfy a specific property, together with upper and lower bounds on the variables and

integrality constraints. Our main result shows that relaxing the integrality constraints yields a set

F that is the convex hull of S. We believe that similar results can be made when we introduce the

condition that a vector x be lexicographically greater than or equal to another vector β. Also, these

constraints yield a coefficient matrix that is lower triangular and has ones on the diagonal, and is

hence unimodular; it is therefore of interest to study generalizations of this type of problem.
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