
Research Article
Initial Self-Alignment for Marine Rotary SINS Using Novel
Adaptive Kalman Filter

Fujun Pei,1,2 Li Zhu,1,2 and Jian Zhao1,2

1School of Electronic Information & Control Engineering, Beijing University of Technology, Beijing 100124, China
2Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China

Correspondence should be addressed to Fujun Pei; pfj@bjut.edu.cn

Received 24 January 2015; Accepted 15 April 2015

Academic Editor: Oscar Reinoso

Copyright © 2015 Fujun Pei et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The accurate initial attitude is essential to affect the navigation result of Rotary Strapdown Inertial Navigation System (SINS), which
is usually calculated by initial alignment. But marine mooring Rotary SINS has to withstand dynamic disturbance, such as the
interference angular velocities and accelerations caused by surge and sway. In order to overcome the limit of dynamic disturbance
under the marine mooring condition, an alignment method using novel adaptive Kalman filter for marine mooring Rotary SINS
is developed in this paper. This alignment method using the gravity in the inertial frame as a reference is discussed to deal with
the lineal and angular disturbances. Secondly, the system error model for fine alignment in the inertial frame as a reference is
established. Thirdly, PWCS and SVD are used to analyze the observability of the system error model for fine alignment. Finally, a
novel adaptive Kalman filter withmeasurement residual to estimatemeasurement noise variance is designed.The simulation results
demonstrate that the proposed method can achieve better accuracy and stability for marine Rotary SINS.

1. Introduction

Because SINS has special advantages, it has been widely used
in aviation, marine, and land vehicle navigation and posi-
tioning. Because the bias errors of inertial sensors can cause
large positioning errors accumulated over time, low accuracy
ship-carrier SINS cannot meet the navigation requirement
for long voyage of the marine [1]. Whereas the high accuracy
SINS needs strategic inertial sensors, it will increase the cost
correspondingly. With the emergence of rotation modula-
tion technique that compensates the constant bias error of
inertial sensors, Rotary SINS plays an important role in the
marine field. But because the initial errors in the derived navi-
gation parameters cannot be depressed by rotary modulation
technique, initial alignment is the key technique for Rotary
SINS. The purpose of initial alignment is to obtain an initial
attitude matrix and set the misalignments to zero. Then the
accuracy and stability of initial alignment are critical for high
performance Rotary SINS [2, 3].The initial attitude angle can
be obtained by initial alignment, which is divided into two
procedures: coarse and fine alignment. The coarse alignment
is used to resolve large misalignment angle rapidly, and then

the fine alignment is used to compensate and correct the
misalignment angle further.

A lot of literature has been devoted to coarse alignment
methods. But marine Rotary SINS has to withstand dynamic
disturbance, such as the interference angular velocities and
accelerations, caused by surge and sway far outweighing the
autorotation angular velocity of the Earth. So the conven-
tional coarse alignment method cannot be utilized [4]. In
2000, the IxSea Company claimed a new alignment algo-
rithm,which could be done in 5min under any swinging con-
ditions with their new alignment algorithm [5, 6]. Based on
the alignment idea of Octans, relevant investigations about
the inertial frame alignment have been carried out [7–9].
The inertial frame alignment algorithm can isolate the distur-
bance by lineal and angular movements of the vehicle in the
marine. But in these coarse alignment algorithms, the head
angle error within a few degrees and pitch/roll angle within
a few tenths of a degree hence fulfill the requirement for the
fine alignment [10].

In the fine alignment procedure, Kalman filter is an opti-
mal linear estimator whenmeasurement noise has a Gaussian
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distribution with known measurement and process noise
variance values. In [11], the fine alignment error model in the
inertial framewas developed, the velocity differences between
the calculated Strapdown INS values and the true values
along the inertial frame were considered as measurements,
and Kalman filter was used to estimate the error angle. But in
this method, the disturbed acceleration was ignored based on
the integration of the disturbed acceleration which was con-
sidered equal to zero. But the disturbed acceleration caused
by heavy surge or waves in marine did not periodically vary,
and determining an accurate value of this disturbance noise
variance is very difficult in the marine environment. To over-
come the uncertainty measurement noise in Strapdown INS
fine alignment procedure, several adaptive filter techniques
have been developed for fine alignment. Most of the work
reported for this problem has concentrated on innovation-
based adaptive estimation, which utilizes new statistical
information from the innovation sequence to correct the
estimation of the states. The main idea of these adaptive esti-
mation methods is adjusting the 𝑅matrix online using fuzzy
logic and neurofuzzy logic [12–14], for linear and nonlinear
systems, respectively.This adaptive filter is based on a covari-
ance matching technique, where its input is the difference
between the actual Kalman filter residual covariance and its
theoretical value. But the decision of the fuzzy rule and
the selection of the adjusting step size of 𝑅 are dependent
on experience more or less, and the complex adjustment
algorithm degrades the real-time performance. In [15], an
adaptive Kalman filter was specially presented to estimate
measurement noise variance directly using the measure-
ment residual and employing the Frobenius norm. And the
adaptive Kalman filter in [15] has successfully improved the
stability of filter in the case of measurement uncertainties.

Inspired by the adaptive idea in [15], a novel adaptive
Kalman filter algorithm is developed in this paper, and sim-
ulation test verifies the effectiveness of the proposed method.
Similar to [11, 14], utilizing the gravity in the inertial frame as a
reference, the initial fine alignment errormodel is established
for fine alignment procedure of Rotary SINS.Thedifference is
that the PWCS theory and SVD theory are used to analyze the
observability of the fine alignment errormodel before design-
ing filter. And the novel calculation method for the adaptive
scalar value is obtained and proved based on the system
stability and optimality conditions of the adaptive filter.

This paper is organized as follows. The algorithm
approaches for the principle of rotary modulation technique
and the coarse alignment algorithm in the inertial frame are
presented in Section 2. Section 3 provides the Rotary SINS
fine alignment error model in the inertial frame and the
observability analysis of PWCS theory and SVD theory. An
adaptive filter is developed which is presented in Section 4.
The simulation results are illustrated in Section 5. Finally, the
conclusion is presented in Section 6.

Coordinate Frame Definitions. The 𝑏 frame is the body
coordinate frame. The 𝑥𝑏 axis is parallel to the body lateral
axis and points to the right.The 𝑦𝑏 axis is parallel to the body
longitudinal axis and points forward.The 𝑧𝑏 axis is parallel to
the body vertical axis and points upward.

The 𝑛 frame is the navigation coordinate frame which is
the local level coordinate frame.The 𝑛𝑥 axis points to the East,
the 𝑛𝑦 axis points to the North, and the 𝑛𝑧 axis points to the
zenith.

