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 This paper reviews the past and the recent research on Adaptive Filter 
algorithms based on adaptive noise cancellation systems. In many 
applications of noise cancellation, the change in signal characteristics could 
be quite fast which requires the utilization of adaptive algorithms that 
converge rapidly. Algorithms such as LMS and RLS proves to be vital in the 
noise cancellation are reviewed including principle and recent modifications 
to increase the convergence rate and reduce the computational complexity for 
future implementation. The purpose of this paper is not only to discuss 
various noise cancellation LMS algorithms but also to provide the reader 
with an overview of the research conducted. 
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1. INTRODUCTION 

The concept of noise cancellation has recently gained much attention and has been identified as a 
vital method to eliminate noise contained in useful signals [1-2]. The application of this technique can be 
found in various industrial and communication appliances, such as machineries, hands-free phones and 
transformers [3,4]. Additionally, noise cancellation has also been implemented in the field of image 
processing, biomedical signal, speech enhancement and echo cancellation [5-7]. As the noise from the 
surrounding environment severely reduces the quality of speech and audio signals it is quite necessary to 
suppress noise and enhance speech and audio signal quality, hence the acoustics applications of noise 
cancellation has become the thrust area of research. The basic concept of Adaptive Noise Canceller (ANC) 
which removes or suppresses noise from a signal using adaptive filters was first introduced by Widrow [8]. 
Due to long impulse responses, the computational requirements of adaptive filters are very high especially 
during implementation on digital signal processors. Where as in case of non-stationary environments and 
colored background noise convergence becomes very slow if the adaptive filter receives a signal with high 
spectral dynamic range [9]. To overcome this problem numerous approaches have been proposed in the last 
few decades. For example, the Kalman filter and the Wiener filter, Recursive-Least-Square (RLS) algorithm, 
were proposed to achieve the optimum performance of adaptive filters [10-12]. Amongst these the Least 
Mean Square (LMS) algorithm is most frequently used because of its simplicity and robustness. Though, the 
LMS lacks from substantial performance degradation with colored interference signals [13]. Other 
algorithms, such as the Affine Projection algorithm (APA), became alternative approaches but its 
computational complexity increases with the projection order, restricting its use in acoustical environments 
[14]. Noise from the surroundings automatically gets added to the signal in the process of transmission of 
information from the source to receiver side. The usage of adaptive filters is one of the most popular 
proposed solutions to reduce the signal corruption caused by predictable and unpredictable noise. Adaptive 
filters have been used in a broad range of application for nearly five decades. It includes adaptive noise 
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cancellation, adaptive system identification, linear prediction, adaptive equalization, inverse modeling, etc. 
Noise is assumed to be a random process and adaptive filters have the capability to adjust their impulse 
response to filter out the correlated signal in the input. They require modest or no a priori knowledge of the 
signal and noise characteristics. In addition adaptive filters have the potential of adaptively tracking the 
signal under non-stationary conditions. It has the unique characteristic of self-modifying [14] its frequency 
response to change the behavior in time and allowing the filter to adapt the response to the input signal 
characteristics change. The basic principle of an adaptive filter is shown in Figure 1.  

 
 

 
 

Figure 1. Adaptive Filter 
 
 

The objective is to filter the input signal, x(n), with an adaptive filter in such a manner that it 
matches the desired signal, d(n). In order to generate an error signal the desired signal, d(n), is subtracted 
from the filtered signal, y(n). An adaptive algorithm is driven by the error signal which generates the filter 
coefficients in a manner that minimizes the error signal. Unlike from the fixed filter design, here the filter 
coefficients are tunable, are adjusted in dependency of the environment that the filter is operated in, and can 
therefore track any potential changes in this environment. Using this concept, adaptive filters can be tailored 
to the environment set by these signals. However, if the environment changes filter through a new set of 
factors, adjusts for new features [15]. The adaptive filter constitutes a vital part of the statistical signal 
processing. The application of an adaptive filter offers a smart solution to the problem wherever there is a 
need to process signals that result from operation in an environment of unknown statistics, as it typically 
provides a significant enhancement in performance over the use of a fixed filter designed by conventional 
methods [17-18]. The aim of this paper is to review the existing noise cancellation techniques for enhancing 
speech and audio signal quality and to provide the understanding of suitability of various developed models. 
Prior to this, a brief review of the adaptive noise cancellation methods and its application is presented in the 
next section. Finally, a perception on upcoming research is suggested for further consideration. 
 
