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Abstract

The goal of this project is to design and implement weights which can record and
analyze work out patterns. Motivation for this project stems from the high cost of
personal training. The hope is that this device will provide many of the benefits a user
receives from personal training at only a fraction of the cost. The Smart Weight is
designed with an on-board Inertial Measurement Unit providing acceleration, gyroscope,
and magnetometer data. A microcontroller records and analyzes changes in motion,
feeding this data into Multiplicative Recurrent Neural Network (MRNN) for exercise
classification. A Raspberry Pi was chosen as the microcontroller, along with a Polulu
Minimu-9 V2 for the IMU. These were attached to a five pound free-weight, where the
motion of an exercise could be accurately recorded. The IMU communicates with the
Raspberry Pi via the i2c¢ protocol, and provides roughly 50 data points per second. Code
was written to preprocess and feed data from the IMU into the MRNN, where the type of
exercise can then be determined. The MRNN was trained on graphics processing units
(GPUs) with the help of Ersatz Labs, a company that specializes in training Neural
Networks. The prototype Smart Weight is able to classify one exercise (the bicep curl)
with an accuracy of over 90%, but many more exercises will be added in the future.



Introduction

The Smart Weight is a device that attaches to a dumbbell, tracks a user's
movements, and is able to accurately identify a wide variety of exercises. In order to
accomplish this, a nine-axis IMU (Inertial Measurement Unit) will be needed, providing
accelerometer, magnetometer, and gyroscope data to an on-board cpu. The data will
then be processed by an MRNN (Multiplicative Recurrent Neural Network) in order to
identify if a known exercise has been performed.

As a prototype, the device uses the raw x,y,z acceleration values. The possibility
of using the magnetometer and normalized euler angles to remove the device’s
orientation from the equation was explored. However, it was discovered that the ferrous
material of the weight interfered with the magnetometer data, and the method was
discarded. The raw x,y,z acceleration values are sufficient to identify exercises as long
as the Smart Weight device is oriented the same way each time.

Figure 1: Drawn model of the Smart Weight device




Figure 1 shows a model of the Smart Weight device implemented on a free
weight. There is an x,y,z coordinate system drawn for reference with yaw, pitch, and roll
euler angles. For the part of project that was done for prototyping purposes, the euler
angles are disregarded and only the x,y,z acceleration vectors are used.

Engineering Specifications

At the beginning of the project a list of engineering specifications were created for
the device. During the construction of Smart Weights, steps were taken to create the
device with these constraints.

e Accurate sensor that can measure within 5% deviation of 3D acceleration vectors.
o Sensor must be accurate enough to distinguish and measure exercises. It
must also allow for correct exercise identification dependant on device
orientation.
e Finalized prototype with complete on board microcontroller and IMU.
o Need a demoing platform to display.
e Neural network algorithm can distinguish between exercises and non-exercises.
o The Smart Weights can automatically measure and track exercises
throughout workouts and pauses in workouts.

Competitor Products

o Moov
m A beta device including nine-axis motion sensors and CPU in a
small portable package
o Atlas Wearables
m Also a beta device, includes nine-axis IMU and has a screen on a
wristband to display progress



Table I: Comparison of Competitor Products

Moov Atlas Wearables Smart Weights
Good Bad Good Bad Good Bad
Small Still only a beta Small Still a beta Small Not waterproof
project project
Refined look No determined Portable No smartphone Portable Will not have
cost yet (will be app, only has API ability to train
over the to integrate with new exercises on
pre-order price of others the device (at
$69.95) first)
Portable No feedback Waterproof The pre-order Can be attached | Will not have the
about price is $179.99 | to any dumbbell | ability to correct
performance yet and this could go user’s form
because it is only up once the
a beta project device is
manufactured
Can be attached Will be able to No feedback Can be No feedback
to any dumbbell monitor multiple about purchased by about
exercise performance yet | gyms and loaned | performance yet

because the
device has not
been released

out to customers

because the
device has not
been released

Waterproof New exercises Focus is on No certified or
can be trained exercises professional help
directly to the performed in a confirming

device gym. This allows | correct exercise
for a more refined form
experience, while
also tracking a
wider range of
exercises in the
gym
Will be able to Will have a iPhone app will
monitor multiple corresponding offer helpful
exercises iPhone app features
which the Atlas including a
Wearable will competition
automatically feature, where

connect to and

friends nearby
can comparte




provide real time
information

workouts and
keep each other
accountable

Will have a
corresponding
iPhone app
which the Moov
will
automatically
connect to and
provide real time

Has a community
of shared data to
help provide
useful feedback
on form

A website will be
available where
users can see all
their data across
a wide range of

devices. This will
also offer an API

to integrate with

information other fitness
trackers in order
to track overall
health ofan
individual
Is tested and
advised by
professional

athletes and
certified coaches

While there are two large competitors in the field of tracking weight lifting, the
Smart Weight will excel by being a cheaper alternative to these two products. A website
that allows users to go on and have access to more in-depth analytics of their
performance in combination with a community of users providing workout data will give
the Smart Weight an edge over the Moov and Atlas.