The 𝑒 frame is the Earth-fixed coordinate frame. The 𝑒𝑧
axis is parallel to the Earth’s rotation axis and the 𝑒𝑥 axis
is in the equatorial plane and points to the meridian of the
body initial position. The 𝑒𝑦 axis completes the right-handed
coordinate system.

The 𝑖 frame is the inertial coordinate frame. It is formed
by fixing the 𝑒 frame at the beginning of the coarse alignment
in the inertial space.

The 𝑖 frame is the computed inertial coordinate frame.
The 𝑖𝑏0 frame is the body inertial coordinate frame. It is

formedby fixing the 𝑏 frame at the beginning of the alignment
in the inertial space.

The 𝑠 frame is the inertial measurement unit (IMU)
coordinate frame. The origin of this frame is at the IMU’s
center of gravity and it is in accordance with the 𝑏 frame
at first. Besides, 𝑂𝑥𝑠 runs parallel to the longitudinal gyro’s
sensing axis and the longitudinal accelerometer’s sensing axis.
Similarly, 𝑂𝑦𝑠 runs parallel to the transverse gyro’s sensing
axis and the transverse accelerometer’s sensing axis, whereas
𝑂𝑧𝑠 is vertical to𝑂𝑥𝑠𝑦𝑠 and it is upright.Then the IMU rotates
around the rotation axis with angular velocity 𝜔. Thus, the 𝑠
frame varied with the changes of IMU’s position is a real-time
variable frame.

2. Realization of Coarse Alignment for
Rotary SINS in the Inertial Frame

2.1. The Principle of Rotary Modulation Technique. In this
section, the principle of restraining navigation errors will be
explained in detail. First of all, the differential equations of
attitude error and velocity error for Rotary SINS are expressed
as

̇𝜙
𝑛
= −𝜔
𝑛

𝑖𝑛
× 𝜙
𝑛
+ 𝛿𝜔
𝑛

𝑖𝑛
− C𝑛
𝑏
C𝑏
𝑠
𝛿𝜔
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,

𝛿k̇𝑛 = 𝑓𝑛 × 𝜙𝑛 + C𝑛
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𝛿𝑓
𝑠

𝑖𝑠
− (2𝛿𝜔

𝑛
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𝑛
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) × V𝑛

− (2𝜔
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𝑖𝑒
+ 𝜔
𝑛

𝑒𝑛
) × 𝛿V𝑛 + 𝛿𝑔𝑛.

(1)

First of all, the notations used in the equations should be
explained. Subscript denotes a frame’s relative movement to
another frame, and superscript denotes the expression in the
frame. For example, 𝜙𝑛 is the attitude error expressed in the 𝑛
frame and 𝜔𝑛

𝑖𝑛
is the angular rate of the 𝑛 frame with respect

to the 𝑖 frame, expressed in the 𝑛 frame. C𝑏
𝑠
is the transform

matrix from the 𝑠 frame to the 𝑏 frame andC𝑛
𝑏
is the transform

matrix from the 𝑏 frame to the 𝑛 frame. 𝛿V𝑛 denotes the vector
error. In particular, 𝛿𝜔𝑠

𝑖𝑠
and 𝛿𝑓𝑠

𝑖𝑠
are the errors caused by the

inertial sensors inaccurate measurement. V𝑛 is the velocity
expressed in the 𝑛 frame and 𝑔𝑛 is the gravity vector in the
𝑛 frame. 𝜔𝑛

𝑖𝑒
is the Earth rotation rate vector in the 𝑛 frame

and 𝜔𝑛
𝑒𝑛
is the 𝑛 frame angular rate in the 𝑒 frame.

In accordance with IMU rotation which continues, the
element of C𝑏

𝑠
is changed frequently. The fundamental aspect

of rotation modulation technique is to change the element of



Mathematical Problems in Engineering 3

C𝑏
𝑠
periodically so thatmean values ofC𝑛

𝑏
C𝑏
𝑠
𝛿𝜔
𝑠

𝑖𝑠
andC𝑛

𝑏
C𝑏
𝑠
𝛿𝑓
𝑠

𝑖𝑠

approximately approach zero. As a result, the navigation
system errors are reduced and the system performance is
improved owing to the rotational motion.

Adopting dual-axis rotation modulating method in this
paper, three gyros and three accelerometers are used as the
inertial sensors. Initially, the 𝑠 frame is in accordance with the
𝑏 frame.Then the system rotates continuously at the uniform
rotational angular velocities 𝜔1 and 𝜔2 (𝜔1 ̸= 𝜔2) around the
𝑂𝑥𝑏 and 𝑂𝑧𝑏 axis of the 𝑏 frame, respectively. We use the
transformmatrixC𝑠

𝑏
to express the relations from the 𝑏 frame

to the 𝑠 frame:

C𝑠
𝑏
= C𝑠𝑥
𝑏
C𝑠𝑧
𝑏
. (2)

Since the outputs of the inertial sensors are measured
from the 𝑠 frame, the following equations can be obtained:

𝜔
𝑠

𝑖𝑠
= C𝑠
𝑏
�̂�
𝑏

𝑖𝑏
+ 𝜔
𝑠

𝑏𝑠
+ [𝜀𝑥 𝜀𝑦 𝜀𝑧]

𝑇
, (3)

𝑓
𝑠

𝑖𝑠
= C𝑠
𝑏
𝑓
𝑏

𝑖𝑏
+ 𝑓
𝑠

𝑏𝑠
+ [∇𝑥 ∇𝑦 ∇𝑧]

𝑇
. (4)

Among them, it is assumed that the gyroscope drift and
accelerometer bias are 𝜀𝑥, 𝜀𝑦, and 𝜀𝑧 and ∇𝑥, ∇𝑦, and ∇𝑧. In
addition, 𝜔𝑠

𝑏𝑠
= −C𝑠

𝑏
𝜔
𝑏

𝑠𝑏
= [𝜔1 𝜔2 sin𝜔1𝑡 𝜔2 cos𝜔1𝑡]

𝑇 is
the angular rate of the 𝑠 frame with respect to the 𝑏 frame,
expressed in the 𝑠 frame. 𝑓𝑠

𝑖𝑠
is the specific force of the 𝑠

frame with respect to the 𝑖 frame, expressed in the 𝑠 frame.
𝑓
𝑠

𝑏𝑠
= 0 is the specific force of the 𝑠 frame with respect to the

𝑏 frame, expressed in the 𝑠 frame. 𝑓𝑏
𝑖𝑏
is the measured output

of accelerometer. �̂�𝑏
𝑖𝑏
is the measured output of gyro.

