329 research outputs found

    Conceptual design framework for information visualization to support multidimensional datasets in higher education institutions

    Get PDF
    Information Visualization (InfoVis) enjoys diverse adoption and applicability because of its strength in solving the problem of information overload inherent in institutional data. Policy and decision makers of higher education institutions (HEIs) are also experiencing information overload while interacting with students‟ data, because of its multidimensionality. This constraints decision making processes, and therefore requires a domain-specific InfoVis conceptual design framework which will birth the domain‟s InfoVis tool. This study therefore aims to design HEI Students‟ data-focused InfoVis (HSDI) conceptual design framework which addresses the content delivery techniques and the systematic processes in actualizing the domain specific InfoVis. The study involved four phases: 1) a users‟ study to investigate, elicit and prioritize the students‟ data-related explicit knowledge preferences of HEI domain policy. The corresponding students‟ data dimensions are then categorised, 2) exploratory study through content analysis of InfoVis design literatures, and subsequent mapping with findings from the users‟ study, to propose the appropriate visualization, interaction and distortion techniques for delivering the domain‟s explicit knowledge preferences, 3) conceptual development of the design framework which integrates the techniques‟ model with its design process–as identified from adaptation of software engineering and InfoVis design models, 4) evaluation of the proposed framework through expert review, prototyping, heuristics evaluation, and users‟ experience evaluation. For an InfoVis that will appropriately present and represent the domain explicit knowledge preferences, support the students‟ data multidimensionality and the decision making processes, the study found that: 1) mouse-on, mouse-on-click, mouse on-drag, drop down menu, push button, check boxes, and dynamics cursor hinting are the appropriate interaction techniques, 2) zooming, overview with details, scrolling, and exploration are the appropriate distortion techniques, and 3) line chart, scatter plot, map view, bar chart and pie chart are the appropriate visualization techniques. The theoretical support to the proposed framework suggests that dictates of preattentive processing theory, cognitive-fit theory, and normative and descriptive theories must be followed for InfoVis to aid perception, cognition and decision making respectively. This study contributes to the area of InfoVis, data-driven decision making process, and HEI students‟ data usage process

    Formulating the design rationale of visual representation

    Get PDF
    8pWhen designing a representation, a designer implicitly formulates a method required to understand and use the representation effectively. This paper aims at making the method explicit, in order to help designers elicit their design choices. In particular, we present a set of concepts to systematically analyze what a user must theoretically do visually to find information. The analysis consists in a decomposition of the activity of scanning into elementary visualization operations. We show how the analysis applies on various existing representation, and how expected benefits can be expressed in terms of elementary operations. The decomposition highlights the challenges encountered by a user when figuring out a representation, and helps designer to exhibit possible flaws in their design.The set of elementary operations form the basis of a shared, common language for representation designers

    A survey of multiple tree visualisation.

    Get PDF
    This paper summarises the state-of-the-art in multiple tree visualisations. It discusses the spectrum of current representation techniques used on single trees, pairs of trees and finally multiple trees, in order to identify which representations are best suited to particular tasks and to find gaps in the representation space where opportunities for future multiple tree visualisation research may exist. The application areas from where multiple tree data are derived are enumerated, and the distinct structures that multiple trees make in combination with each other and the effect on subsequent approaches to their visualisation are discussed, along with the basic high-level goals of existing multiple tree visualisations

    Visualising File-Systems Using ENCCON Model

    Full text link

    Information Visualization Research Publications during 1990-2018: A Scientometric Analysis

    Get PDF
    To understand the history and research status of information visualization, information visualization research citation data has been collected from the Scopus expanded during the period from 1990 to 2018. Results indicated that the research of information visualization has increased during the studied 29-year period. The country with the highest research output was the United States with 1996 publications, while the institution with the highest research output was the CNRS Centre National de la Recherche Scientifique. The majority of research articles have been contributed from developed countries. It also revealed that developed countries have more research advantages in comparison to developing countries. The top three outputs journals were Nucleic Acids Research, BMC Bioinformatics and Bioinformatics

