65 research outputs found

    Heterogeneous simulation and interoperability of tools applied to the design, integration and development of safety critical systems

    Get PDF
    A key issue of the assessment of the Model Based Systems Engineering (MBSE) is the integration between the requirement, functional and physical analyses. It turns out into a full capability of correlation and data exchange among the tools currently available to manage those three activities and, in particular, into a tight cooperation between the functional modeling and the physical one, being based on several methods of engineering, widely applied since longtime (mathematical, analytical, numerical and experimental). A successful accomplishment of this task within the frame of the development of the MBSE represents a milestone for both the methodology and the tools of the Systems Engineering. The application of models and simulations to support the engineering activities has spread over different domains and is strictly related to the decision making process applied to finalize an effective system design. Many kind of models are often performed to develop the systems currently populating the wide scenario of complex and smart products. When the product is a result of a material processing, some geometrical models allow describing shape and properties of the manufactured product, whose behavior is then predicted by resorting to some numerical discretization funded on a set of equations to be solved. Those models mainly describe the real nature of system, not only as is designed but even as is manufactured, thus allowing the required verification and validation activities. Due to this motivation those models belong the so–called physical modeling, whose key targets are both a mathematical modeling and a quantitative evaluation of performance. According to the MBSE the above described activity is never sufficient to completely define the details of the system under design and development. Moreover, to face the inherent complexity of new systems, being characterized by a number of functions, components and interfaces, a clear traceability from requirement to numbered part is needed. A bright allocation of each requirement to the system functions first, and to its logical blocks then, is definitely a key issue of the proposed approach. Those two main goals require a preliminary functional modeling activity, never characterized by numbers, while is dominant a prediction of system operation, behavior, interaction with other systems and stakeholders, and even a preliminary definition of well assessed requirements to motivate a consequent set of proposed layouts, based on some selected technolog

    Deploying Model-Based Systems Engineering in Thales Alenia Space Italia

    Get PDF
    Abstract-In the last decade, Thales Alenia Space started studying the transition of its own systems engineering methods from standard requirement and document based ones to innovative approaches taking care of concurrent engineering, enhanced collaboration, model based system engineering methods and tools and tool-chains for overall engineering environments. In the field of system architectures analysis and definition, TAS has deployed internally a tooled-up approach, which is being extended to other system and multidisciplinary engineering activities. Despite an investment needed to set-up the tooled-up approach, it allows to relate in a same model customer needs and architecture constraints, furthermore ensuring overall document consistency with the design by means of automatic documentation generation from the model, simplifying alignment in case of model update. Moreover, traceability links between requirements and model facilitate impact analysis for system evolution and maintenance, and will allow modifying the architecture baseline, taking care of previous justifications. This paper presents an outline of the TAS Model-based engineering method (ARCADIA), of the use of the related tooling, and some examples derived from the application to space projects in the Domain Observation and Navigation Italy and in the Domain Exploration and Science Italy. Observed benefits of this approach, additional needs which have been managed (such as the extension of the approach to cover the geometry of the physical components) are presented in the conclusions. (Abstract

    Digital Twin: towards the integration between System Design and RAMS assessment through the Model–Based Systems Engineering

    Get PDF
    The design of a safety-critical system requires an effective prediction of its reliability, availability, maintainability and safety (RAMS). Anticipating the RAMS analysis at the concept design helps the designer in the trade-off of the system architecture and technologies, reduces cost of product development and the time to market. This action is rather difficult, because the RAMS analysis deals with the hazard assessment of system components, whose abstraction at concept level is never simple. Therefore, to integrate the system design and RAMS assessment, a clear path to follow is required. The paper investigates how the Model Based Systems Engineering (MBSE) supports this task and drives the system reliability allocation, through the functional and dysfunctional analyses. The implementation of the proposed approach needs to set up the tool chain. In the industrial context it must be compatible with practices, standards and tools currently used in product development. Defining a suitable process of integration of tools used for the System Design and the Safety Engineering is a need of industry. Therefore, this task is also discussed, in this paper, dealing with some examples of industrial test case

    Thermal condition monitoring of large smart bearing through fiber optic sensors

    Get PDF
    The ‘Smart Manufacturing’ applied to steelmaking includes a continuous condition monitoring of the mill system, performed by bearings equipped with sensors. They are embedded inside the mill cage, and exposed to heat sources. Monitoring their temperature is mandatory. Fiber optics sensors can be exploited. Their behavior is here modeled, and then tested on some prototypes. The fiber optics technology looks suitable for this application, provided that a precise sensor calibration is performed. A technological assessment is required, to develop the industrial product

    An Innovative Business Model for a Multi-echelon Supply Chain Inventory Management Pattern

    Get PDF
    Nowadays, companies are experimenting novel organizational solutions to efficiently operate in uncertain and highly dynamic scenarios. As a potential solution, this paper proposes a new business model for a multi-echelon Supply Chain inventory management pattern. Specifically, an inventory model with proactive lateral transshipments was developed and subsequently tested carrying out 288 experiments with the aim of assessing transshipments impact on the performance of a two-echelon Supply Chain. The final goal was to investigate the potential reduction of the overall cost of the enterprise and, conversely, whether this approach could promote significant improvements in the level of service, achievable through a more efficient management of resources. The analyses and simulations indicate the use of large batches and/or low-cost products did not demand the necessity of transshipment events. These preliminary findings could be potentially validated and tested in the future considering more complex networks or multiple products

    A lightweight BPMN extension for business process-oriented requirements engineering