Design

Figure 2: High-Level block diagram
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Figure 2 is a block diagram of the overall system. The Polulu MinIMU-9 module
outputs X, Y, and Z acceleration data to the Raspberry Pi. The Raspberry Pi receives
this data via the i2c connection and analyzes it in real-time with the neural network
algorithm. The exercise data is stored on the Raspberry Pi, but can be accessed by a

device on the same local network via the SSH protocol.

Table II: Block diagram inputs and outputs

Input/Output Name Function

Input User Movement User performing exercise

Input/Output 3D Acceleration Data Supplies X, Y, Z data via i2¢c
protocol

Input/Output Analyzed Neural Network Provides user with info

Table Il describes the block diagram outputs and inputs in a table format. The
functions of these input/outputs are also described.




Parts

Table lll: Cost Estimate

ltem Number Company Cost

Raspberry Pi 1 PiBorg $50.00

Polulu gyroscope and 1 Polulu $40.00
magnetometer

Free Weight 1 Unknown $20.00

Labor Costs ($10 per 165 $1650.00
hour)

Total $1760.00

Table Ill shows cost for parts and labor. The labor cost was derived by applying a

wage of $10 per hour for each hour worked on the project.

Table IV: Cost Approximations

Cost Types Dollar Values
Cost, $760.00
Cost, $2760.00
Cost,, $1760.00

Table IV shows the optimistic, pessimistic, and most likely total costs for the
project. These approximated costs are used in the following equation from Ford &
Coulston to calculate project total cost.

Cost = (Cost, + Cost, +4Cost,)/6

=$2760.00




Construction

Figure 3: IMU (Inertial Measurement Unit)
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Figure 3 shows the Polulu Minimu-9 V2 that was used in the Smart Weights

project. A quarter is also included in the image for size reference. The website for the
product is: http://www.pololu.com/product/1265
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Table V: Example IMU data

Y_Mag Z Mag X _ Accel Y_Accel Z Accel X Gyro Y_Gyro Z_Gyro

129 -416 112 -8 228 -50 14 9
129 -419 120 -4 232 -49 20 18
129 -419 116 -12 228 -51 15 8
129 -419 116 -12 228 -50 21 17
130 -421 116 -8 232 -51 22 11
130 -421 120 -12 220 -56 20 14

Table V shows the example data provided by the Polulu IMU. This 9-axis IMU

provides acceleration, gyroscope, and accelerometer data in the above format.

Using the open-source software:

Name: Minimu9-ahrs

Download: https://github.com/DavidE Grayson/minimu9-ahrs
Wiki: https://github.com/DavidE Grayson/minimu9-ahrs/wiki




This software is able to calibrate the device and fuse the magnetometer and
gyroscope data in order to output the orientation of the device in the form of a
direction-cosine matrix, quaternion, or euler angles.

The project used a python script to gather real-time data from the c-program. It is
possible to remove gravity from the x, y, and z acceleration vectors knowing its
orientation, but raw acceleration values were chosen because the orientation of the
dumbbell would stay consistent throughout the exercises performed.

Here is a portion of the code written to detect changes in motion of each separate
axis. This was then utilized this to help analyze when exercises are started and stopped
to be deciphered by the neural network algorithm.

The code also attempts to filter any noise that could be encountered from the inputs.

if x > prev_x:
x_counter_1 =x_counter_1 +1
if x_counter_1>5:
X_max = x
x_counter_0=0
if x_switch ==1:
sheet1.write(i-5, 5, "-500")
x_switch =0

else:
x_counter_0 =x_counter_0 +1
if x_counter_0 > 8:
X_min =Xx
x_counter_1=0
if x_switch ==0:
sheet1.write(i-8, 5, "500")
x_switch =1
if y > prev_y:
y_counter_1=y_counter_1+1
if y_counter_1>5:
y_max=y
y_counter_ 0=0
if y_switch ==1:
sheet1.write(i-5, 6, "-500")
y_switch =0
else:

y_counter_0=y_counter_0 +1
if y_counter_0 > 8:
y_min =y
y_counter_1=0
if y_switch ==0:
sheet1.write(i-8, 6, "500")
y_switch =1

if z> prev_z:



z_counter_1=z_counter_1+1
if z_counter_1>5:
Z_max=z
z_counter 0=0
if z_switch ==1:
sheet1.write(i-5, 7, "-500")
z_switch=0
else:
z_counter_0=z_counter_0 +1
if z_counter_0 > 8:
Z_min=z
z_counter_1=0
if z_switch == 0:
sheet1.write(i-8, 7, "500")
z_switch =1

Test exercises were performed, and graphs were created with the resulting
exercise and direction change data. The data is shown below in the following three
graphs.

