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Path Following for a Target Point Attached to a Unicycle
Type Vehicle

S. Laghrouche · Y. Chitour · M. Harmouche ·
F.S. Ahmed

Abstract In this article, we address the control problem of unicycle path following, us-
ing a rigidly attached target point. The initial path following problem has been transformed
into a reference trajectory following problem, using saturated control laws and a geomet-
ric characterization hypothesis, which links the curvature of the path to be followed with
the target point. The proposed controller allows global stabilization without restrictions on
initial conditions. The effectiveness of this controller is illustrated through simulations.

Keywords Unicycle · Path following · Attached target point · Global stabilization

1 Introduction

The case of vehicle path following using a “target point” (situated at a distance from the
vehicle) is well known in the domain of automatic vehicle guidance. This technique is often
used in robotic vehicles with artificial camera vision, where the camera is fixed on the vehi-
cle and the target point (physical or virtual) is situated somewhere in its field of view. This
problem has been the subject of many research works in the recent years [1–7]. The dom-
inant trend in the contemporary literature is to control either the vehicle’s forward velocity
(thereby, not controlling the vehicle’s orientation), or the instantaneous rotational velocity
only. Hence, essentially only one actuator is used.
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In [2], a local path following strategy has been proposed, which takes uncertainties into
account as well. Their solution is based on a control law that comprises of two terms; an
open loop control that allows inversion of the nominal model, and a closed loop control that
stabilizes the resulting system. It should be noted that the error dynamics obtained in [2]
are expressed in the Frénet frame associated to the followed path (a technique that has also
been discussed in [5]). While the use of Frénet frames is convenient, its application is local,
i.e. the convenience is significant only when the vehicle is close to the path (with respect
to a universal constant), positioned and oriented. When such ideal situations are not present
and the vehicle is actually located far from the path, another controller (e.g. an open loop
control) takes over to bring the vehicle in the path’s proximity before the primary controller
starts operation.

In [8, 9], a polar state transformation has been used to ensure tracking of smooth plane
trajectory for a trailer-truck vehicle. This coordinate transformation is not global, therefore
the proposed controllers only ensure local stabilization of the system. In [10], controllers
have been proposed to follow a reference trajectory using a virtual vehicle approach, where
the motion of the reference point on the desired trajectory is governed by a differential
equation containing the error feedback. The proposed controllers do not ensure convergence
to the reference trajectory itself. In fact the convergence is limited to a bounded distance
from the trajectory. This is due to the fact that this controller stabilizes the angle variable
exponentially.

In this paper, we present a target point based path following technique for a robot unicy-
cle. The target point has been considered fixed with respect to a point on the vehicle. More
precisely, the target point is at a fixed distance d > 0 from the center of gravity on the axis
of the vehicle. Our control objective is to drive the vehicle, such that the target point follows
the desired path (see Fig. 1 below). We have assumed that the vehicle’s velocity is measured
only, and not controlled. This assumption conforms with practical applications, where other
intelligent systems control the velocity, (for example, ABS, ESP [11]).

The primary objective of this work is to conceive global control laws, which are appli-
cable regardless of the initial position and orientation of the vehicle w.r.t. the path to be
followed. Hence the problem can be defined as orientation control with a forced forward
velocity. Our solution is based upon parameterization of the reference path as “the trajectory
of a unicycle”, the forward velocity of which can be considered as a supplementary control
variable. A similar approach can be found in [1] and [2], where orientation control of a ve-
hicle is under consideration. The authors have achieved this through a dynamic inversion
process, implemented using adaptive parametrization of the followed path. In our work, we
have chosen the opposite direction, converting the problem of path following into a special
case of trajectory following. Furthermore, we have also considered the trajectory of the tar-
get point as the trajectory of a unicycle. This allows us to express the error dynamics as the
difference between the unicycle dynamics defined by the reference path, and the unicycle
dynamics defined by the target point. We have thus obtained a controlled system with three
dimensional state and two control inputs (the forward velocity of the reference path and the
angular velocity of the vehicle).

