7 research outputs found

    LMS Adaptive Filters for Noise Cancellation: A Review

    Get PDF
    This paper reviews the past and the recent research on Adaptive Filter algorithms based on adaptive noise cancellation systems. In many applications of noise cancellation, the change in signal characteristics could be quite fast which requires the utilization of adaptive algorithms that converge rapidly. Algorithms such as LMS and RLS proves to be vital in the noise cancellation are reviewed including principle and recent modifications to increase the convergence rate and reduce the computational complexity for future implementation. The purpose of this paper is not only to discuss various noise cancellation LMS algorithms but also to provide the reader with an overview of the research conducted

    ๋™์  ์ƒํ™ฉ์—์„œ ์ €๊ฐ€ ๊ด€์„ฑ ์„ผ์„œ๋ฅผ ์ด์šฉํ•œ ํ‹ธํŠธ ์ถ”์ •

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2019. 2. ๋ฐ•์ฐฌ๊ตญ.In this paper, we propose a method to improve the performance of attitude reference system (ARS) in dynamic situations. In order to do so, the method estimates acceleration using gyros simultaneously while estimating tilt using accelerometers. In general, ARS methods cannot be used in dynamic situationshowever, it is possible when the magnitude and direction of acceleration which the sensor is subject to is known. In many smart device usage scenarios, acceleration is produced by rotation about a fixed body joint. In such cases, it is possible to determine the acceleration from gyro measurements. By correcting for acceleration, the accuracy the availability of tilt estimation can be made nearly equal to that in static mode, and gyro drift can be compensated even in dynamic situations. We tested the proposed method in various smart device usage scenarios with VICON motion capture system as reference, and have confirmed that the proposed method improves the attitude estimation performance.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋™์  ์ƒํ™ฉ์—์„œ ์ €๊ฐ€ ๊ด€์„ฑ ์„ผ์„œ ๊ธฐ๋ฐ˜ ๊ธฐ๊ธฐ์˜ ํ‹ธํŠธ ์ถ”์ • ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐ€์†๋„๊ณ„ ์ธก์ •์น˜๋ฅผ ํ™œ์šฉํ•ด ์ž์„ธ๋ฅผ ๊ณ„์‚ฐํ•จ๊ณผ ๋™์‹œ์— ์ž์ด๋กœ ์ธก์ •์น˜๋ฅผ ํ™œ์šฉํ•ด ๊ฐ€์†๋„๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์ธ Attitude Heading and Reference System (ARS)์—์„œ๋Š” ์ •์  ์ƒํ™ฉ(static mode)์„ ๊ฐ€์ •ํ•˜๊ณ  ๊ฐ€์†๋„๊ณ„์˜ ์ธก์ •์น˜๋กœ๋ถ€ํ„ฐ ํ‹ธํŠธ๋ฅผ ๊ณ„์‚ฐํ•˜๋ฉฐ, ๋ฌผ์ฒด์˜ ๊ฐ€์†๋„๋ฅผ ์•Œ์ง€ ๋ชปํ•˜๋ฉด ๋™์  ์ƒํ™ฉ(dynamic mode)์—์„œ๋Š” ๊ฐ€์†๋„๊ณ„ ์ธก์ •์น˜๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์—†๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Šค๋งˆํŠธ ๊ธฐ๊ธฐ์˜ ๊ฒฝ์šฐ ์‹ ์ฒด ๊ด€์ ˆ ์ค‘์‹ฌ์˜ ํšŒ์ „์šด๋™์— ์˜ํ•œ ๊ฐ€์†์ด ์ผ์–ด๋‚˜๊ณ , ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ ์ž์ด๋กœ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ์Šค๋งˆํŠธ ๊ธฐ๊ธฐ์˜ ๊ฐ€์†๋„๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌผ์ฒด์˜ ๊ฐ€์†๋„๋ฅผ ์•Œ๋ฉด ๋™์  ์ƒํ™ฉ์—์„œ๋„ ์ •์  ์ƒํ™ฉ์—์„œ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ž์„ธ๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” VICON ๋ชจ์…˜ ์บก์ฒ˜ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์˜€์„ ๋•Œ ๋‹ค์–‘ํ•œ ๋™์ž‘์— ๋Œ€ํ•ด ์Šค๋งˆํŠธ ๊ธฐ๊ธฐ์˜ ํ‹ธํŠธ ์ถ”์ • ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋จ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Objectives and Contributions 2 1.3 Organization of the Thesis 4 Chapter 2 Tilt Estimation Using Low Cost Sensors 5 2.1 Gyro Integration for Tilt Estimation 5 2.1.1 Performance by Gyro White Nosie 5 2.1.2 Performance by Gyro Bias 8 2.2 Accelerometer Based Tilt Estimation 13 2.2.1 Performance by Accelerometer White Noise 14 2.2.2 Performance by Disturbance 15 2.3 Gyro and Accelerometer Fusion using the Kalman Filter 19 2.3.1 Steady-State Error Covariance 19 2.3.2 Choosing Compatible Sensors 23 2.3.3 Performance by Disturbance 24 Chapter 3 ARS in Dynamic Situations 25 3.1 Covariance Adaptation Methods 26 3.1.1 Accelerometer Meausrement Based Adaptation 26 3.1.2 Gyro Measurement Based Adaptation 27 3.1.3 Innovation Based Adaptation 28 3.1.4 Probability Model Based Adaptation 29 3.2 Kinematic Modelling 29 3.2.1 Multiple-Joint Rotation Model for Human Motion 30 3.2.2 Applications of the Multiple Rigid Body Model 30 Chapter 4 ARS with Single-Joint Kinematic Constraint 32 4.1 Method 32 4.1.1 Single Rigid Body Rotation Model for Human Motion 33 4.1.2 Online Estimation of Center of Rotation 37 4.1.3 Verification of Estimation Performance 39 4.2 Experiment 41 4.2.1 Walking (Smartphone) 42 4.2.2 Walking (Smartwatch) 44 4.2.3 Jogging (Smartwatch) 47 4.2.4 Table Tennis (Smartwatch) 49 4.2.5 Virtual Reality (HMD) 52 Chapter 5 Conclusion 59Maste

    A Robust Method to Suppress Jamming for GNSS Array Antenna Based on Reconstruction of Sample Covariance Matrix

    Get PDF
    The Global Navigation Satellite System (GNSS) receiver is vulnerable to active jamming, which results in imprecise positioning. Therefore, antijamming performance of the receiver is always the key to studies of satellite navigation system. In antijamming application of satellite navigation system, if active jamming is received from array antenna main-lobe, main-lobe distortion happens when the adaptive filtering algorithm forms main-lobe nulling. A robust method to suppress jamming for satellite navigation by reconstructing sample covariance matrix without main-lobe nulling is proposed in this paper. No nulling is formed while suppressing the main-lobe jamming, which avoids main-lobe direction distortion. Meanwhile, along with adaptive pattern control (APC), the adaptive pattern of array antenna approaches the pattern without jamming so as to receive the matching navigation signal. Theoretical analysis and numerical simulation prove that this method suppresses jamming without main-beam distortion. Furthermore, the output SINR will not decrease with the main-lobe distortion by this method, which improves the antijamming performance