    Interactive Visualization Lenses:: Natural Magic Lens Interaction for Graph Visualization

    Get PDF
    Information visualization is an important research field concerned with making sense and inferring knowledge from data collections. Graph visualizations are specific techniques for data representation relevant in diverse application domains among them biology, software-engineering, and business finance. These data visualizations benefit from the display space provided by novel interactive large display environments. However, these environments also cause new challenges and result in new requirements regarding the need for interaction beyond the desktop and according redesign of analysis tools. This thesis focuses on interactive magic lenses, specialized locally applied tools that temporarily manipulate the visualization. These may include magnification of focus regions but also more graph-specific functions such as pulling in neighboring nodes or locally reducing edge clutter. Up to now, these lenses have mostly been used as single-user, single-purpose tools operated by mouse and keyboard. This dissertation presents the extension of magic lenses both in terms of function as well as interaction for large vertical displays. In particular, this thesis contributes several natural interaction designs with magic lenses for the exploration of graph data in node-link visualizations using diverse interaction modalities. This development incorporates flexible switches between lens functions, adjustment of individual lens properties and function parameters, as well as the combination of lenses. It proposes interaction techniques for fluent multi-touch manipulation of lenses, controlling lenses using mobile devices in front of large displays, and a novel concept of body-controlled magic lenses. Functional extensions in addition to these interaction techniques convert the lenses to user-configurable, personal territories with use of alternative interaction styles. To create the foundation for this extension, the dissertation incorporates a comprehensive design space of magic lenses, their function, parameters, and interactions. Additionally, it provides a discussion on increased embodiment in tool and controller design, contributing insights into user position and movement in front of large vertical displays as a result of empirical investigations and evaluations.Informationsvisualisierung ist ein wichtiges Forschungsfeld, das das Analysieren von Daten unterstützt. Graph-Visualisierungen sind dabei eine spezielle Variante der Datenrepräsentation, deren Nutzen in vielerlei Anwendungsfällen zum Einsatz kommt, u.a. in der Biologie, Softwareentwicklung und Finanzwirtschaft. Diese Datendarstellungen profitieren besonders von großen Displays in neuen Displayumgebungen. Jedoch bringen diese Umgebungen auch neue Herausforderungen mit sich und stellen Anforderungen an Nutzerschnittstellen jenseits der traditionellen Ansätze, die dadurch auch Anpassungen von Analysewerkzeugen erfordern. Diese Dissertation befasst sich mit interaktiven „Magischen Linsen“, spezielle lokal-angewandte Werkzeuge, die temporär die Visualisierung zur Analyse manipulieren. Dabei existieren zum Beispiel Vergrößerungslinsen, aber auch Graph-spezifische Manipulationen, wie das Anziehen von Nachbarknoten oder das Reduzieren von Kantenüberlappungen im lokalen Bereich. Bisher wurden diese Linsen vor allem als Werkzeug für einzelne Nutzer mit sehr spezialisiertem Effekt eingesetzt und per Maus und Tastatur bedient. Die vorliegende Doktorarbeit präsentiert die Erweiterung dieser magischen Linsen, sowohl in Bezug auf die Funktionalität als auch für die Interaktion an großen, vertikalen Displays. Insbesondere trägt diese Dissertation dazu bei, die Exploration von Graphen mit magischen Linsen durch natürliche Interaktion mit unterschiedlichen Modalitäten zu unterstützen. Dabei werden flexible Änderungen der Linsenfunktion, Anpassungen von individuellen Linseneigenschaften und Funktionsparametern, sowie die Kombination unterschiedlicher Linsen ermöglicht. Es werden Interaktionstechniken für die natürliche Manipulation der Linsen durch Multitouch-Interaktion, sowie das Kontrollieren von Linsen durch Mobilgeräte vor einer Displaywand vorgestellt. Außerdem wurde ein neuartiges Konzept körpergesteuerter magischer Linsen entwickelt. Funktionale Erweiterungen in Kombination mit diesen Interaktionskonzepten machen die Linse zu einem vom Nutzer einstellbaren, persönlichen Arbeitsbereich, der zudem alternative Interaktionsstile erlaubt. Als Grundlage für diese Erweiterungen stellt die Dissertation eine umfangreiche analytische Kategorisierung bisheriger Forschungsarbeiten zu magischen Linsen vor, in der Funktionen, Parameter und Interaktion mit Linsen eingeordnet werden. Zusätzlich macht die Arbeit Vor- und Nachteile körpernaher Interaktion für Werkzeuge bzw. ihre Steuerung zum Thema und diskutiert dabei Nutzerposition und -bewegung an großen Displaywänden belegt durch empirische Nutzerstudien