 
2. ADAPTIVE NOISE CANCELLATION  

Acoustic noise cancellation is indispensable from the health point of view as extensive exposures to 
high level of noise may cause serious health hazards to human being. The conventional noise cancellation 
method [19] uses a reference input signal (correlated noise signal) which is passed through the adaptive filter 
to make it equal to the noise that is added to original information bearing signal. Subsequently this filtered 
signal is subtracted from noise corrupted information signal. This makes the corrupted signal a noise free 
signal. The fundamental concept of noise cancellation [19] is to produce a signal that is equal to a disturbance 
signal in amplitude and frequency but has opposite phase. These two signals results in the cancellation of 
noise signal. The original Adaptive noise cancellation (ANC) [20] uses two sensors to receive the noise 
signal and target signal separately. The relationship between the noise reference x(n) and the component of 
this noise that is contained in the measured signal d(n) may be determined by Adaptive noise cancellation 
shown in Figure 2  
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Figure 2. Adaptive noise cancelling 

 
 

If several unrelated noises corrupt the measurement of interest then several adaptive filters may be 
deployed in parallel as long as suitable noise reference signals are available within the system. In noise 
cancelling systems the objective is to produce a system output e(n) =[ s(n) + n1 ]- y(n) which is a best fit in 
the least squares sense to the signal s(n). This objective is achieved by adjusting the filter through an adaptive 
algorithm and feeding the system output back to the adaptive filter and to minimize total system output 
power [20]. In an adaptive noise cancelling system, the system output serves as an error signal for the 
adaptive process. 
 
2.1. Digital Filters  

The purpose of digital filters is to separate signals that have been combined and to restore signals 
that have been distorted in some way [22]. Signal separation is required when a signal has been contaminated 
with interference, noise, or other signals whereas restoration is used when a signal has been distorted in some 
way. Broadly the digital filters are classified as Weiner and Kalman filters [23]. 
 
2.1.1. Wiener filter 

A Wiener filter [24] is a digital filter, which is designed to reduce the mean square difference 
between some desired signal and the filtered output. It is occasionally called a minimum mean square error 
filter. A Wiener filter [25] can be finite-duration impulse response (FIR) filter or an infinite-duration impulse 
response (IIR) filter or a [26]. Generally the formulation of an FIR Wiener filter results in a set of linear 
equations and has a closed-form solution whereas the formulation of an IIR Wiener filter [27] results in a set 
of non-linear equations. The Wiener filter represented by the coefficient vector w is depicted in Figure 3. The 
filter accepts the input signal y(m), and generates an output signal x m ,	where x m  is the least mean square 
error estimate of a desired or target signal x(m). The filter input–output relation is shown in Equation 1. 
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where m is the discrete-time index, yT=[y(m), y(m–1), ..., y(m–P–1)] is the filter input signal, and the 
parameter vector wT=[w0, w1, ..., wP–1] is the Wiener filter coefficient vector. 
 
 

 
Figure 3. Illustration of a Wiener Filter Structure 
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2.1.2. Kalman Filter 
The Kalman filter is a mathematical power tool which plays an important role in computer graphics 

as we include sensing of the real world in our systems. The Kalman filter can also be termed as a set of 
mathematical equations that implement a predictor-corrector type estimator which is optimal in the sense that 
it minimizes the estimated error covariance—when some presumed conditions are met. For the past decade 
the Kalman filter has been the active area of research and application, particularly in the area of autonomous 
or assisted navigation. The Kalman filter [28] (and its variants such as the extended Kalman filter [29] and 
unscented Kalman filter [30] is one of the most popular data fusion algorithms in the field of information 
processing. [31-36]. 
 
2.2. Adaptive Filters 

An adaptive filter [37] is a system with a linear filter which consists of transfer function restrained 
by variable parameters and a means to adjust those parameters according to an optimization algorithm. 
Adaptive linear filters [38] are linear dynamical system with variable or adaptive structure and parameters 
and have the property to modify the values of their parameters, i.e. their transfer function, during the 
processing of the input signal, in order to generate signal at the output which is without undesired 
components, noise, and degradation and also interference signals.  