    Initial Self-Alignment for Marine Rotary SINS Using Novel Adaptive Kalman Filter

    Get PDF
    The accurate initial attitude is essential to affect the navigation result of Rotary Strapdown Inertial Navigation System (SINS), which is usually calculated by initial alignment. But marine mooring Rotary SINS has to withstand dynamic disturbance, such as the interference angular velocities and accelerations caused by surge and sway. In order to overcome the limit of dynamic disturbance under the marine mooring condition, an alignment method using novel adaptive Kalman filter for marine mooring Rotary SINS is developed in this paper. This alignment method using the gravity in the inertial frame as a reference is discussed to deal with the lineal and angular disturbances. Secondly, the system error model for fine alignment in the inertial frame as a reference is established. Thirdly, PWCS and SVD are used to analyze the observability of the system error model for fine alignment. Finally, a novel adaptive Kalman filter with measurement residual to estimate measurement noise variance is designed. The simulation results demonstrate that the proposed method can achieve better accuracy and stability for marine Rotary SINS

    Covariance Estimation for Batch Processing Terrain Referenced Navigation Using Adaptive Filter

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2014. 8. ๋ฐ•์ฐฌ๊ตญ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ด€์„ฑํ•ญ๋ฒ•(Inertial Navigation System์ดํ•˜ INS)๊ณผ ํ•จ๊ป˜ ์ผ๊ด„์ฒ˜๋ฆฌ ๋ฐฉ์‹ ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ•(Batch Processing Terrain Referenced Navigation์ดํ•˜ BPTRN)์„ ๊ฒฐํ•ฉํ•œ ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์ผ๊ด„์ฒ˜๋ฆฌ ๋ฐฉ์‹ ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• ์œ„์น˜ํ•ด(position fix)์˜ ์˜ค์ฐจ ๊ณต๋ถ„์‚ฐ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ ์‘ ํ•„ํ„ฐ(adaptive filter)๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. INS/BPTRN ๊ฒฐํ•ฉํ•ญ๋ฒ• ์‹œ์Šคํ…œ์€ ์ผ๊ด„์ฒ˜๋ฆฌ ๋ฐฉ์‹์˜ ์œ„์น˜ํ•ด๋ฅผ ์นผ๋งŒ ํ•„ํ„ฐ(Kalman filter)์˜ ์ธก์ •์น˜๋กœ ์ž…๋ ฅ ๋ฐ›์•„ INS์˜ ํ•ญ๋ฒ•ํ•ด๋ฅผ ๋ณด์ƒํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• ์‹œ์Šคํ…œ์˜ ์œ„์น˜ํ•ด๊ฐ€ ์นผ๋งŒ ํ•„ํ„ฐ์˜ ์ธก์ •์น˜๋กœ ์‚ฌ์šฉ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์œ„์น˜ํ•ด์— ๋Œ€ํ•œ ์˜ค์ฐจ ๊ณต๋ถ„์‚ฐ์ด ํ•„์š”ํ•˜๋‹ค. INS/BPTRN ๊ฒฐํ•ฉํ•ญ๋ฒ• ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ๊ณต๋ถ„์‚ฐ ์ถ”์ •์œผ๋กœ ์œ„์น˜ํ•ด ๊ฐ„์˜ ๊ด€๋ จ ์‹์„ ์ด์šฉํ•˜์—ฌ ์œ ๋„ํ•œ ์ถœ๋ ฅ ๊ฐ’ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ์‹์ด ์กด์žฌํ•˜์ง€๋งŒ, ๊ณต๋ถ„์‚ฐ ์ถ”์ •์— ๋Œ€ํ•œ ๋ณ€ํ™” ์†๋„๊ฐ€ ๋Š๋ฆฌ๊ณ  ์ผ๊ด„์ฒ˜๋ฆฌ ๋ฐฉ์‹ ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• ์‹œ์Šคํ…œ ํŠน์„ฑ์— ์ ํ•ฉํ•˜์ง€ ์•Š๋‹ค๋Š” ๋‹จ์ ์ด ์กด์žฌํ•œ๋‹ค. ๋˜ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ผ๊ด„์ฒ˜๋ฆฌ ๋ฐฉ์‹ ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• ์‹œ์Šคํ…œ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์š”์†Œ๋“ค์„ ๊ณ ๋ คํ•˜์—ฌ ์˜ค์ฐจ ๊ณต๋ถ„์‚ฐ ์ถ”์ •์— ๊ด€ํ•œ ์‚ฌ์ƒํ•จ์ˆ˜๋ฅผ ๋งŒ๋“ค์–ด ์‚ฌ์šฉํ•˜๋Š” ์ž…๋ ฅ ๊ฐ’ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ์‹์ด ์žˆ์œผ๋‚˜, ๋ชจ๋“  ์š”์†Œ๋“ค์„ ๊ณ ๋ คํ•  ์ˆ˜ ์—†์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ง€ํ˜•์˜ ํ˜•ํƒœ๊ฐ€ ๋‹จ์ˆœํ•˜์ง€ ์•Š์•„ ์‹œ์Šคํ…œ์— ๋ถ€์ ํ•ฉํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ผ๊ด„์ฒ˜๋ฆฌ ๋ฐฉ์‹ ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• ์œ„์น˜ํ•ด์˜ ์˜ค์ฐจ ๊ณต๋ถ„์‚ฐ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ ์‘ ํ•„ํ„ฐ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ํ”„๋กœ๋ฒ ๋‹ˆ์šฐ์Šค ๋†ˆ ๊ธฐ๋ฐ˜์˜ ์ ์‘ ํ•„ํ„ฐ์™€ ์ˆœํ™˜์ตœ์†Œ์ž์Šน๋ฒ• ๊ธฐ๋ฐ˜์˜ ์ƒˆ๋กœ์šด ์ ์‘ ํ•„ํ„ฐ ๊ธฐ๋ฒ•์„ INS/BPTRN ๊ฒฐํ•ฉํ•ญ๋ฒ• ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜์—ฌ ์˜ค์ฐจ ๊ณต๋ถ„์‚ฐ ์ถ”์ • ์„ฑ๋Šฅ์„ ๋น„๊ต ๋ฐ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ”„๋กœ๋ฒ ๋‹ˆ์šฐ์Šค ๋†ˆ ๊ธฐ๋ฐ˜์˜ ์ ์‘ ํ•„ํ„ฐ์™€ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์ƒˆ๋กœ์šด ์ ์‘ ํ•„ํ„ฐ ๊ธฐ๋ฒ•์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ๊ณ ๋ คํ•˜์—ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ ๋ชฌํ…Œ์นด๋ฅผ๋กœ(Monet Carlo) ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์ ์‘ ํ•„ํ„ฐ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ INS/BPTRN์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.This thesis proposes a newly adaptive filter to estimate a covariance matrix of a BPTRN (Batch Processing Terrain Referenced Navigation) for an integrated INS (Inertial Navigation System) and BPTRN system using a Kalman filter. The position fix of the BPTRN system is utilized as input to the Kalman filter to compensate a navigation error of the INS in the integrated INS/BPTRN system. Because the BPTRN system does not automatically offer the covariance matrix of the estimated position fix, it is necessary to estimate a covariance matrix for BPTRN system. The method for covariance estimation was proposed based on the output and input values. The method for covariance estimation based on output values utilizes the combining two positions fix between at the current time and at the past time, and the covariance is estimated by time average. That is why it has the low pass character, and the estimated covariance cannot reflect the information of the position fix at a proper time. On the contrary, the method for covariance estimation based on input values makes the several mapping function considering the sensor noise and terrain roughness. And then, the one of the functions is used to calculate the covariance of each position fix. It is not a simple task and it is impossible to consider every factors effecting on BPTRN system. That is why this thesis utilizes an adaptive