It is necessary to transform the inertial sensor measure-
ments from the 𝑠 frame to the 𝑏 frame, so we have

𝜔
𝑏

𝑖𝑏
= (C𝑠
𝑏
)
𝑇
𝜔
𝑠

𝑖𝑠
+ 𝜔
𝑏

𝑠𝑏
, (5)

𝑓
𝑏

𝑖𝑏
= (C𝑠
𝑏
)
𝑇
𝑓
𝑠

𝑖𝑠
+ 𝑓
𝑏

𝑠𝑏
, (6)

where 𝜔𝑏
𝑖𝑏
is the angular rate of the 𝑏 frame with respect to

the 𝑖 frame, expressed in the 𝑏 frame. �̂�𝑏
𝑖𝑏
and 𝜔𝑏

𝑖𝑏
denote the

actual and measured value of the gyro output, respectively.
Substituting (3) and (4) using (5) and (6), respectively, the

drift-bias errors of gyros and accelerometers by the rotational
motion are

[
[
[

[

𝜀
𝑏

𝑥

𝜀
𝑏

𝑦

𝜀
𝑏

𝑧

]
]
]

]

=
[
[
[

[

𝜀𝑥 cos𝜔2𝑡 − 𝜀𝑦 cos𝜔1𝑡 sin𝜔2𝑡 + 𝜀𝑧 sin𝜔1𝑡 sin𝜔2𝑡
𝜀𝑥 sin𝜔2𝑡 + 𝜀𝑦 cos𝜔1𝑡 cos𝜔2𝑡 − 𝜀𝑧 sin𝜔1𝑡 cos𝜔2𝑡

𝜀𝑦 sin𝜔1𝑡 + 𝜀𝑧 cos𝜔1𝑡

]
]
]

]

,

[
[
[

[

∇
𝑏

𝑥

∇
𝑏

𝑦

∇
𝑏

𝑧

]
]
]

]

=
[
[
[

[

∇𝑥 cos𝜔2𝑡 − ∇𝑦 cos𝜔1𝑡 sin𝜔2𝑡 + ∇𝑧 sin𝜔1𝑡 sin𝜔2𝑡
∇𝑥 sin𝜔2𝑡 + ∇𝑦 cos𝜔1𝑡 cos𝜔2𝑡 − ∇𝑧 sin𝜔1𝑡 cos𝜔2𝑡

∇𝑦 sin𝜔1𝑡 + ∇𝑧 cos𝜔1𝑡

]
]
]

]

.

(7)

Above all, we can find that the drift-bias errors of gyros
and accelerometers on three axes in the 𝑏 frame have been
changed periodically. Consequently, it is confirmed that the
dual-axis modulating rotationmethod is useful in restraining
the drift-bias errors of the inertial sensor on three axes.

2.2. The Coarse Alignment Algorithm in the Inertial Frame.
The coarse alignment for Rotary SINS is to determine the
coordinate transformmatrix from the 𝑠 frame to the 𝑛 frame,
which is also called the attitudematrix and could be described
as follows:

C𝑛
𝑠
(𝑡) = C𝑛

𝑒
C𝑒
𝑖
(𝑡)C𝑖
𝑖𝑏0
C𝑖𝑏0
𝑠
(𝑡) , (8)

where

C𝑛
𝑒
=
[
[

[

0 1 0

− sin 𝐿 0 cos 𝐿
cos 𝐿 0 sin 𝐿

]
]

]

, (9)

C𝑒
𝑖
(𝑡) =

[
[

[

cos𝜔𝑖𝑒 (𝑡 − 𝑡0) sin𝜔𝑖𝑒 (𝑡 − 𝑡0) 0

− sin𝜔𝑖𝑒 (𝑡 − 𝑡0) cos𝜔𝑖𝑒 (𝑡 − 𝑡0) 0
0 0 1

]
]

]

, (10)

where 𝐿 is latitude, 𝜔𝑖𝑒 is the Earth rotation rate, and 𝑡0 is
the start time of the coarse alignment. C𝑖𝑏0

𝑠
(𝑡) represents the

transformmatrix from the 𝑠 frame to the 𝑖𝑏0 frame, which can
be updated by using the gyro output in the 𝑠 frame through
the attitude quaternion algorithm (its initial value is the unit
matrix).

Thus, the key of the coarse alignment based on the inertial
frame is to compute the transformmatrixC𝑖

𝑖𝑏0
.C𝑖
𝑖𝑏0
represents

the transform matrix from the 𝑖𝑏0 frame to the 𝑖 frame and is
a constantmatrix. According to dual-vector attitude determi-
nationmethod,C𝑖

𝑖𝑏0
can be calculated by using the integration

of the gravity vector in the 𝑖 frame and the 𝑖𝑏0 frame at two
different moments.

The accelerometer outputs in the 𝑠 frame consist of the
projection of the gravity vector 𝑔𝑠, the projection of the
interference acceleration 𝛿𝑎𝑠

𝐷
, the induced acceleration due

to the lever-arm 𝑎
𝑠

LA, and the constant bias error of the
accelerometer ∇, namely,

𝑓
𝑠
= −𝑔
𝑠
+ 𝛿𝑎
𝑠

𝐷
+ 𝑎
𝑠

LA + ∇. (11)

As the constant bias error of the accelerometer ∇ is
reduced to zero after every rotation period, the integration of
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the accelerometer’s measured specific force projected in the
𝑖𝑏0 frame can be described as follows:

V𝑖𝑏0
𝑓
(𝑡𝑘) = ∫

𝑡𝑘

𝑡0

C𝑖𝑏0
𝑏
C𝑏
𝑠
𝑓
𝑠
𝑑𝑡

= ∫

𝑡𝑘

𝑡0

C𝑖𝑏0
𝑏
C𝑏
𝑠
(−𝑔
𝑠
+ 𝛿𝑎
𝑠

𝐷
+ 𝑎
𝑠

LA) 𝑑𝑡

= −C𝑖𝑏0
𝑖
∫

𝑡𝑘

𝑡0

𝑔
𝑖
𝑑𝑡 + 𝛿V𝑖𝑏0

𝐷
+ V𝑖𝑏0LA,

(12)

V𝑖𝑏0LA = ∫
𝑡𝑘

𝑡0

𝑎
𝑖𝑏0

LA𝑑𝑡 = C𝑖𝑏0
𝑠
(𝜔
𝑠

𝑖𝑠
× 𝑟
𝑠
) . (13)