    Exploratory Browsing

    Get PDF
    In recent years the digital media has influenced many areas of our life. The transition from analogue to digital has substantially changed our ways of dealing with media collections. Today‟s interfaces for managing digital media mainly offer fixed linear models corresponding to the underlying technical concepts (folders, events, albums, etc.), or the metaphors borrowed from the analogue counterparts (e.g., stacks, film rolls). However, people‟s mental interpretations of their media collections often go beyond the scope of linear scan. Besides explicit search with specific goals, current interfaces can not sufficiently support the explorative and often non-linear behavior. This dissertation presents an exploration of interface design to enhance the browsing experience with media collections. The main outcome of this thesis is a new model of Exploratory Browsing to guide the design of interfaces to support the full range of browsing activities, especially the Exploratory Browsing. We define Exploratory Browsing as the behavior when the user is uncertain about her or his targets and needs to discover areas of interest (exploratory), in which she or he can explore in detail and possibly find some acceptable items (browsing). According to the browsing objectives, we group browsing activities into three categories: Search Browsing, General Purpose Browsing and Serendipitous Browsing. In the context of this thesis, Exploratory Browsing refers to the latter two browsing activities, which goes beyond explicit search with specific objectives. We systematically explore the design space of interfaces to support the Exploratory Browsing experience. Applying the methodology of User-Centered Design, we develop eight prototypes, covering two main usage contexts of browsing with personal collections and in online communities. The main studied media types are photographs and music. The main contribution of this thesis lies in deepening the understanding of how people‟s exploratory behavior has an impact on the interface design. This thesis contributes to the field of interface design for media collections in several aspects. With the goal to inform the interface design to support the Exploratory Browsing experience with media collections, we present a model of Exploratory Browsing, covering the full range of exploratory activities around media collections. We investigate this model in different usage contexts and develop eight prototypes. The substantial implications gathered during the development and evaluation of these prototypes inform the further refinement of our model: We uncover the underlying transitional relations between browsing activities and discover several stimulators to encourage a fluid and effective activity transition. Based on this model, we propose a catalogue of general interface characteristics, and employ this catalogue as criteria to analyze the effectiveness of our prototypes. We also present several general suggestions for designing interfaces for media collections

    A review of data visualization: opportunities in manufacturing sequence management.

    No full text
    Data visualization now benefits from developments in technologies that offer innovative ways of presenting complex data. Potentially these have widespread application in communicating the complex information domains typical of manufacturing sequence management environments for global enterprises. In this paper the authors review the visualization functionalities, techniques and applications reported in literature, map these to manufacturing sequence information presentation requirements and identify the opportunities available and likely development paths. Current leading-edge practice in dynamic updating and communication with suppliers is not being exploited in manufacturing sequence management; it could provide significant benefits to manufacturing business. In the context of global manufacturing operations and broad-based user communities with differing needs served by common data sets, tool functionality is generally ahead of user application
    • …
    corecore