filter to estimate a covariance matrix for BPTRN system. The adaptive filter based on Frobenius norm and the proposed adaptive filter based on RLS (Recursive Least Square) algorithm was applied to the integrated INS/BPTRN system, and the performance of the proposed adaptive filter was compared to the one based on Frobenius norm. Finally numerical simulations are performed to evaluate the performance of the proposed method, and the results show that the performance of the proposed adaptive filter based on RLS algorithm can be improved.์ดˆ๋ก โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. โ…ฐ ๋ชฉ์ฐจ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โ…ฒ ํ‘œ ๋ชฉ์ฐจ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.โ€ฆ.... โ…ด ๊ทธ๋ฆผ ๋ชฉ์ฐจ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โ…ต 1. ์„œ ๋ก  โ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ........โ€ฆโ€ฆ.......โ€ฆโ€ฆ.... 1 1.1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ........ 1 1.2. ์—ฐ๊ตฌ ๋ชฉ์  ๋ฐ ๋‚ด์šฉ .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ....... 3 2. ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜ .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ....... 6 2.1. ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• ์†Œ๊ฐœ .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ....... 6 2.2. ์ˆœ์ฐจ์ฒ˜๋ฆฌ ๋ฐฉ์‹ ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.... 8 2.3. ์ผ๊ด„์ฒ˜๋ฆฌ ๋ฐฉ์‹ ์ง€ํ˜•์ฐธ์กฐํ•ญ๋ฒ• .......โ€ฆโ€ฆ.......โ€ฆโ€ฆโ€ฆโ€ฆ.......โ€ฆโ€ฆโ€ฆ....... 11 2.4. INS/BPTRN ๊ฒฐํ•ฉํ•ญ๋ฒ• ์‹œ์Šคํ…œ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆโ€ฆโ€ฆ.......โ€ฆโ€ฆโ€ฆ....... 15 3. ๊ธฐ์กด์˜ ์ผ๊ด„์ฒ˜๋ฆฌ ๋ฐฉ์‹ ๊ณต๋ถ„์‚ฐ ์ถ”์ • ๊ธฐ๋ฒ• .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ...โ€ฆ.....โ€ฆ... 17 3.1. ์ถœ๋ ฅ ๊ฐ’ ๊ธฐ๋ฐ˜์˜ ๊ณต๋ถ„์‚ฐ ์ถ”์ • ๊ธฐ๋ฒ• .....โ€ฆโ€ฆ.......โ€ฆโ€ฆ...........โ€ฆโ€ฆ....... 17 3.2. ์ž…๋ ฅ ๊ฐ’ ๊ธฐ๋ฐ˜์˜ ๊ณต๋ถ„์‚ฐ ์ถ”์ • ๊ธฐ๋ฒ• .....โ€ฆโ€ฆ.......โ€ฆโ€ฆ...........โ€ฆโ€ฆ....... 19 3.3. ๊ธฐ์กด ๊ณต๋ถ„์‚ฐ ์ถ”์ • ๊ธฐ๋ฒ•์˜ ๋ฌธ์ œ์  .....โ€ฆโ€ฆ.......โ€ฆโ€ฆ...........โ€ฆโ€ฆ......... 24 4. ์ ์‘ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•œ ๊ณต๋ถ„์‚ฐ ์ถ”์ • ๊ธฐ๋ฒ• .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......................... 30 4.1. ์ ์‘ ํ•„ํ„ฐ(Adaptive filter theory) .......โ€ฆโ€ฆ.......โ€ฆโ€ฆโ€ฆโ€ฆ.......โ€ฆโ€ฆ. 30 4.2. ํ”„๋กœ๋ฒ ๋‹ˆ์šฐ์Šค ๋†ˆ(Frobenius norm) ๊ธฐ๋ฐ˜์˜ ์ ์‘ ํ•„ํ„ฐ .......โ€ฆโ€ฆ.... 31 4.3. ์ˆœํ™˜์ตœ์†Œ์ž์Šน๋ฒ•(RLS) ๊ธฐ๋ฐ˜์˜ ์ ์‘ ํ•„ํ„ฐ .......โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.......โ€ฆโ€ฆ. 35 5. ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ˆ˜ํ–‰ ๋ฐ ๊ฒฐ๊ณผ ๋ถ„์„ .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ........................... 43 5.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.............โ€ฆ.. 43 5.2. ๊ฐ€์ค‘ ์ธ์ž์— ๋”ฐ๋ฅธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ถ„์„ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.............