As the integration of the 𝛿𝑎𝑠
𝐷
approaches zero approximately

after every rotation period, (12) becomes

V𝑖𝑏0 (𝑡𝑘) = V𝑖𝑏0
𝑓
(𝑡𝑘) − V𝑖𝑏0LA (𝑡𝑘) = −C

𝑖𝑏0

𝑖
∫

𝑡𝑘

𝑡0

𝑔
𝑖
𝑑𝑡

= C𝑖𝑏0
𝑖
V𝑖 (𝑡𝑘) ,

(14)

where 𝑔𝑖 is the gravity vector in the 𝑖 frame. Integrating 𝑔𝑖

from 𝑡0 to 𝑡𝑘 yieldsΔ𝑡𝑘 = 𝑡𝑘−𝑡0, andV𝑖(𝑡𝑘) could be computed
as

V𝑖 (𝑡𝑘) =

[
[
[
[
[
[
[
[

[

𝑔 cos 𝐿
𝜔𝑖𝑒

sin𝜔𝑖𝑒Δ𝑡𝑘

𝑔 cos 𝐿
𝜔𝑖𝑒

(1 − cos𝜔𝑖𝑒Δ𝑡𝑘)

Δ𝑡𝑘𝑔 sin 𝐿

]
]
]
]
]
]
]
]

]

. (15)

Substituting (15) in (14), the following equations can be
obtained:

V𝑖𝑏0 (𝑡𝑘1) = C𝑖𝑏0
𝑖
V𝑖 (𝑡𝑘1) ,

V𝑖𝑏0 (𝑡𝑘2) = C𝑖𝑏0
𝑖
V𝑖 (𝑡𝑘2) ,

(16)

where 𝑡𝑘2 is the end time of coarse alignment and 𝑡0 < 𝑡𝑘1 <
𝑡𝑘2.

From (16), C𝑖
𝑖𝑏0
could be calculated by the following

equation:

C𝑖
𝑖𝑏0
=

[
[
[
[

[

(V𝑖)
𝑇

(𝑡𝑘1)

(V𝑖)
𝑇

(𝑡𝑘2)

[V𝑖 (𝑡𝑘1) × V𝑖 (𝑡𝑘2)]
𝑇

]
]
]
]

]

−1

⋅

[
[
[
[

[

(V𝑖𝑏0)
𝑇

(𝑡𝑘1)

(V𝑖𝑏0)
𝑇

(𝑡𝑘2)

[V𝑖𝑏0 (𝑡𝑘1) × V𝑖𝑏0 (𝑡𝑘2)]
𝑇

]
]
]
]

]

.

(17)

After deriving C𝑖
𝑖𝑏0
, the attitude matrix C𝑛

𝑠
can be calcu-

lated through (8).

3. Fine Alignment Error Model and
Observability Analysis

The coarse initial attitude angle can be obtained by the coarse
alignment method in Section 2. The marine heading angle
error is estimated to within a few degrees and pitch/roll angle
to within a few tenths of a degree, which allow the fine align-
ment filter to operate within it in the linear region. In this sec-
tion, the fine alignment errormodel of Rotary SINS in inertial
frame is developed. Moreover, observability analysis of the
error model is discussed using PWCS and SVD theory before
designing the filter.

3.1. Fine Alignment Error Model. Using (8) for reference, the
attitude matrix C𝑛

𝑠
(𝑡) which remains to be calculated with

high accuracy at the end of the fine alignment procedure can
be represented as

C𝑛
𝑠
(𝑡) = C𝑛

𝑒
C𝑒
𝑖
(𝑡)C𝑖
𝑠
(𝑡) , (18)

whereC𝑒
𝑛
andC𝑒

𝑖
(𝑡) are derived from (9) and (10), respectively.

C𝑖
𝑠
(𝑡) can be described as follows:

C𝑖
𝑠
(𝑡) = [C𝑖



𝑖
(𝑡)]

−1

C𝑖


𝑠
(𝑡) , (19)

whereC𝑖


𝑠
(𝑡) represents the transformmatrix from the 𝑠 frame

to the computed inertial frame 𝑖 and is given by

C𝑖


𝑠
(𝑡) = C𝑖



𝑠
(0) ΔC𝑖

𝑠
, (20)

where the attitude matrix C𝑖


𝑠
(0) relates the 𝑠 frame to the 𝑖

frame at the beginning of the fine alignment, which is derived
from the coarse alignment. Through the attitude quaternion
updating algorithm, the matrix ΔC𝑖

𝑠
can be computed recur-

sively with the gyro and accelerometer outputs. Furthermore,
there exist misalignment angles 𝜑𝑖 between the inertial frame
𝑖 and the computed inertial frame 𝑖 owing to component
errors; the transitionmatrixC𝑖



𝑖
can be constructed as follows:

C𝑖


𝑖
= 𝐼 − [𝜑

𝑖
×] =

[
[
[

[

1 −𝜑
𝑖

𝑧
𝜑
𝑖

𝑦

𝜑
𝑖

𝑧
1 −𝜑

𝑖

𝑥

−𝜑
𝑖

𝑦
𝜑
𝑖

𝑥
1

]
]
]

]

. (21)

By substituting (20) in (19), the transform matrix C𝑖
𝑠
(𝑡)

can be determined. So themain problemof the fine alignment
becomes the estimation of misalignment angles 𝜑𝑖. System
error equations should be established firstly, which include
velocity and attitude error equations. The measured specific
force projected from accelerometer in the 𝑖 frame can be
written as

C𝑖


𝑠
𝑓
𝑠

= C𝑖


𝑠
[(𝐼 + 𝛿𝐾𝐴) (𝐼 + 𝛿𝐴) (−𝑔

𝑠
+ 𝑎
𝑠

LA + 𝑎
𝑠

𝐷
) + ∇]

≈ −𝑔
𝑖
+ 𝜑
𝑖
× 𝑔
𝑖
+ C𝑖
𝑠
∇ + C𝑖



𝑠
𝑎
𝑠

LA + C𝑖


𝑠
𝛿𝑎
𝑠
,

(22)



Mathematical Problems in Engineering 5

where 𝛿𝑎𝑠 is the interference acceleration in the 𝑠 frame and
accelerometer bias ∇ includes constant drift ∇𝑏 and Gaussian
white noise ∇𝑤, namely, ∇ = ∇𝑏 + ∇𝑤. So (22) can be written
as

C𝑖


𝑠
𝑓
𝑠
+ 𝑔
𝑖
− C𝑖



𝑠
𝑎
𝑠

LA = 𝜑
𝑖
× 𝑔
𝑖
+ C𝑖
𝑠
∇𝑏 + C𝑖

𝑠
∇𝑤 + 𝛿𝑎

𝑖
. (23)