Our control law is based upon state feedback with static error control algorithms, along
with saturated input technique [12–15]. As would be shown further on, the application of
bounded inputs is justified by two constraints, (a) to maintain the forward velocity on the
reference path uniformly bounded, (b) to focus on controlling the orientation of the unicycle
defined by the target point, rather than controlling the orientation of the vehicle. It is worth
mentioning that in order to satisfy constraint (b), we have supposed the geodesic curvature
of the followed path to be strictly bounded in magnitude by the inverse of the distance d .
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Application of such type of bounded commands in the same context (trajectory following
of unicycle robots) can be found in [3]. The stability analysis is based on an argument of
the Lyapunov type. Our contribution, compared to [3] is the determination of a strict and
global Lyapunov Function on an appropriate basin of attraction. As a byproduct, we can
handle model uncertainties, external perturbations as well as (constant) delays as indicated
in a series of remarks preceding the simulation section.

2 Vehicle Model and Reference Trajectory

Let us consider a path γ with geodesic curvature κ∗
r whose absolute value is bounded by

κmax ≥ 0. As described in the introduction, we want to parameterize γ as a unicycle trajec-
tory with a forward velocity u(t) such that γ (t) = (pr(t), qr (t)) can be described by the
following state equations :

ṗr = u cosψr,

q̇r = u sinψr,

ψ̇r = uκr,

(1)

where κr , is the scalar curvature associated to the parametrization of γ by time t . The rela-
tionship between the arclength s of γ and time t for the trajectory (pr , qr ,ψr) is given by
s(t) = s0 + ∫ t

0 u(τ)dτ . The scalar curvature κr(t) is hence equal to κ∗
r (s(t)). For the sake of

simplicity, we have assumed in this paper that u is a strictly positive function (i.e., strictly
positive forward velocity), and moreover, that the controls u verify

∫ ∞
0 u(t)dt = +∞. Fur-

thermore, for all t ≥ 0, we have

|κr(t)| ≤ κmax. (2)

The state equations for the vehicle can be defined as:

ẋ = Vx cosψ,

ẏ = Vx sinψ,

ψ̇ = Vxv.

(3)

These equations represent the vehicle’s motion with a velocity Vx , along the curve defined
by its geodesic curvature v. This variable will be considered as the second control in the
problem. Notice that Vx is not necessarily constant, but simply a continuous function of time,
which verifies the following hypothesis: there exist two positive constants 0 < Vmin ≤ Vmax,
such that for all t ≥ 0

Vmin ≤ Vx(t) ≤ Vmax. (4)

Recall that the strict positivity of the lower bound is a necessary assumption to obtain the
results of the paper (see, [6] for an explanation of this classical phenomenon). Indeed, 4
implies that linearized systems associated to the reference trajectory are controllable and
thus the nonlinear system is locally controllable.

For the target point (as shown in Fig. 1), the equations for the coordinates p and q are
defined as:

p = x + d cosψ,

q = y + d sinψ.
(5)
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Fig. 1 The reference trajectory, the vehicle and its target point

We will also suppose throughout the paper that

(H1) dκmax < 1.

This can be considered as a technical condition, or a design constraint for positioning the
target point. However, as explained later, condition (H1) turns out to be (almost) necessary
to control the system.

The dynamics of the target point can be obtained by deriving the precedent equations

ṗ = Vx cosψ − dVx sinψv,

q̇ = Vx sinψ + dVx cosψv,

ψ̇ = Vxv.

(6)

The curve defined by the target point is traveled at the following speed:

vd :=
√

ṗ2 + q̇2 = Vx

√
1 + (vd)2.

Our objective now is to define the dynamics of the target point as those of a unicycle.
Therefore, let us consider θ as the angle between the abscissa axis and the velocity vector
(ṗ, q̇)T . It can easily be seen that θ = ψ + arctan(dν), and therefore,

ṗ = vd cos(θ), q̇ = vd sin(θ).

The scalar curvature ω is defined by ω := θ̇
vd

.
Solving these equations, we obtain:

ω = Vxv

vd

+ dv̇

vd(1 + (vd)2)
. (7)
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Hence the dynamics of the target point (p, q) becomes

ṗ = vd cos θ,

q̇ = vd sin θ,

θ̇ = vdω.

(8)

From here on, we will replace v with ω as the new control. Considering (7), we obtain
the following form:

v̇ = 1 + (vd)2

d
Vx

[√
1 + (vd)2ω − v

]
, (9)

i.e. an ordinary differential equation for the unknown function v. Since the right side of
(9) is not globally Lipschitz with respect to v, the solution may only be defined for finite
time duration. We will show later on, that a choice of ω under Hypothesis (H1) solves this
problem (see Lemma 1 below).