Graph 1: IMU X direction changes
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Graph 1 shows x acceleration data of repeated bicep curls. As shown in the data,
there is is an identifiable pattern that can be used to recognize future exercises. The red
dots show locations where the IMU changes direction (switches sign) in the x direction.
This was identified automatically by a python script written for the project that helps
analyze the exercise data.



Graph 2: IMU Y direction changes
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Graph 2 shows y acceleration data of repeated bicep curls. The analysis of this
data is the same as described for the x acceleration data.

Graph 3: IMU Z direction changes
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Graph 3 shows z acceleration data of repeated bicep curls. The analysis of this
data is the same as described for the x acceleration data.

10
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Graph 4: Manually identified exercises using x,y,z acceleration vectors
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Graph 4 shows the acceleration data for the x,y, z vectors with the exercises
manually identified. The purple line is the network constant that goes high when a
exercise is being performed. The patterns for the exercises were identified by performing
single exercises and overlaying them onto repeated exercises.



12

Artificial Neural Networks:

Artificial Neural Networks (ANN) are digital models of a biological brain and the
neurons that it consists of. The ANN is part of a family of machine learning techniques
with the goal of feature recognition in large sets of data. Each digital neuron is given one
or more inputs, each with their respective weights, and a threshold that the sum of these
inputs must equal in order for the neuron to ‘fire’. In modern neural networks, a
continuous function is used to model this firing, such as the sigmoid function. This
function takes any any value as an input and normalizes it on a scale from 0 to 1. This
allows for a much closer approximation when trying to train the network with sample
input and output data.

Figure 4: Neural Network with Sigmoid Neurons
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Figure 4 shows an example of an Artificial Neural Network with sigmoid neurons.
Only one layer of the network is depicted, with the inputs being fed into a summing
junction. The output of these neurons ranges from 0 to 1, determined by the sigmoid
function.
Image credit: “Pattern recognition with ultrasonic sensor: a neural network evaluation” by
J.R. Llata, E.G. Sarabia, and J.P. Oiria.

The drawback of the traditional feedforward neural network is that all the data
required for the network to make a decision must be present at the same time. While this
is useful in many situations, it does not work well with time-series pattern recognition. In
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order to account for this using the traditional feedforward neural network, a moving
window consisting of numerous timesteps would need to be fed into the network in order
for it to have a chance of recognizing an exercise. This is highly inefficient and could
easily prove ineffective. Neural networks with enough inputs for all the data required to
recognize an exercise would need to be quite large and would be difficult to train
correctly. Another issue lies in the fact that the exact length of the exercise is not known,
and thus a specific window size to be used is not known.

The remedy for these issues is to use a variant of the traditional neural network
known as a Recurrent Neural Network (RNN). The difference with an RNN is in the use
of feedback. The output of the network is fed back in as an input, allowing for memory to
be stored in the device. Previous inputs to the network can affect the current output, and
time-series patterns can thus be recognized. RNNs can be thought of as extremely deep
neural networks with weights shared across timesteps.

A known issue of RNNs is that, when training, the learning gradient can either
vanish or explode quickly. In order to address this problem, a modified RNN known as
an Multiplicative Recurrent Neural Network (MRNN) has been chosen for this project.
The difference between an MRNN and an RNN is that MRNNSs allow the current inputs
to determine the weight matrix from one hidden state to the next. This small adaptation
solves the issue of convergence and divergence, and has breathed new life into the
traditional RNN once thought too hard to train properly.

