1,257 research outputs found

    Utilization of Wearable Technology in Individual Sports

    Get PDF
    Wearable technology can be utilized in injury prevention and training analysis. Different user groups have to be taken into account when designing wearable devices

    Smart Wearables for Tennis Game Performance Analysis

    Get PDF
    For monitoring the progress of athletes in various sports and disciplines, several different approaches are nowadays available. Recently, miniature wearables have gained popularity for this task due to being lightweight and typically cheaper than other approaches. They can be positioned on the athlete’s body, or in some cases, the devices are incorporated into sports requisites, like tennis racquet handles, balls, baseball bats, gloves, etc. Their purpose is to monitor the performance of an athlete by gathering essential information during match or training. In this chapter, the focus will be on the different possibilities of tennis game monitoring analysis. A miniature wearable device, which is worn on a player’s wrist during the activity, is going to be presented and described. The smart wearable device monitors athletes’ arm movements with sampling the output of the 6 DOF IMU. Parallel to that, it also gathers biometric information like pulse rate and skin temperature. All the collected information is stored locally on the device during the sports activity. Later, it can be downloaded to a PC and transferred to a cloud-based service, where visualization of the recorded data and more detailed game/training statistics can be performed

    Smart Weights

    Get PDF
    The goal of this project is to design and implement weights which can record and analyze work out patterns. Motivation for this project stems from the high cost of personal training. The hope is that this device will provide many of the benefits a user receives from personal training at only a fraction of the cost. The Smart Weight is designed with an on-board Inertial Measurement Unit providing acceleration, gyroscope, and magnetometer data. A microcontroller records and analyzes changes in motion, feeding this data into Multiplicative Recurrent Neural Network (MRNN) for exercise classification. A Raspberry Pi was chosen as the microcontroller, along with a Polulu Minimu-9 V2 for the IMU. These were attached to a five pound free-weight, where the motion of an exercise could be accurately recorded. The IMU communicates with the Raspberry Pi via the i2c protocol, and provides roughly 50 data points per second. Code was written to preprocess and feed data from the IMU into the MRNN, where the type of exercise can then be determined. The MRNN was trained on graphics processing units (GPUs) with the help of Ersatz Labs, a company that specializes in training Neural Networks. The prototype Smart Weight is able to classify one exercise (the bicep curl) with an accuracy of over 90%, but many more exercises will be added in the future

    Wearables and Internet of Things (IoT) Technologies for Fitness Assessment: A Systematic Review

    Get PDF
    Wearable and Internet of Things (IoT) technologies in sports open a new era in athlete?s training, not only for performance monitoring and evaluation but also for fitness assessment. These technologies rely on sensor systems that collect, process and transmit relevant data, such as biomark ers and/or other performance indicators that are crucial to evaluate the evolution of the athlete?s condition, and therefore potentiate their performance. This work aims to identify and summarize recent studies that have used wearables and IoT technologies and discuss its applicability for fitness assessment. A systematic review of electronic databases (WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO, IEEEXplore, PubMed, SPORTDiscus, Cochrane and Web of Science) was undertaken according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. From the 280 studies initially identified, 20 were fully examined in terms of hardware and software and their applicability for fitness assessment. Results have shown that wearable and IoT technologies have been used in sports not only for fitness assessment but also for monitoring the athlete?s internal and external workloads, employing physiological status monitoring and activity recognition and tracking techniques. However, the maturity level of such technologies is still low, particularly with the need for the acquisition of more?and more effective?biomarkers regarding the athlete?s internal workload, which limits its wider adoption by the sports community.4811-99FE-2ECD | Luis Paulo RodriguesN/

    Supervised machine learning applied to wearable sensor data can accurately classify functional fitness exercises within a continuous workout