Figure.4 shows the basic concept of an adaptive filter [39] whose primary objective is to filter the 
input signal, x(n), with an adaptive filter in such a manner that it matches the desired signal, d(n). The desired 
signal, d(n), is subtracted from the filtered signal, y(n), to produce an error signal which in turn drives an 
adaptive algorithm that generates the filter coefficients in a manner that minimizes the error signal. The 
adaptation adjusts the characteristics of the filter through an interaction with the environment in order to 
reach the desired values. Contrary to the conventional filter design techniques, adaptive filters do not have 
constant filter coefficients and no priori information is known, such a filters with adjustable parameters are 
called an adaptive filter. Adaptive filter adjust their coefficients to minimize an error signal and may be 
termed as finite impulse response (FIR) [40], infinite impulse response (IIR) [41], lattice and transform 
domain filter. Generally adaptive digital filters consist of two separate units: the digital filter, with a structure 
determined to achieve desired processing (which is known with an accuracy to the unknown parameter 
vector) and the adaptive algorithm for the update of filter parameters, with an aim to guarantee fastest 
possible convergence to the optimum parameters from the point of view of the adopted criterion. Majority of 
adaptive algorithms signify modifications of the standard iterative procedures for the solution of the problem 
of minimization of criterion function in real time. The most common form of adaptive filters are the 
transversal filter using least mean square (LMS) algorithm [42] and recursive least square (RLS) algorithm 
[43].  
 
2.3. Adaptive Algorithms 

Adaptive algorithms [44] have been extensively studied in the past few decades and the most 
popular adaptive algorithms are the least mean square (LMS) algorithm and the recursive least square (RLS) 
algorithm. Attaining the best performance of an adaptive filter requires usage of the best adaptive algorithm 
with low computational complexity and a fast convergence rate. 
 
2.3.1. Least-Mean-Square Algorithm (LMS) 

A very straightforward approach in noise cancelling is the use of LMS algorithm which was 
developed by Windrow and Hoff [45]. This algorithm uses a gradient descent to estimate a time varying 
signal. The gradient descent method finds a minimum, if it exists, by taking steps in the direction negative of 
the gradient and it does so by adjusting the filter coefficients in order to minimize the error. The gradient is 
the del-operator and is applied to find the divergence of a function, which is the error with respect to the nth 
coefficient in this case. The LMS algorithm has been accepted by several researchers for hardware 
implementation because of its simple structure. In order to implement it, modifications have to be made to 
the original LMS algorithm because the recursive loop in its filter update formula prevents it from being 
pipelined.  

The following equation shows the detail of LMS algorithm, 
Weights evaluation – 
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Error estimation (where error is the desired output)– 
)()()( nyndne           (4) 

 
where the output of an adaptive filter y(n) and the error signal e(n) are given by (3) and (4), respectively. In 
these equations, x(n) is the input signal vector, and w(n) is the tap weight vector of the adaptive filter. The 
equations employ the current estimate of the weight vector. From these equations it is clear that at each 
iteration, the information of most recent values (d(n) , x(n), w(n) and e(n))are required and the iterative 
procedure is started with an initial guess w(0). μ is the step size that depends on the power spectral density of 
the reference input x(n) and filter length M-1 and control the stability and convergence speed of the LMS 
algorithm.  

In the recent times, a new version of the LMS algorithm with time varying convergence parameter 
has been proposed Error! Reference source not found.. The time-varying LMS (TV-LMS) [47] algorithm 
has shown better performance than the conventional LMS algorithm in terms of less mean square error MSE 
and faster convergence. The TV-LMS algorithm is based on utilizing a time-varying convergence parameter 
μn with a general power decaying law for the LMS algorithm. The basic concept of TV-LMS algorithm is to 
exploit the fact that the LMS algorithms need a larger convergence parameter value to speed up the 
convergence of the filter coefficients to their optimal values. After the coefficients converge to their optimal 
values, the convergence parameter ought to be small for better estimation accuracy. In other words, we set 
the convergence parameter to a large value in the initial state in order to speed up the algorithm convergence. 
 