โ€ฆ. 45 5.3. ์ž”์ฐจ ๋ถ„์‚ฐ ์ƒ˜ํ”Œ ๊ฐœ์ˆ˜์— ๋”ฐ๋ฅธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ถ„์„ .....โ€ฆโ€ฆ......... 49 6. ๊ฒฐ๋ก  ๋ฐ ์ถ”ํ›„ ์—ฐ๊ตฌ๊ณผ์ œ .......โ€ฆโ€ฆ.......โ€ฆโ€ฆ.......โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ...โ€ฆ...... 63 ์ฐธ๊ณ ๋ฌธํ—Œ ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ....... 65 Abstract โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. 68Maste

    ๋‹ค์ค‘ ๊ธฐ์ค€๊ตญ ๊ธฐ๋ฐ˜์˜ ์œ„์„ฑํ•ญ๋ฒ•์‹œ์Šคํ…œ ๊ธฐ๋งŒ์‹ ํ˜ธ ๊ฒ€์ถœ ๋ฐ ์œ„์น˜์ถ”์ • ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2015. 2. ๋ฐ•์ฐฌ๊ตญ.์œ„์„ฑํ•ญ๋ฒ•์‹œ์Šคํ…œ์€ ์ธ๊ณต์œ„์„ฑ์„ ์ด์šฉํ•˜๋Š” ์ „ํŒŒํ•ญ๋ฒ•์‹œ์Šคํ…œ์œผ๋กœ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜ ๋ฐ ์‹œ๊ฐ์„ ์ •๋ฐ€ํ•˜๊ฒŒ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์–ด ๊ตญ๋ฐฉ๋ฟ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ๋ฏผ์ˆ˜๋ถ„์•ผ์—์„œ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•ฝ 2๋งŒํ‚ฌ๋กœ๋ฏธํ„ฐ ์ƒ๊ณต์œผ๋กœ๋ถ€ํ„ฐ ์ˆ˜์‹ ๊ธฐ์— ๋„๋‹ฌํ•˜๋Š” ์œ„์„ฑํ•ญ๋ฒ•์‹ ํ˜ธ์˜ ์„ธ๊ธฐ๋Š” ์žก์Œ ๋ ˆ๋ฒจ ์ดํ•˜์ด๋ฏ€๋กœ ์ „ํŒŒ๊ต๋ž€์‹ ํ˜ธ์— ์ทจ์•ฝํ•˜๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ์ „ํŒŒ๊ต๋ž€์‹ ํ˜ธ๋Š” ํฌ๊ฒŒ ์ž์—ฐ์ ์ธ ์ „ํŒŒ๊ต๋ž€์‹ ํ˜ธ์™€ ์ธ์œ„์ ์ธ ์ „ํŒŒ๊ต๋ž€์‹ ํ˜ธ๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ๊ทธ ์ค‘์—์„œ ์ธ์œ„์ ์ธ ์ „ํŒŒ๊ต๋ž€์‹ ํ˜ธ๋Š” ํŠน์ • ๋ชฉ์ ์— ์˜ํ•ด์„œ ์‹œ์Šคํ…œ์— ์•…์˜ํ–ฅ์„ ์ฃผ๋ฏ€๋กœ ์ด์— ๋Œ€์‘ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ธ์œ„์ ์ธ ์ „ํŒŒ๊ต๋ž€์‹ ํ˜ธ๋Š” ์žฌ๋ฐ, ๋ฏธ์ฝ”๋‹, ๊ธฐ๋งŒ์‹ ํ˜ธ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๊ณ  ์ด์ค‘์—์„œ ๊ธฐ๋งŒ์‹ ํ˜ธ๋Š” ์‹ค์ œ ์œ„์„ฑํ•ญ๋ฒ•์‹ ํ˜ธ๋ฅผ ๊ทธ๋Œ€๋กœ ๋ชจ์‚ฌํ•˜์—ฌ ์ˆ˜์‹ ๊ธฐ๋ฅผ ๊ธฐ๋งŒ์‹œํ‚จ ํ›„์— ์ž˜๋ชป๋œ ํ•ญ๋ฒ•ํ•ด๋ฅผ ์œ ๋ฐœ์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ์‹ฌ๊ฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ๋งŒ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๋Œ€์‘๊ธฐ๋ฒ•์œผ๋กœ ๋‹ค์ค‘ ๊ธฐ์ค€๊ตญ ๊ธฐ๋ฐ˜์—์„œ ํ•ญ๋ฒ•ํ•ด ํ’ˆ์งˆ์„ ๊ฐ์‹œํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ๋งŒ์‹ ํ˜ธ๋ฅผ ๊ฒ€์ถœํ•˜๊ณ  ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ธฐ๋งŒ์‹ ํ˜ธ๋ฅผ ๊ฒ€์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ฒ€์ถœ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ฐ ๊ธฐ๋งŒ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋“ค์ด ์žˆ์œผ๋ฉฐ ์ตœ๊ทผ ๋ช‡ ๋…„ ๋™์•ˆ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ๋งŒ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํฌ๊ด„์ ์œผ๋กœ ๊ฒ€์ถœํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ด๋ฏธ ์•Œ๊ณ  ์žˆ๋Š” ๊ณ ์ •๋œ ์œ„์น˜์˜ ๊ธฐ์ค€๊ตญ ๊ธฐ๋ฐ˜์—์„œ ์ ์‘ ํŽ˜์ด๋”ฉ ์นผ๋งŒ ํ•„ํ„ฐ์˜ ํŽ˜์ด๋”ฉ ํŒฉํ„ฐ๋ฅผ ๊ฒ€์ถœ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ์‚ฌ์šฉํ•œ ๊ฒ€์ถœ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ์ด๋•Œ ๊ธฐ๋งŒ์‹ ํ˜ธ๋Š” ์Šค๋งˆํŠธ ๊ธฐ๋งŒ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์‚ฌํ•˜์—ฌ ๊ทธ ์˜ํ–ฅ์„ ๋žจํ”„ ๋ฐ”์ด์–ด์Šค ํ˜•ํƒœ์˜ ์˜์‚ฌ๊ฑฐ๋ฆฌ ์˜ค์ฐจ๋กœ ๋ชจ๋ธ๋ง ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ด์— ๋”ฐ๋ฅธ ํŽ˜์ด๋”ฉ ํŒฉํ„ฐ ๋ณ€ํ™”๊ฐ’์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๊ณ  ๋ถ„์„๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ธฐ๋งŒ์‹ ํ˜ธ ๊ฒ€์ถœ์„ ์œ„ํ•œ ์ž„๊ณ„์น˜๋ฅผ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ตœ์ข…์ ์œผ๋กœ ํŽ˜์ด๋”ฉ ํŒฉํ„ฐ๋กœ ์นผ๋งŒ ๊ฒŒ์ธ์„ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ๊ธฐ๋งŒ์‹ ํ˜ธ์˜ ์˜ํ–ฅ์„ ์™„ํ™”์‹œํ‚ค๋Š” ํšจ๊ณผ๋„ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์•ž์—์„œ ์„ค๋ช…ํ•œ ๊ธฐ๋งŒ์‹ ํ˜ธ ๊ฒ€์ถœ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ธฐ๋งŒ์‹ ํ˜ธ๊ฐ€ ์žˆ๋‹ค๊ณ  ํŒ๋‹จํ•˜๋ฉด ๋‹ค์ค‘ ๊ธฐ์ค€๊ตญ์—์„œ์˜ ์ธก์ •์น˜๋ฅผ ํ†ตํ•ด ๊ธฐ๋งŒ์‹ ํ˜ธ์›์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๊ฒŒ ๋œ๋‹ค. ์ „ํŒŒ๊ฐ„์„ญ์›์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์‚ฌ์šฉํ•˜๋Š” ์ธก์ •์น˜์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•˜๊ฒŒ ๋ถ„๋ฅ˜๋˜๋Š”๋ฐ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ฃผ๊ธฐ์ค€๊ตญ์„ ๊ธฐ์ค€์œผ๋กœ ํ•˜์—ฌ ๊ฐ ๊ธฐ์ค€๊ตญ์—์„œ ์ˆ˜์‹ ๋œ ์‹ ํ˜ธ์„ธ๊ธฐ์ฐจ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜์˜€์œผ๋ฉฐ, ์ด๋•Œ ์‹ ํ˜ธ์„ธ๊ธฐ ์ธก์ •์น˜๋กœ C/No๋ฅผ ์‚ฌ์šฉํ•˜์˜€๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•ด ์ „ํŒŒ์†์‹ค๋ชจ๋ธ์€ COST231-Walfisch-Ikegami ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹ ํ˜ธ๊ฐ์‡„๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ๊ฒ€์ถœ ๋ฐ ์œ„์น˜์ถ”์ • ๊ธฐ๋ฒ•์€ ๊ฐ๊ฐ ๊ฐ„๋‹จํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ฑ„๋„๋ณ„ ์˜์‚ฌ๊ฑฐ๋ฆฌ ์ด์ƒ์„ ๊ฒ€์ถœํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๊ฐ€ ๊ณ ์ •๋œ ๊ฒฝ์šฐ ๋ฌด๊ฒฐ์„ฑ ๊ฐ์‹œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋˜ํ•œ ์ถ”๊ฐ€์ ์ธ ํ•˜๋“œ์›จ์–ด๋‚˜ ๋ณต์žกํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„์ด ํ•„์š”ํ•˜์ง€ ์•Š์•„ ์‹ค์šฉ์ ์ธ ์ธก๋ฉด์—์„œ ์œ ์šฉํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.The Global Navigation Satellite System (GNSS) is a radio navigation system using satellites and has been widely used by both military and civilian systems since it can provide an accurate position and timing information to users. However, the strength of the GNSS signal on the users receiver is weak since GNSS satellites are approximately 20,000 Km away and transmit several watts of signal power such that at the ground level. Therefore, GNSS signal is quite vulnerable to different types of interference. Interference signals can be categorized as unintentional and intentional. Intentional interference, such as jamming, meaconing, and spoofing, are specifically designed with malicious intention to deny or mislead GNSS receivers, thus they are serious threat to GNSS applications. Among them, spoofing is much more dangerous since it is designed to mislead their target receiver that is not aware of the attack and this can lead to disastrous consequences in scores of applications. Therefore, in this thesis, a detection and localization method for GNSS spoofing