300 research outputs found

    Newton Nonholonomic Source Seeking for Distance-Dependent Maps

    Full text link
    The topics of source seeking and Newton-based extremum seeking have flourished, independently, but never combined. We present the first Newton-based source seeking algorithm. The algorithm employs forward velocity tuning, as in the very first source seeker for the unicycle, and incorporates an additional Riccati filter for inverting the Hessian inverse and feeding it into the demodulation signal. Using second-order Lie bracket averaging, we prove convergence to the source at a rate that is independent of the unknown Hessian of the map. The result is semiglobal and practical, for a map that is quadratic in the distance from the source. The paper presents a theory and simulations, which show advantage of the Newton-based over the gradient-based source seeking

    Adaptive consensus based formation control of unmanned vehicles

    Get PDF
    Over the past decade, the control research community has given significant attention to formation control of multiple unmanned vehicles due to a variety of commercial and defense applications. Consensus-based formation control is considered to be more robust and reliable when compared to other formation control methods due to scalability and inherent properties that enable the formation to continue even if one of the vehicles experiences a failure. In contrast to existing methods on formation control where the dynamics of the vehicles are neglected, this dissertation in the form of four papers presents consensus-based formation control of unmanned vehicles-both ground and aerial, by incorporating the vehicle dynamics. First, neural networks (NN)-based optimal adaptive consensus-based formation control over finite horizon is presented for networked mobile robots or agents in the presence of uncertain robot/agent dynamics and communication. In the second paper, a hybrid automaton is proposed to control the nonholonomic mobile robots in two discrete modes: a regulation mode and a formation keeping mode in order to overcome well-known stabilization problem. The third paper presents the design of a distributed consensus-based event-triggered formation control of networked mobile robots using NN in the presence of uncertain robot dynamics to minimize communication. All these papers assume state availability. Finally, the fourth paper extends the consensus effort by introducing the development of a novel nonlinear output feedback NN-based controller for a group of quadrotor UAVs --Abstract, page iv

    Path following for a target point attached to a unicycle type vehicle

    Get PDF
    In this article, we address the control problem of unicycle path following, using a rigidly attached target point. The initial path following problem has been transformed into a reference trajectory following problem, using saturated control laws and a geometric characterization hypothesis, which links the curvature of the path to be followed with the target point. The proposed controller allows global stabilization without restrictions on initial conditions. The effectiveness of this controller is illustrated through simulations
    • …
    corecore