Integrating (23) from 𝑡1 to 𝑡 yields

Ṽ𝑖 = ∫
𝑡

𝑡1

C𝑖


𝑠
𝑓
𝑠
𝑑𝜏 + ∫

𝑡

𝑡1

𝑔
𝑖
𝑑𝜏 − ∫

𝑡

𝑡1

C𝑖


𝑠
𝑎
𝑠

LA𝑑𝜏

= ∫

𝑡

𝑡1

𝜑
𝑖
× 𝑔
𝑖
𝑑𝜏 + ∫

𝑡

𝑡1

C𝑖
𝑠
∇𝑏𝑑𝜏 + ∫

𝑡

𝑡1

C𝑖
𝑠
∇𝑤𝑑𝜏

+ ∫

𝑡

𝑡1

𝛿𝑎
𝑖
𝑑𝜏,

(24)

where V𝑖LA = ∫
𝑡

𝑡1
C𝑖


𝑠
𝑎
𝑠

LA𝑑𝜏 = C𝑖


𝑠
(𝜔
𝑠

𝑖𝑠
× 𝑟
𝑠
), 𝛿V𝑖
𝐷
= ∫
𝑡

𝑡1
𝛿𝑎
𝑖
𝑑𝜏,

V𝑖
𝑔
= ∫
𝑡

𝑡1
𝑔
𝑖
𝑑𝜏, and V𝑖

𝑓
= ∫
𝑡

𝑡1
C𝑖


𝑠
𝑓
𝑠
𝑑𝜏. Consider

𝛿V𝑖 = ∫
𝑡

𝑡1

𝜑
𝑖
× 𝑔
𝑖
𝑑𝜏 + ∫

𝑡

𝑡1

C𝑖
𝑠
∇𝑏𝑑𝜏 + ∫

𝑡

𝑡1

C𝑖
𝑠
∇𝑤𝑑𝜏. (25)

Measurement vectors could be described as follows:

Z = Ṽ𝑖 = V𝑖
𝑓
+ V𝑖
𝑔
− V𝑖LA = 𝛿V

𝑖
+ V𝑤 + 𝛿V

𝑖

𝐷
. (26)

In interference angular velocities and accelerations envi-
ronment, the velocity error equation in the inertial frame can
be defined as

𝛿V̇𝑖 = −𝑔𝑖 × 𝜑𝑖 + C𝑖
𝑠
∇𝑏 + C𝑖

𝑠
∇𝑤. (27)

In accordance with the differential equations of C𝑖
𝑠
and

C𝑖


𝑠
, themisalignment angle equation in the inertial frame can

be defined as

�̇�
𝑖
= −C𝑖
𝑠
𝜀𝑏 − C𝑖

𝑠
𝜀𝑤, (28)

where 𝜀𝑏 and 𝜀𝑤 are gyro constant drift and Gaussian white
noise.

With gyro drift and accelerometer bias added to state
vectors, the state equation in the dynamic disturbance envi-
ronment is described as follows:

Ẋ (𝑡) = A (𝑡)X (𝑡) + B (𝑡)W. (29)

The state vectors and system noise in (29) are

X (𝑡) = [𝛿𝑉𝑖
𝑥
, 𝛿𝑉
𝑖

𝑦
, 𝛿𝑉
𝑖

𝑧
, 𝜑
𝑖

𝑥
, 𝜑
𝑖

𝑦
, 𝜑
𝑖

𝑧
, 𝜀𝑏𝑥, 𝜀𝑏𝑦, 𝜀𝑏𝑧, ∇𝑏𝑥,

∇𝑏𝑦, ∇𝑏𝑧]
𝑇

W = [∇𝑤𝑥, ∇𝑤𝑦, ∇𝑤𝑧, 𝜀𝑤𝑥, 𝜀𝑤𝑦, 𝜀𝑤𝑧, 0, 0, 0, 0, 0, 0]
𝑇

,

(30)

where six vectors in 𝑊(𝑡) are the noise of accelerometers
and gyros in the 𝑠 frame, which is normally distributed white
noise with zero mean and𝑄(𝑡) variance.The state matrix and

system noise matrix of Rotary SINS in the inertial frame are
as follows:

A =
[
[
[
[
[
[

[

03×3 − (𝑔
𝑖
(𝑡) ×) 03×3 C𝑖

𝑠
(𝑡)

03×6 −C𝑖𝑠 (𝑡) 03×3
03×12

03×12

]
]
]
]
]
]

]

,

B =
[
[
[
[
[

[

C𝑖
𝑠
(𝑡) 03×3 03×3 03×3

03×3 −C𝑖𝑠 (𝑡) 03×6
03×12

03×12

]
]
]
]
]

]

.

(31)

Furthermore, velocity errors are selected as measurement
vectors and the measurement equation is

Z (𝑡) = HX (𝑡) + V𝑤 + 𝛿V
𝑖

𝐷
. (32)

The measurement matrix in (32) is

H = [I3×3 03×9] , (33)

where 𝛿V𝑖
𝐷
is uncertainty measurement disturbance caused

by the marine’s rock and sway. V𝑤 is system measurement
noise, which is white noise.

3.2. Observability Analysis Using PWCS and SVD. For the
designing of optimal filter, the observability of the system
model is an important issue and requires careful investiga-
tion, as it is crucial for the stability and convergence of the fil-
ter. In this section, the observability analysis of the fine align-
ment model for Rotary SINS is discussed using twomethods,
which are piecewise constant system (PWCS) [16, 17] method
and singular value decomposition (SVD) [18, 19]. First, the
PWCS analysis method is used to discover the number of the
observable state value inMATLAB. Second, the SVDmethod
is used to calculate the observable degree of every state value,
because it is an efficient method to analyze the observable
degree of every state value for completely observable and the
incompletely observable system.

Assume that the matrix 𝑅𝑘 is the observability matrix of
a dynamic system; it can be expressed by

𝑅𝑘 = 𝑈Σ𝑉
𝑇
, (34)

where 𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑚] and 𝑉 = [V1, V2, . . . , V𝑚] are both
orthogonal matrixes. Σ = [𝑆 0(𝑚−𝑟)×𝑟]

𝑇 is a matrix with𝑚×𝑟
order, 𝑆 = diag{𝜎1, 𝜎2, . . . , 𝜎𝑟} is a diagonal matrix, and 𝜎1 ≥
𝜎2 ≥ ⋅ ⋅ ⋅ ≥ 𝜎𝑟 > 0 are called the singular value of the matrix
𝑅𝑘, 𝑟 = rank(𝐴).

The measurement matrix is given by

𝑅𝑘𝑋0 = 𝑍, (35)
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Table 1: The comparison of observable degree for Rotary SINS.