signal based on multiple base stations has been researched for monitoring the quality of navigation solutions. There are various spoofing detection methods according to detection parameters and spoofing scenarios. The related researches have been actively performed for recent years. In this thesis, GNSS spoofing detection method based on adaptive fading Kalman filter is proposed to detect spoofing signal and the fading factor of the filter is used as a detection parameter. In order to detect spoofing signal regardless of spoofing scenarios, the proposed method is based on multiple base stations whose locations are fixed and already known. The effect of the spoofing is modeled by the ramp type bias error of the pseudorange to emulate smart spoofer. In addition, the change of the fading factor according to ramp type bias error is quantitatively analyzed and the detection threshold is established to detect spoofing signal by analyzing the change of the error covariance. The proposed method also has an effect on spoofing mitigation by adjusting the Kalman gain of the filter. If spoofing signal is detected by using the proposed method, spoofing localization method based on multiple base stations is performed to estimate spoofing location. There are various localization methods according to measurements. However, in this thesis, spoofing location is estimated by differential received signal strength (DRSS) method because of simplicity and efficiency. The carrier to noise ratio (C/No) measurement characterizes the received signal strength (RSS), therefore, the difference of the C/No between main station (MS) and each base station (BS) is used as measurement for DRSS method. In addition, the Cost231-Walfisch-Ikegami model is applied as path-loss model for calculating signal attenuation. To verify the performance analysis of the proposed spoofing detection and localization method, simple simulations are implemented, respectively. This method can be applied for integrity monitoring algorithm in case of fixed user because it can detect abnormal pseudorange of each channel. In addition, this method is expected to be easily applied to practical system because they do not need to additional hardware and realization of complex algorithm.Abstract i Contents iv List of Figures vi List of Tables vii Chapter 1.Introduction 1 1.1 Motivation and Background 1 1.2 Objectives and Contributions 2 1.3 Organization 2 Chapter 2. GNSS Intentional Interference 4 2.1 Introduction 4 2.2 Jamming 5 2.3 Meaconing 8 2.4 Spoofing 11 Chapter 3. Spoofing Detection Method 13 3.1 Introduction 13 3.2 Adaptive Fading Kalman Filter 15 3.2.1 Backgroud 15 3.2.2 Adaptive Fading Factor 17 3.2.3 Parameter Analysis 21 3.3 Simulation 25 Chapter 4. Spoofing Localization Method 34 4.1 Introduction 34 4.2 DRSS Method 35 4.3 Simulation 38 Chapter 5. Conclusions 43 Bibliography 45 ๊ตญ๋ฌธ์ดˆ๋ก 51Maste
    corecore