The error between the target point and the reference curve can be defined as:

ep = p − pr,

eq = q − qr ,

ξ = θ − ψr,

(10)

and the error dynamics are given by:

ėp = vd cos θ − u cosψr,

ėq = vd sin θ − u sinψr,

ξ̇ = vdω − κru.

(11)

The objective, hence, is to determine the control laws, u(t, ep, eq, ξ) and ω(t, ep, eq, ξ)

such that the closed loop system (11) is globally asymptotically stable (GAS for short) with
respect to the origin.

Let us first of all perform a variable change on the control, as follows:

u = vd(1 + u1),

ω = κr(1 + u1) + u2.
(12)

The system that we have to stabilize, becomes:

ėp = vd(cos θ − cosψr − u1 cosψr),

ėq = vd(sin θ − sinψr − u1 sinψr),

ξ̇ = vdu2.

(13)

The following lemma provides bounding conditions on u1 and u2 that would guarantee
that the differential equation given in (9) is defined for all times t ≥ 0.

Lemma 1 Suppose that for all t ≥ 0, there exists

|u1(t)|
d

+ |u2(t)| ≤ βM := 1 − dκmax

d
. (14)
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Fig. 6 Control v

the followed path with the target point position. This approach can also be extended to the
cases where there are external perturbations or uncertainties in the model. This work can be
extended towards addressing similar issues in more elaborate car models.

Acknowledgements The authors thank E. Panteley and W. Pasillas-Lépine for their constructive remarks.
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Let us perform the following change of variable corresponding to a time-varying rotation
in the frame of the reference trajectory:

y1 = ep cosψr + eq sinψr,

y2 = −ep sinψr + eq cosψr.
(20)

The final system can be expressed as

ẏ1 = −u1 + (cos ξ − 1) + (1 + u1)κry2,

ẏ2 = sin ξ − (1 + u1)κry1,

ξ̇ = u2.

(21)

This system of equations greatly resembles the error dynamics obtained for the classic
tracking problem of a vehicle using a unicycle, with the forward velocity and the instanta-
neous rotation velocity of the vehicle body as control variables (cf. [5] et [3]).

We choose the controls u1 and u2 as follows:

u1 = C1σ(My1),

u2 = βσ

(−C0

β

[
ξ + ρσ(C2y2)

]
)

,
(22)

with M,C0,C1,C2, β,ρ as positive constants to be fixed later.
Hence the error dynamics are:

ẏ1 = −C1σ(My1) + λ(t)y2 + (cos ξ − 1),

ẏ2 = sin ξ − λ(t)y1,

ξ̇ = −βσ

(
C0

β

[
ξ + ρσ(C2y2)

]
)

,

(23)

where λ(t) := (1 + u1)κr . λ is bounded by

|λ(t)| ≤ (3 + C1)κmax. (24)

Theorem 1 With the control u1 and u2 defined in (22), for all C1 and β verifying (18), the
system (23) is GAS with respect to 0.

Proof of Theorem 1 We first have the following result, which is a trivial consequence of the
dynamics of ξ(·). �

Lemma 2 For every trajectory of (23), there exists t0 ≥ 0 such that, for every t > t0 :
|ξ(t)| < 2ρ.

This follows from the fact that if |ξ | > 3
2 ρ, then [ξ + ρσ(C2y2)] has the same sign of ξ ,

and |ξ + ρσ(C2y2)| > ρ

2 . Finally, we get ξ ξ̇ < − ρ

2 βσ(
C0ρ

2β
) < 0.

We next impose the following condition.

(Cond 1): 3ρC0 ≤ β.
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This implies that for t ≥ t0,

∣
∣
∣
∣
C0

β

[
ξ(t) + ρσ

(
C2y2(t)

)]
∣
∣
∣
∣ ≤ 1.

Hence, for t ≥ t0, the system (23) becomes:

ẏ1 = −C1σ(My1) + λ(t)y2 + (cos ξ − 1),

ẏ2 = sin ξ − λ(t)y1,

ξ̇ = −C0

[
ξ + ρσ(C2y2)

]
.

(25)

Let E be a set of points (y1, y2, ξ) such that |ξ | < 2ρ. According to Lemma 2, E is an
open invariant set for the system (25). To prove Theorem 1, it is sufficient to form a strict
Lyapunov function for (25) on E . We propose the following candidate function:

V (y1, y2, ξ) := y2
1 + y2

2

2
+ F(ξ)y2

C0
+ N

2C0
ξ 2, (26)

with N a positive constant to be determined, and F(ξ) = ∫ ξ

0
sin s ds

s
.