Time 𝛿𝑉
𝑥

𝛿𝑉
𝑦

𝛿𝑉
𝑧

𝜑
𝑥

𝜑
𝑦

𝜑
𝑧

𝜀
𝑥

𝜀
𝑦

𝜀
𝑧

∇
𝑥

∇
𝑦

∇
𝑧

1 1.0135 1.1031 1.0324 0.6251 13.8570 13.8636 13.7323 13.9108 2.2515 1.4198 1.4641 1.3946
2 1.1089 1.2246 1.1567 0.6785 13.8836 13.8975 13.7635 13.9438 2.4624 1.4856 1.5358 1.4298
3 1.2452 1.3244 1.2346 0.7037 13.9104 13.9044 13.8015 13.9704 2.6584 1.5203 1.5747 1.4742

where 𝑋0 is the initial state vector and 𝑍 is measurement
vector. By substituting (34) into (35), we can obtain

𝑍 =

𝑟

∑

𝑖=1

𝜎𝑖 (V
𝑇

𝑖
𝑋0) 𝑢𝑖 (36)

𝑋0 = (𝑈Σ𝑉
𝑇
)
−1

𝑍 =

𝑟

∑

𝑖=1

(
𝑢
𝑇

𝑖
𝑧

𝜎𝑖

) V𝑖. (37)

According to (37), initial state vector 𝑋0 describes an
ellipsoid when measurement vector 𝑍 is constant norm, and
the equation is given by

𝑟

∑

𝑖=1

(
V𝑇
𝑖
𝑋0𝑢𝑖

𝑎𝑖

)

2

=
𝑦


2
, (38)

where 𝑎𝑖 = 1/𝜎𝑖 represents the principal axis length of the
ellipsoid. Obviously, the volume of the ellipsoid is determined
by singular value. The volume reduces as well as the state
vector 𝑋0 when the singular value rises up. Therefore,
singular value represents the ellipsoid radius formed by the
estimated initial state. The ellipsoid radius becomes smaller
as the singular value becomes larger, and the estimation
performance of the initial state is better.

For Rotary SINS, we use dual-axis rotation scheme
presented above; the initial state vector corresponding to 12
singular values is found by (34)–(38), and the rotating angular
velocity is 𝜔1 = 3𝜔2 = 18

∘
/s. Table 1 shows the comparison

of observable degree for Rotary SINS in interference angular
velocities and accelerations environment during three succes-
sive time periods.

Table 1 demonstrates that the system is completely
observable and every state value can be estimated with the
SVD theory. Particularly, 𝜀𝑦, 𝜑𝑧, 𝜑𝑦, 𝜀𝑥, and 𝜀𝑧 which have a
larger observable degree can reach a better alignment effect.
The observable degree of 𝛿𝑉𝑥, 𝛿𝑉𝑦, and 𝛿𝑉𝑧 is almost 1.
Compared with the other eleven states, the observable degree
of 𝜑𝑥 is a little smaller. But it is large enough to be observable.
On the basis of observability theory, the filter has been
designed to estimate the system state parameters.

4. Novel Adaptive Kalman Filter Designed for
Fine Alignment

In the fine alignment procedure, Kalman filter is an optimal
linear estimator when the measurement noise has a Gaussian
distribution with known covariance. However, when Rotary
SINS is under the large dynamic disturbance environment,
the conventional Kalman filter becomes not an optimal
estimator, which may tend to diverge. In this section, a novel

adaptive Kalman filter for fine alignment that utilizes the
measurement residual to estimate measurement noise vari-
ance in real time is investigated. The novel adaptive filter
is developed according to the optimality condition of the
adaptive Kalman filter presented in [20, 21].

The system error model which we discussed above can be
considered as the following state-space system:

𝑋𝑘 = Φ𝑘,𝑘−1𝑋𝑘−1 + Γ𝑘−1𝑊𝑘−1, (39)

𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑉𝑘. (40)

The measurement residual is given by

𝛿𝑍𝑘 = 𝑍𝑘 − 𝐻𝑘𝑋𝑘,𝑘−1. (41)

By substituting (40) in (41), themeasurement residual can
be written as

𝛿𝑍𝑘 = 𝐻𝑘 (𝑋𝑘 − 𝑋𝑘,𝑘−1) + 𝑉1𝑘 + 𝛼𝑉2𝑘

+ 𝜒 (𝑋𝑘, 𝑋𝑘,𝑘−1) ,

(42)

where 𝛼 is a real number, 𝛼 ≥ 0, 𝑉1𝑘 is the measurement
noise with a fixed variance, and 𝑉2𝑘 is the time-varying
measurement noise. It is assumed that the two types of mea-
surement noises are uncorrelated. 𝜒(𝑋𝑘, 𝑋𝑘,𝑘−1) is the higher
order item in the estimation error. If this item is ignored, (42)
can be simplified to

𝛿𝑍𝑘 = 𝐻𝑘 (𝑋𝑘 − 𝑋𝑘,𝑘−1) + 𝑉1𝑘 + 𝛼𝑉2𝑘. (43)

The covariance of the measurement residual is expressed
as

S𝑘,𝑘−1 = 𝐸 [𝛿Z𝑘𝛿Z
𝑇

𝑘
] = H𝑘P𝑘,𝑘−1H

𝑇

𝑘
+ R1𝑘 + 𝛽R2𝑘, (44)

where 𝛽 = 𝛼
2 is scalar value that accommodates the filter’s

stability and optimality, R1𝑘 = 𝐸[V1𝑘V𝑇1𝑘], and R2𝑘 =

𝐸[V2𝑘V𝑇2𝑘].
The covariance of state estimation error is defined as

𝑃𝑘,𝑘−1 = Φ𝑘,𝑘−1𝑃𝑘−1Φ
𝑇

𝑘,𝑘−1
+ 𝑄𝑑. (45)

Substituting (45) into (44) results in

S𝑘,𝑘−1 = H𝑘 (Φ𝑘,𝑘−1𝑃𝑘−1Φ
𝑇

𝑘,𝑘−1
+ 𝑄𝑑)H

𝑇

𝑘
+ R1𝑘

+ 𝛽R2𝑘 = 𝐿1 + 𝛽𝐿2,
(46)

where 𝐿1 = H𝑘(Φ𝑘,𝑘−1𝑃𝑘−1Φ𝑇𝑘,𝑘−1+𝑄𝑑)H
𝑇

𝑘
+R1𝑘 and 𝐿2 = R2𝑘.
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Thus we can get the optimal gain of the adaptive Kalman
filter as follows:

𝐾𝑘 = 𝑃𝑘,𝑘−1𝐻
𝑇

𝑘
𝑆
−1

𝑘,𝑘−1
. (47)

To obtain the optimal gain, in [15], the cost equation is
defined in terms of minimizing the Frobenius norm to calcu-
late 𝛽 value in real time. In this paper, we employ the opti-
mality condition of the adaptive Kalman filter to obtain the
optimal gain. The following equation shows the optimality
condition, which means that the sequence of measurement
residuals is uncorrelated:

𝐶𝑗 (𝑘) = E [𝛿Z𝑘+𝑗𝛿Z
𝑇

𝑘
] = H𝑘P𝑘,𝑘−1H

𝑇

𝑘
+ R1𝑘 + 𝛽R2𝑘

= 0 (𝑗 = 1, 2, . . . ; 𝑘 = 0, 1, . . .) .

