1,002 research outputs found

    Rapidly IPv6 multimedia management schemes based LTE-A wireless networks

    Get PDF
    Ensuring the best quality of smart multimedia services becomes an essential goal for modern enterprises so there is always a need for effective IP mobility smart management schemes in order to fulfill the following two main functions: (I) interconnecting the moving terminals around the extended indoor smart services. In addition, (II) providing session continuity for instant data transfer in real-time and multimedia applications with negligible latency, efficient bandwidth utilization, and improved reliability. In this context, it found out that the Generalized Multi-Protocol Label Switching (GMPLS) over LTE-A network that offers many advanced services for large numbers of users with higher bandwidths, better spectrum efficiency, and lower latency. In GMPLS, there is an elimination of the routing searches and choice of routing protocols on every core LTE-A router also it provides the architecture simplicity and increases the scalability. A comparative assessment of three types of IPv6 mobility management schemes over the LTE-A provided by using various types of multimedia. By using OPNET Simulator 17.5, In accordance with these schemes, it was proven that the IPv6-GMPLS scheme is the best choice for the system's operation, in comparison to the IPv6-MPLS and Mobile IPv6 for all multimedia offerings and on the overall network performance

    A NOVEL DUAL MODE GATEWAY FOR WIRELESS SENSOR NETWORK AND LTE-A NETWORK CONVERGENCE

    Get PDF
    In recent years, the number of machine-to-machine (M2M) networks, which do not require direct human intervention, has been increasing at a rapid pace. Meanwhile, the need for a wireless platform to control and monitor these M2M networks, one with both a vast coverage area and a low network deployment cost, continues to be unmet. Mobile cellular networks (MCNs) and wireless sensor networks (WSNs) are emerging as two heterogeneous networks that can meet the challenges of M2M communication through network convergence. In this paper, a model for network convergence between a Long Term Evolution-Advance (LTE-A) cellular network and a WSN is proposed. Qualityof- Service (QoS) issues are assessed by a comparative study of the network delay in tight coupling and loose coupling LTE-A configurations. Simulation results indicate that the network delay in this proposed converged network is acceptable for various M2M applications. Additionally, it is demonstrated through simulation that the energy consumed by the implementation of the proposed protocol is suitable for resource-constrained devices

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    A hybrid network/host mobility management scheme for next generation networks

    Get PDF
    Includes bibliographical references.The author proposes a hybrid network/host interworking scheme to allow the MN to transition smoothly between different access networks supporting two distinct mobility approaches

    Hardware Acceleration of the Robust Header Compression (RoHC) Algorithm

    Get PDF
    With the proliferation of Long Term Evolution (LTE) networks, many cellular carriers are embracing the emerging eld of mobile Voice over Internet Protocol (VoIP). The robust header compression (RoHC) framework was introduced as a part of the LTE Layer 2 stack to compress the large headers of the VoIP packets before transmitted over LTE IP-based architectures. The headers, which are encapsulated Real-time Transport Protocol (RTP)/User Datagram Protocol (UDP)/Internet Protocol (IP) stack, are large compared to the small payload. This header-compression scheme is especially useful for ecient utilization of the radio bandwidth and network resources. In an LTE base-station implementation, RoHC is a processing-intensive algorithm that may be the bottleneck of the system, and thus, may be the limiting factor when it comes to number of users served. In this thesis, a hardware-software and a full-hardware solution are proposed, targeting LTE base-stations to accelerate this computationally intensive algorithm and enhance the throughput and the capacity of the system. The results of both solutions are discussed and compared with respect to design metrics like throughput, capacity, power consumption, chip area and exibility. This comparison is instrumental in taking architectural level trade-o decisions in-order to meet the present day requirements and also be ready to support future evolution. In terms of throughput, a gain of 20% (6250 packets/sec can be processed at a frequency of 150 MHz) is achieved in the HW-SW solution compared to the SW-Only solution by implementing the Cyclic Redundancy Check (CRC) and the Least Signicant Bit(LSB) encoding blocks as hardware accelerators . Whereas, a Full-HW implementation leads to a throughput of 45 times (244000 packets/sec can be processed at a frequency of 100 MHz) the throughput of the SW-Only solution. However, the full-HW solution consumes more Lookup Tables (LUTs) when it is synthesized on an Field-Programmable Gate Array (FPGA) platform compared to the HW-SW solution. In Arria II GX, the HW-SW and the full-HW solutions use 2578 and 7477 LUTs and consume 1.5 and 0.9 Watts, respectively. Finally, both solutions are synthesized and veried on Altera's Arria II GX FPGA
    corecore