Notice that F is an odd function, and if N > 1
C0

then V is positive definite. We next
prove that V is a strict Lyapunov function for (25) on E with an appropriate choice of the
constants.

Let us suppose from this point on that ρ � 1
2 . Therefore, for |ξ | � 2ρ, one has

1 − ξ

6

2

� sin ξ

ξ
� 1,

1 − ξ

18

2

� F(ξ)

ξ
� 1,

1 − ξ 2

2
� cos ξ � 1.

(27)

From here, it can be deduced that:

1 − 2ρ

3

2

� sin ξ

ξ
� 1,

1 − 2ρ

9

2

� F(ξ)

ξ
� 1,

1 − 2ρ2 � cos ξ � 1.

(28)

The derivative of V along the trajectories of the system is equal to:

V̇ = −
[

C1y1σ(My1) − λ(t)F (ξ)

C0ξ
ξy1 + 1

2

(

N − F(ξ) sin ξ

C0ξ 2

)

ξ 2 + y1(cos ξ − 1)

]

−
[

1

2

(

N − F(ξ) sin ξ

C0ξ 2

)

ξ 2 + ρNξσ(C2y2) + sin ξ

ξ
ρy2σ(C2y2)

]

. (29)
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From (24) and (28), it can be seen that the first term in brackets of (29) is greater or equal
to:

A(y1, ξ) := C1y1σ(My1) − (3 + C1)κmax

C0
|ξy1|

− 1

2
ξ 2|y1| + 1

2

(

N − 1

C0

)

ξ 2. (30)

Similarly, the second term in brackets of (29) can be bounded by:

B(y2, ξ) := 1

2

(

N − 1

C0

)

ξ 2 − ρN
∣
∣ξσ (C2y2)

∣
∣

+
(

1 − 2ρ2

3

)

ρy2σ(C2y2). (31)

Hence, using equations (29), (30) and (31), V̇ can be expressed as:

V̇ � −A(y1, ξ) − B(y2, ξ). (32)

We shall now present two lemmas, and establish the conditions on constants, under which
these lemmas would hold true.

Lemma 3 There exist constants C1, ρ,β,M,N,C0 for which the function A is positive
definite on R×]−2ρ,2ρ[.

Lemma 4 There exist constants C1, ρ,β,M,N,C0 for which the function B is positive
definite on R×]−2ρ,2ρ[.

Proof of Lemma 3 Let us consider 2 cases:

Case 1: |y1| � 1
M

. As |ξ | � 2ρ, we obtain:

A � |y1|
(

C1 − 2ρκmax

C0
(3 + C1) − 2ρ2

)

. (33)

Hence it is sufficient to verify that:

C1 − 2ρκmax

C0
(3 + C1) − 2ρ2 > 0 ⇔ C1

(

1 − 2ρκmax

C0

)

>
6κmax

C0
ρ + 2ρ2. (34)

From here, we obtain a supplementary condition:

2κmax

C0
ρ < 1. (35)

This condition, along with Cond 1 presented before, is equivalent to:

(Cond 2): 9ρ <
κmax

C0
<

1

2ρ
.
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Therefore, C1 has to be chosen, such that:

(Cond 3): C1 >

6κmax
C0

ρ + 2ρ2

1 − 2ρκmax
C0

. (36)

Case 2: |y1| < 1
M

. As the saturation is no longer activated and |ξ | � 2ρ, we obtain:

A ≥ C1My2
1 −

(
(3 + C1)κmax

C0
+ 2ρ

)

|ξy1| + 1

2

(

N − 1

C0

)

ξ 2. (37)

A is greater than quadratic form. To prove that it is positive definite, it is sufficient that

(

N − 1

C0

)

> 0,

∣
∣
∣
∣
∣
∣

C1M − κmax(3+C1)

2C0
− ρ

− κmax(3+C1)

2C0
− ρ

N− 1
C0

2

∣
∣
∣
∣
∣
∣
> 0.