(48)

The autocovariance of the measurement residuals is

𝐶𝑗 (𝑘) = E [𝛿Z𝑘+𝑗𝛿Z
𝑇

𝑘
]

= 𝐻𝑘+𝑗𝜙𝑘+1,𝑘+𝑗−1 [𝐼 − 𝐾𝑘+𝑗−1𝐻𝑘+𝑗−1]

⋅ ⋅ ⋅ 𝜙𝑘+2,𝑘+1 [𝐼 − 𝐾𝑘+1𝐻𝑘+1]

⋅ 𝜙𝑘+1,𝑘 [𝑃𝑘|𝑘−1𝐻
𝑇

𝑘
− 𝐾𝑘𝐶0 (𝑘)] , ∀𝑗 = 1, 2, 3, . . . .

(49)

In reality, the real covariance of the measurement residu-
als is different from a theoretical one owing to model errors
or unknown external disturbances. Thus, 𝐶𝑗(𝑘) may not be
identical to zero. From (49), we know that if the last term
of 𝐶𝑗(𝑘) which is the only common item of 𝐶𝑗(𝑘) for all
𝑗 = 1, 2, 3, . . . is zero,

𝑃𝑘|𝑘−1𝐻
𝑇

𝑘
− 𝐾𝑘𝐶0 (𝑘) = 0, (50)

then the gain 𝐾𝑘 is optimal. In other words, if the gain 𝐾𝑘
is optimal, (50) holds. Equation (50) forms the basis for
determining scalar value 𝛽. In particular,𝐶0(𝑘) in (50) which
is computed from measured data in real time, according to 𝑘
successive residuals, can be shown as

𝐶0 (𝑘) =
1

𝑘 − 1

𝑘

∑

𝑖=1

𝛿𝑍𝑖𝛿𝑍
𝑇

𝑖
. (51)

The optimal scalar value 𝛽 can be obtained by (52) when
the system model satisfies Assumptions 1 and 2, which is the
optimality condition of the adaptive Kalman filter presented
in [20, 21].

Assumption 1. 𝑄(𝑘), 𝑅(𝑘), and 𝑃(0) are all positive definite
symmetrical matrix.

Assumption 2. Themeasurement matrix𝐻(𝑘) is full ranked:

𝛽 =
tr [𝐶0 (𝑘) − 𝐿1]

tr [𝐿2]
, (52)

where if 𝛽 ≤ 0, 𝛽 = 0 and if 𝛽 ≥ max𝛽, 𝛽 = max𝛽.

Proof. Substituting (47) into the optimality condition (50)
gives

𝑃𝑘|𝑘−1𝐻
𝑇

𝑘
[𝐼 − (𝐿1 + 𝛽𝐿2)

−1
𝐶0 (𝑘)] = 0. (53)

Since 𝑃𝑘|𝑘−1 and 𝐶0(𝑘) are full-ranked symmetric matrix
according to Assumptions 1 and 2 and (51), left multiplying
𝑃
−1

𝑘|𝑘−1
and right multiplying 𝐶0(𝑘)

−1 on both sides of (53), it
is obvious that (53) implies the following relation:

𝐻
𝑇

𝑘
𝐶0 (𝑘)

−1
− 𝐻
𝑇

𝑘
(𝐿1 + 𝛽𝐿2)

−1
= 0; (54)

then

𝐻
𝑇

𝑘
𝐶0 (𝑘)

−1
(𝐿1 + 𝛽𝐿2) = 𝐻

𝑇

𝑘
. (55)

Since 𝐻𝑘 is full-ranked matrix according to
Assumption 2, (55) is simplified as

𝛽𝐿2 = 𝐶0 (𝑘) − 𝐿1. (56)

To avoid inversionmanipulation, trace is directly taken in
both sides of (56):

tr (𝛽𝐿2) = tr (𝐶0 (𝑘) − 𝐿1) (57)

then we can get the scalar value 𝛽 in (52). Proof ends.

As shown in [20, 21], instability issues may arise when no
upper bound is set for the scalar value. Thus the upper and
lower bound are defined for the measurement noise variance
as [0 𝛽max], and the rule is as follows: if 𝛽 ≤ 0, 𝛽 = 0 and if
𝛽 ≥ 𝛽max, 𝛽 = 𝛽max.The 𝛽max value can be defined by the user
according to (44).

Substituting 𝛽 into (46) during the initial alignment
process, the proposed adaptive filter for the system state
estimation is as follows:

𝑋𝑘,𝑘−1 = Φ𝑘,𝑘−1𝑋𝑘−1,

𝑃𝑘,𝑘−1 = Φ𝑘,𝑘−1𝑃𝑘−1Φ
𝑇

𝑘,𝑘−1
+ 𝑄𝑑,

𝐿1 = H𝑘 (Φ𝑘,𝑘−1𝑃𝑘−1Φ
𝑇

𝑘,𝑘−1
+ 𝑄𝑑)H

𝑇

𝑘
+ R1𝑘,

𝐿2 = R2𝑘,

𝐶0 (𝑘) =
1

𝑘 − 1

𝑘

∑

𝑖=1

𝛿𝑍𝑖𝛿𝑍
𝑇

𝑖
,

𝛽 =
tr [𝐶0 (𝑘) − 𝐿1]

tr [𝐿2]
,

𝑆𝑘,𝑘−1 = 𝐻𝑘𝑃𝑘,𝑘−1𝐻
𝑇

𝑘
+ 𝑅1𝑘 + 𝛽𝑅2𝑘,

𝐾𝑘 = 𝑃𝑘,𝑘−1𝐻
𝑇

𝑘
𝑆
−1

𝑘,𝑘−1
,

𝑃𝑘 = [𝐼 − 𝐾𝑘𝐻𝑘] 𝑃𝑘,𝑘−1,

𝑋𝑘 = 𝑋𝑘,𝑘−1 + 𝐾𝑘 [𝑍𝑘 − 𝐻𝑘𝑋𝑘,𝑘−1] .

(58)

For (32) it consists of three measurements. A scalar value
𝛽 is required for each measurement, as every measurement
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Figure 1: The simulation results of NAKF.

has unique characteristics. Similar to [15], this paper solves
this problem using a scalar measurement updating 𝑈/𝐷
covariance factorization filter, where𝑈 is an upper triangular
and unitary matrix and 𝐷 is a diagonal matrix. It is also
advantageous to utilize the 𝑈/𝐷 covariance factorization
filter when designing and implementing the novel adaptive
filter.