2.3.2. NLMS Algorithm 

The main weakness of the conventional type LMS lies in its complexity in selecting a suitable value 
for the step size parameter that guarantees stability. In order to overcome, NLMS has been proposed in 
controlling the convergence factor of LMS through modification into a time-varying step size parameter. As 
NLMS employs a variable step size parameter intended at minimizing the instantaneous output error hence 
converges faster than the conventional LMS [48-49]. The conventional LMS algorithm experiences a 
gradient noise amplification problem as the convergence factor μ is large. The correction applied to the 
weight vector w(n) at iteration n+1 is “normalized” with respect to the squared Euclidian norm of the input 
vector x(n) at iteration n. We may express the NLMS algorithm as a time-varying step-size algorithm, 
calculating the convergence factor μ as in Equation 5. 

 
µ(n) = 

α

∥ ∥
         (5) 

 
where: α is the NLMS adaption constant, which optimize the convergence rate of the algorithm and should 
satisfy the condition 0< α<2, and c is the constant term for normalization and is always less than 1. The Filter 
weights are updated by the Equation 6. 
 

w(n+1) = w(n) + 
α

∥ ∥
 e(n) x(n)        (6) 

 
In comparison to LMS, the NLMS has varying step size that makes the NLMS to converge more quickly. In 
order to best serve various applications several variants of LMS have been developed. Some of the popular 
variants are Modified Normalized LMS (MN-LMS) algorithm, Leaky LMS, Block LMS, Sign Error LMS, 
Sign-Data LMS (SD-LMS), Sign-Data Normalized LMS (SDN-LMS), Sign-Sign LMS (SS-LMS) algorithm, 
Sign-Sign LMS algorithm with leakage term (SS-LMS-LT), Variable step-size LMS (VS-LMS) algorithm, 
Filtered X-LMS (Fx-LMS) algorithm, Frequency response shaped LMS (FRS-LMS) algorithm, Hybrid LMS 
(H-LMS) algorithm are summarized in Table 1.  
 
2.3.3. Recursive least square (RLS) Algorithm 

RLS algorithm is another potential alternative to overcome slow convergence in colored 
environments [43], which uses the least squares method to develop a recursive algorithm for the adaptive 
transversal filter. The RLS [82] recursively finds the filter coefficients that minimize a weighted linear least 
squares cost function relating to the input signals. RLS tracks the time variation of the process to the optimal 
filter coefficient with relatively very fast convergence speed; though it has increased computational 
complexity and stability problems as compared to LMS-based algorithms [83]. The RLS algorithm [84-85] 
has established itself as the "ultimate" adaptive filtering algorithm in the sense that it is the adaptive filter 
exhibiting the best convergence behavior. Unfortunately, practical applications of the algorithms are often 
associated with high computational complexity and poor numerical properties. Several different standard 
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RLS algorithms with varying degrees of computational complexity and stability exist. Amongst all the 
conventional recursive least squares (CRLS) algorithm is considered to be the most stable, but requires O 
(N2) (on the order of N2) operations per iteration, where N is the filter length [86].  
Fast Transversal RLS Algorithm 
Fast transversal filter (FTF) algorithm [87-88] involves the combined use of four transversal filters for 
forward and backward predictions, joint process and gain vector computation estimation. The merit of FTF 
algorithm lies in its reduced computational complexity as compared to other available solutions.  
 
 

Table 1. Variation of LMS algorithm 

 
 
3. CONCLUSION 

A comprehensive review has been carried out to identify the existing literature related to adaptive 
filtering in noise reduction using LMS adaptive algorithms in particular. LMS is preferred over RLS 
algorithms for various noise cancellation purposes as RLS has increased computational complexity and 
stability problems as compared to LMS-based algorithms which are robust and reliable. Various LMS 
adaptive algorithms viz. N-LMS, MN-LMS, Leaky LMS, Block LMS, SE-LMS, SD-LMS, SDN-LMS, SS-
LMS, SS-LMS-LT, VS-LMS, FX-LMS, FRS-LMS, H-LMS are dealt in this paper for the purpose of 
comparison in terms of simplicity and application. The LMS algorithm is relatively simple to implement and 
is powerful enough to evaluate the practical benefits that may result from the application of adaptivity to the 
problem at hand. Moreover, it provides a practical frame of reference for assessing any further improvement 
that may be attained through the use of more sophisticated adaptive filtering algorithms. 
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