(38)

Equation (38) gives us:

C1M
N − 1

C0

2
>

(
κmax(3 + C1)

2C0
+ ρ

)2

. (39)

Therefore, M should be chosen such that:

(Cond 4): M >
2(

κmax(3+C1)

2C0
+ ρ)

2

C1(N − 1
C0

)
. (40)

�

Proof of Lemma 4 B can be expressed in the following manner:

B =
(

1 − 2ρ2

3

)(

y2 − σ(C2y2)

C2

)

σ(C2y2) + ρ

C2
D

(
σ(C2y2), ξ

)
, (41)

where

D(z, ξ) :=
(

1 − 2ρ2

3

)

z2 − C2N |ξz| + C2

ρ

(

N − 1

C0

)

ξ 2. (42)

It can be seen from (41) and (42), that if D is positive definite, then B is positive definite as
well, i.e.:

∣
∣
∣
∣
∣

1 − 2ρ2

3
−C2N

2
−C2N

2
C2
ρ

(N − 1
C0

)

∣
∣
∣
∣
∣
> 0. (43)

From here, we obtain a new condition on ρ:

(Cond 5) : (1 − 2ρ2

3 )

ρ
>

C2N
2

4(N − 1
C0

)
. (44)

�
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Therefore, to prove Theorem 1, it has to be shown that there exist constants C0, C1, C2,
M , N , ρ, such that conditions (Cond 2) to (Cond 5) are met. In practice, C0 and C2 are
given fixed positive values, and then N is fixed such that N > 1

C0
. Then, ρ is chosen, small

enough to satisfy conditions (Cond 2) and (Cond 5). Finally, C1 and M are chosen so that
they satisfy respectively conditions (Cond 3) and (Cond 4). �

The results presented above can be improved in the following directions

Remark 1 Having a strict Lyapunov function allows us to extend the precedent results to
cases in which external perturbations exist. More precisely, it can be shown that (25) is
ISS (input-to-state) with respect to bounded external perturbations and an upper bound for
allowed perturbations can be determined explicitly (as a function of the constants of the
problem). In particular, it is interesting to suppose that the reference trajectory curvature
κr , along with the vehicle velocity Vx are susceptible to measurement noise. Hence the
system can be stabilized in the proximity of the reference curve, depending explicitly on the
magnitude of noise. In the following section, we will present simulation results, both with
and without perturbations on κr .

Remark 2 It is possible not to bound the control u2 as defined in (22) but to simply use

u2 = −C0
[
ξ + ρσ(C2y2)

]
.

The proof of the non-explosion of (9) is slightly modified but streightforward.

3 Simulations

In order to illustrate the performance of the presented controller, let us consider a unicycle
type vehicle, with the following parameters:

d = 2 m, Vx = 15 m s−1.

The maximum curvature in the simulation is bounded by κmax = 0.02 m−1. In order to
highlight our claim that the performance of the controller is global and independent of initial
condition, the value of dκmax has been kept much smaller than 1 (in particular, ξ(0) close
to π ).

The initial conditions imposed upon the error are

ep(0) = eq(0) = 10 m, ξ(0) = 9π/10.

The control law u1, u2 are defined by

u1 = C1σ(My1), u2 = −βσ

(
C0

β

[
ξ + ρσ(C2y2)

]
)

,

where, the parameters have been determined according to Lemma 2.3 and Lemma 2.5,
specifically:

C0 = 0.4, C1 = 0.7, C2 = 1, M = 1562, β = 0.96, ρ = 0.2.

The path to be followed γ is defined by the geodesic curvature κr (see Fig. 2). It can
be seen that the vehicle follows the target reference path as shown in Fig. 3. The target



S. Laghrouche et al.

Fig. 2 Curvature κr

Fig. 3 Reference trajectory, of the vehicle and its target point

point trajectory converges on the path in approximately 7 s (see Fig. 4), and the vehicle
successfully tracks the reference trajectory. The graphs of the control function are given in
Figs. 5 and 6.
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Fig. 4 Errors ep , eq and ξ

Fig. 5 Control u

4 Conclusion

In this article, we have addressed the problem of path following using a target point rigidly
attached to a unicycle type vehicle. The control has been implemented using only the orien-
tation of the vehicle. The main idea is to consider the parametrization of the followed path
as an additional input for the system defined by the error dynamics. Control laws using sat-
uration have been determined in order to achieve global stabilization without restrictions on
initial conditions, under a (necessary) geometric characterization hypothesis, which relates
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Fig. 6 Control v

the followed path with the target point position. This approach can also be extended to the
cases where there are external perturbations or uncertainties in the model. This work can be
extended towards addressing similar issues in more elaborate car models.
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