5. Simulation Results

The parameters of the simulation are set as follows.

The marine is rocked by the surf and wind. The pitch 𝜃,
roll 𝛾, and heading 𝜓 resulting from the marine rocking are
changed periodically and can be described as follows:

𝜃 = 7
∘ cos(2𝜋

5
𝑡 +

𝜋

4
)

𝛾 = 10
∘ cos(2𝜋

6
𝑡 +

𝜋

7
)

𝜓 = 30
∘
+ 5
∘ cos(2𝜋

7
𝑡 +

𝜋

3
) .

(59)
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Figure 2: The results depending on the filter with mean misalignment angles.

The velocity caused by surge, sway, and heave is as follows:

𝑉𝐷𝑖 = 𝐴𝐷𝑖𝜔𝐷𝑖 cos (𝜔𝐷𝑖𝑡 + 𝜑𝐷𝑖) , (60)

where 𝑖 = 𝑥, 𝑦, 𝑧,𝐴𝐷𝑥 = 0.02m,𝐴𝐷𝑦 = 0.03m,𝐴𝐷𝑧 = 0.3m,
𝜔𝐷𝑖 = 2𝜋/𝑇𝐷𝑖, 𝑇𝐷𝑥 = 7 s, 𝑇𝐷𝑦 = 6 s, and 𝑇𝐷𝑧 = 8 s. 𝜑𝐷𝑖 obeys
the uniform distribution on the interval [0, 2𝜋].

The IMU errors are set as follows: the gyro constant drift:
0.01∘/h; the gyro random noise: 0.001∘/h; the accelerator bias:
1×10

−4 g; and the accelerator measurement noise: 1×10−5 g.
Rotary SINS location: north latitude is 40∘ and east longitude
is 118∘. According to the rule shown in the previous section,
double-axis rotation rate is given by 𝜔1 = 3𝜔2 = 18

∘
/s.

Simulation 1. The coarse alignment lasts 120 s. The values of
𝑡𝑘1 and 𝑡𝑘2 in (17) are set to 50 s and 120 s, respectively. The
simulation for the coarse alignment runs 50 times.The pitch,
roll, and heading errors at the end of the coarse alignments
are shown in Table 2.

From Table 2, it is obvious that the level attitude errors of
the coarse alignment are less than 0.2 degrees and the heading
attitude error is less than 1.5 degrees.The attitude errors calcu-
lated by the proposed coarse alignment algorithm can fulfill

the requirement for the fine alignment. But it only accom-
plished the coarse estimation of attitude errors in initial
alignment. Thus 600-second fine alignment is followed.

Next, the mean and the maximum of misalignment
angles in Table 2 are used, respectively, as input for fine
alignment to validate the proposed adaptive filter in initial
alignment under dynamic disturbance condition. The mean
ofmisalignment angles is used in Simulations 2 and 3, and the
maximum of misalignment angles is used in Simulation 4.

Simulation 2. The simulation results are shown in Figure 1.
It is clear that all the states are observable and the result
confirms the former analysis. According to Figure 1(a), con-
vergence time of level misalignment angle is within 60 s, and
precision is 1, while azimuth misalignment angle conver-
gence time iswithin 80 s, and precision is about 1.3.The three
velocity errors as observed variables depicted in Figure 1(b)
are certainly observable. As seen from Figure 1(c), gyro drifts
converge not so rapidly, but a rather good filtering result can
be obtained. Figure 1(d) shows that the horizontal accelerom-
eters constant biases ∇𝑥 and ∇𝑦 converge to a constant
value in short time. The vertical converges soon afterwards
with good estimation performance. The simulation results
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Figure 3: The results depending on the filter with maximum misalignment angles.

Table 2: Statistics for coarse alignment results.

Parameter item Max. Min. Mean
Pitch error (∘) 0.0740 −0.0986 0.0287

Roll error (∘) 0.1563 −0.2668 −0.0419

Heading error (∘) 1.4611 −0.1044 0.1506

demonstrate that all the system state parameters can be esti-
mated by the presented filter. It can be seen that the presented
alignment method can effectively depress the random distur-
bances under dynamic environment.

Simulation 3. Consideringmeasurement uncertainties under
the dynamic disturbing conditions, Sage-Husa adaptive filter
(SHAF) used in [22], adaptive Kalman filter (AKF) pre-
sented in [15], and the novel adaptive Kalman filter (NAKF)
proposed in this paper are employed to evaluate the filter
performance. The simulation results are shown in Figure 2
and Table 3.

The simulation results demonstrate that the performance
and convergence speed of NAKF which can estimate the

variance of the measurement noise in real time are better
than those of AKF and SHAF.This implies that, in the case of
dynamic disturbance, NAKF functions better than SHAF and
AKF and provides the optimal estimation.Then Simulation 3
with the maximum initial figures is made.

Simulation 4. The simulation results show that the proposed
NAKF is efficient with large initial attitude error. The results
are shown in Figure 3 and Table 4. Compared with SHAF and
AKF, NAKF provides higher performance and better stability
in estimating themisalignment angles when large errors exist
in the measurement values. The result demonstrates that
NAKF can effectively depress the random disturbances in
measurements noise variance caused by the ship rocking.
Taking into account the unknown outside disturbances and
the complicated working environment, the proposed NAKF
with the optimality of filter is applicable in implementing
initial alignment of Rotary SINS.

6. Conclusions

Based on the alignment mechanism of tracing the grav-
itational apparent motion in inertial frame, an initial
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Table 3: The mean misalignment angle errors depending on the
filter.

Parameter item SHAF AKF NAKF
Pitch error () −1.43 −1.17 1.02

Roll error () −1.62 −1.29 1.07

Heading error () 1.85 1.54 −1.26

Table 4: The maximum misalignment angle errors depending on
the filter.

Parameter item SHAF AKF NAKF
Pitch error () 2.93 2.59 −1.89

Roll error () 3.09 −2.29 1.80

Heading error () 3.81 −2.14 1.84

self-alignment method based on the novel adaptive Kalman
filter for Rotary SINS is developed. Before the filter is
designed, observability is analyzed using PWCS method and
SVD method. The theoretical analysis results show that the
fine alignment error model is completely observable and all
the system state parameters can be estimated. For the uncer-
tainties measurement noise, the novel adaptive Kalman filter
that estimates measurement noise variance in real time using
measurement residual is designed.

Simulation results proved the accuracy and validity of
the proposed method, and the estimation results of the
system states can approach the theoretical analysis results. In
addition, this method is fully self-aligned with no external
reference information under dynamic disturbances condi-
tion. But in this paper, only simulation test is finished. More
tests, such as turntable and shipboard test, should be studied
before they can be widely used in engineering.
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