    Get PDF
    Process-oriented requirements engineering approaches are often required to deal with the effective adaptation of existing processes in order to easily introduce new or updated requirements. Such approaches are based on the adoption of widely used notations, such as the one introduced by the Business Process Model and Notation (BPMN) standard. However, BPMN models do not convey enough information on the involved entities and how they interact with process activities, thus leading to ambiguities, as well as to incomplete and inconsistent requirements definitions. This paper proposes an approach that allows stakeholders and software analysts to easily merge and integrate behavioral and data properties in a BPMN model, so as to fully exploit the potential of BPMN without incurring into the aforementioned limitation. The proposed approach introduces a lightweight BPMN extension that specifically addresses the annotation of data properties in terms of constraints, i.e., pre- and post-conditions that the different process activities must satisfy. The visual representation of the annotated model conveys all the information required both by stakeholders, to understand and validate requirements, and by software analysts and developers, to easily map these updates to the corresponding software implementation. The presented approach is illustrated by use of two running examples, which have also been used to carry out a preliminary validation activity

    Systems of innovation and innovation ecosystems: a literature review in search of complementarities

    Get PDF
    This paper aims to clarify to what extent the emerging theory of innovation ecosystems (IE) and the theory of systems of innovation (SI) are complementary and then identify how its communities could benefit from cross-fertilization. We performed a critical literature review of both topics using meta-synthesis as method to identify, analyze and compare the two theories. Using a framework, this paper explores the elements belonging to each theory’s domain, in order to identify the key factors necessary to compare the two theories. The results of this analysis show that both theories involve the assessment of three key aspects: the understanding of innovation activities, the role of the agents involved, and the interaction and resulting networks among them. A similarity was found showing that these two different theories are applications of System Thinking approach. Another finding, which has not been mentioned in previous research on the topic, is that the construction of the initial concepts of the IE theory was originally rooted in several SI elements. Finally, we found key factors that may be the cross-fertilization link between the two communities that represent each theory

    Evaluating ARCADIA/Capella vs. OOSEM/SysML for System Architecture Development

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Systems Engineering is catching pace in many segments of product manufacturing industries. Model-Based Systems Engineering (MBSE) is the formalized application of modeling to perform systems engineering activities. In order to effectively utilize the complete potential of MBSE, a methodology consisting of appropriate processes, methods and tools is a key necessity. In the last decade, several MBSE projects have been implemented in industries varying from aerospace and defense to automotive, healthcare and transportation. The Systems Modeling Language (SysML) standard has been a key enabler of these projects at many companies. Although SysML is capable of providing a rich representation of any system through various viewpoints, the journey towards adopting SysML to realize the true potential of MBSE has been a challenge. Among all, one of the common roadblocks faced by systems engineers across industries has been the software engineering-based nature of SysML which leads to difficulties in grasping the modeling concepts for people that do not possess a software engineering background. As a consequence, developing a system (or a system of systems) architecture model using SysML has been a challenging task for many engineers even after a decade of its inception and multiple successive iterations of the language specification. Being a modeling language, SysML is method-agnostic, but its associated limitations outweigh the advantages. ARCADIA (Architecture Analysis and Design Integrated Approach) is a systems and software architecture engineering method based on architecture-centric and model-based engineering activities. If applied properly, ARCADIA allows for a very effective way to model the architecture of multi-domain systems, and overcome many of the limitations faced in traditional SysML implementation. This thesis evaluates the architecture development capabilities of ARCADIA/Capella versus SysML following the Object-Oriented Systems Engineering Method (OOSEM). The study focuses on the key equivalences and differences between the two MBSE solutions from a model development perspective and provides several criteria to evaluate their effectiveness for architecture development using a conceptual case of Adaptive Cruise Control (ACC). The evaluation is based on three perspectives namely, architecture quality, ability to support key process deliverables, and the overall methodology. Towards this end, an industry-wide survey of MBSE practitioners and thought leaders was conducted to identify several concerns in using models but also to validate the results of the study. The case study demonstrates how the ARCADIA/Capella approach addresses several challenges that are currently faced in SysML implementation. From a process point of view, ARCADIA/Capella and SysML equally support the provision of the key deliverable artifacts required in the systems engineering process. However, the candidate architectures developed using the two approaches show a considerable difference in various aspects such as the mapping of the form to function, creating functional architectures, etc. The ARCADIA/Capella approach allows to develop a ‘good’ system architecture representation efficiently and intuitively. The study also provides answers to several useful criteria pertaining to the overall candidate methodologies while serving as a practitioner’s reference in selecting the most suitable approach

    Business Process Management for optimizing clinical processes: A systematic literature review

    Get PDF
    Business Process Management is a new strategy for process management that is having a major impact today. Mainly, its use is focused on the industrial, services, and business sector. However, in recent years, it has begun to apply for optimizing clinical processes. So far, no studies that evaluate its true impact on the healthcare sector have been found. This systematic review aims to assess the results of the application of Business Process Management methodology on clinical processes, analyzing whether it can become a useful tool to improve the effectiveness and quality of processes. We conducted a systematic literature review using ScienceDirect, Web of Science, Scopus, PubMed, and Springer databases. After the electronic search process in different databases, 18 articles met the pre-established requirements. The findings support the use of Business Process Management as an effective methodology to optimize clinical processes. Business Process Management has proven to be a feasible and useful methodology to design and optimize clinical processes, as well as to automate tasks. However, a more comprehensive follow-up of this methodology, better technological support, and greater involvement of all the clinical staff are factors that play a key role for the development of its true potential.This work was supported by the Ministerio de Economía y Competitividad of the Spanish Government (ref. TIN2014-53067-C3-1-R) and co-financed by FEDER
    • …
    corecore