    Get PDF
    Observing, classifying and assessing human movements is important in many applied fields, including human-computer interface, clinical assessment, activity monitoring and sports performance. The redundancy of options in planning and implementing motor programmes, the inter- and intra-individual variability in movement execution, and the time-continuous, high-dimensional nature of motion data make segmenting sequential movements into a smaller set of discrete classes of actions non-trivial. We aimed to develop and validate a method for the automatic classification of four popular functional fitness drills, which are commonly performed in current circuit training routines. Five inertial measurement units were located on the upper and lower limb, and on the trunk of fourteen participants. Positions were chosen by keeping into account the dynamics of the movement and the positions where commercially-available smart technologies are typically secured. Accelerations and angular velocities were acquired continuously from the units and used to train and test different supervised learning models, including k-Nearest Neighbors (kNN) and support-vector machine (SVM) algorithms. The use of different kernel functions, as well as different strategies to segment continuous inertial data were explored. Classification performance was assessed from both the training dataset (k-fold cross-validation), and a test dataset (leave-one-subject-out validation). Classification from different subsets of the measurement units was also evaluated (1-sensor and 2-sensor data). SVM with a cubic kernel and fed with data from 600 ms windows with a 10% overlap gave the best classification performances, yielding to an overall accuracy of 97.8%. This approach did not misclassify any functional fitness movement for another, but confused relatively frequently (2.8–18.9%) a fitness movement phase with the transition between subsequent repetitions of the same task or different drills. Among 1-sensor configurations, the upper arm achieved the best classification performance (96.4% accuracy), whereas combining the upper arm and the thigh sensors obtained the highest level of accuracy (97.6%) from 2-sensors movement tracking. We found that supervised learning can successfully classify complex sequential movements such as those of functional fitness workouts. Our approach, which could exploit technologies currently available in the consumer market, demonstrated exciting potential for future on-field applications including unstructured training

    Latest research trends in gait analysis using wearable sensors and machine learning: a systematic review

    Get PDF
    Gait is the locomotion attained through the movement of limbs and gait analysis examines the patterns (normal/abnormal) depending on the gait cycle. It contributes to the development of various applications in the medical, security, sports, and fitness domains to improve the overall outcome. Among many available technologies, two emerging technologies that play a central role in modern day gait analysis are: A) wearable sensors which provide a convenient, efficient, and inexpensive way to collect data and B) Machine Learning Methods (MLMs) which enable high accuracy gait feature extraction for analysis. Given their prominent roles, this paper presents a review of the latest trends in gait analysis using wearable sensors and Machine Learning (ML). It explores the recent papers along with the publication details and key parameters such as sampling rates, MLMs, wearable sensors, number of sensors, and their locations. Furthermore, the paper provides recommendations for selecting a MLM, wearable sensor and its location for a specific application. Finally, it suggests some future directions for gait analysis and its applications

    Sensor-Based Adaptive Control and Optimization of Lower-Limb Prosthesis.

    Get PDF
    Recent developments in prosthetics have enabled the development of powered prosthetic ankles (PPA). The advent of such technologies drastically improved impaired gait by increasing balance and reducing metabolic energy consumption by providing net positive power. However, control challenges limit performance and feasibility of today’s devices. With addition of sensors and motors, PPA systems should continuously make control decisions and adapt the system by manipulating control parameters of the prostheses. There are multiple challenges in optimization and control of PPAs. A prominent challenge is the objective setup of the system and calibration parameters to fit each subject. Another is whether it is possible to detect changes in intention and terrain before prosthetic use and how the system should react and adapt to it. In the first part of this study, a model for energy expenditure was proposed using electromyogram (EMG) signals from the residual lower-limbs PPA users. The proposed model was optimized to minimize energy expenditure. Optimization was performed using a modified Nelder-Mead approach with a Latin Hypercube sampling. Results of the proposed method were compared to expert values and it was shown to be a feasible alternative for tuning in a shorter time. In the second part of the study, the control challenges regarding lack of adaptivity for PPAs was investigated. The current PPA system used is enhanced with impedance-controlled parameters that allow the system to provide different assistance. However, current systems are set to a fixed value and fail to acknowledge various terrain and intentions throughout the day. In this study, a pseudo-real-time adaptive control system was proposed to predict the changes in the gait and provide a smoother gait. The proposed control system used physiological, kinetic, and kinematic data and fused them to predict the change. The prediction was done using machine learning-based methods. Results of the study showed an accuracy of up to 89.7 percent for prediction of change for four different cases
    • …
    corecore