Figure 5: Multiplicative Recurrent Neural Network (MRNN)
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Figure 5 shows a diagram of Multiplicative Recurrent Neural Network structure.
Triangles represent the control of the current input on the weight matrix for the previous
state. This is an important adaptation in MRNNSs, as it eliminates the issue of convergent
and divergent learning gradients seen in RNNs.
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Image credit: “Generating Text with Recurrent Neural Networks” by llya Sutskever,
James Martens, and Geoffrey Hinton

MRNN Algorithm:

Definitions:

h, = hidden state

X, = input vector

W, . = hidden-to-input weight matrix
Wf;’) = hidden-to-hidden weight matrix
W, = hidden-to-output weight matrix
b, =hidden bias vector

b, =output bias vector

O, = output vector

In order to train a Multiplicative Recurrent Neural Network, the hidden-to-hidden
weight matrix, hidden state, and output vector (exercise recognition layer) must be
updated for every timestep (input vector). The following equations can be used to update
the matrices and vectors for each input vector:

fort=11t0 T:

M
X m m
1 w'= x X" w
(2) 0,=W,_h +b,
(3)  hy=tanh(W,, X, + W\ h,_, +b,)

The storage of the tensor ng') becomes too impractical foran MRNN with a large
amount of hidden units and inputs, so it is factored and the follow equations are derived:

@) W) =W, - diag(W, X)) Wy,
o)  f= diag(W . X))+ Wh,_,

(6) h, = tanh(W f .+ W, X))

(7) 0,=W,_h +b,

Note: The standard method of gradient descent for training the MRNN is not
sufficient and will not lead to a good result. A 2nd order learning method such as
Hessian-Free Optimization is a much better approach.
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Training and Testing

The first step in training the MRNN was to decide what the inputs and outputs of
the network would be. For the Smart Weight prototype, one exercise - the bicep curl -
was chosen to use for training. This allows for only two outputs for the MRNN, with a
neuron representing a ‘1’, meaning a bicep curl has been performed, and a ‘0’ meaning
that one has not been performed. The inputs to the network were the raw acceleration
values obtained from the IMU - raw X, y, and z acceleration. The values were first
normalized on a scale from 0 to 1, with 0 being the minimum value obtained from the
training data and 1 being the maximum. Every value in between was mapped linearly to
a fraction of 1. A dataset of 30 bicep curls was recorded, resulting in approximately 6500
timesteps of data. The IMU records roughly 50 timesteps per second, and each exercise
lasted an average of 140 timesteps, or 2.8 seconds. An equal number of timesteps
corresponding to no exercise were also recorded. These movements ranged from
staying still, random movements, and other exercises that would be trained later. The
goal was to make sure the network would only output a ‘1’ if the exercise was actually a
bicep curl, and a ‘0’ for any other movement.

The data was grouped into sets of 140 timesteps and trained using help from
Ersatz labs. Ersatz specializes in training Neural Networks using graphics processing
units (GPUs). This method drastically reduces the time required to train an MRNN,
meaning more iterations can performed to increase accuracy. The CEO of Ersatz, Dave
Sullivan, personally overlooked the training of the Smart Weight MRNN and was crucial
in helping to adjust the hyperparameters to ensure optimal network training.
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Results:
Figure 6: Change in % accuracy of MRNN predictions vs. iterations
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Figures 6 and 7 show how accurate the MRNN is at classifying an exercise as either a
bicep curl or some other movement. After each iteration, the error of this classification
decreases, showing that the network is truly learning how to classify the vairous movements
used for training. By the second iteration, the network was already close to its peak
accuracy, but it proceeded to to drop back down for a few iterations. Once the network
weights were close to optimal levels given the dataset used, the accuracy started to
flatten out around 90%, meaning itis able to correctly recognize if a bicep curl is being
performed 9 out of 10 times.
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Figure 8: Change in 1st and 2nd order derivatives for learning vs. iterations
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The change of the first and second derivative (Hessian-Free Optimization) is
shown in figure 8. The graph illuminates why the second gradient is necessary; the first
derivative stays relatively flat over each iteration, while the second gradient increasing
rapidly allowing for the network to learn more effectively.

Figure 9: Change in damping values vs. iterations
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Figure 10: Change Conjugate Gradient vs. iterations
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Figures 9, 10, and 11 illustrate the change in hyperparameters of the network over
time. As the iterations increased, these values became closer to their optimal values
given the amount of data provided for training. After 20 iterations, anymore training
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would not be likely to increase the accuracy much more. Instead, the network could
actually be overtrained and lose accuracy.

Figure 12: Confusion matrix of MRNN after 20 iterations
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Figure 13: Predictions of test set (‘1" represents bicep curl, ‘0’ represents anything else)
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Figures 12 and 13 show the performance of the network with regards to each
class. The MRNN is more accurate at discerning if an exercise is not performed than if
one is. If an exercise isn’t performed (Class ‘0’) it will know approximately 94% of the
time. If an exercise is performed, it will know approximately 85% of the time. This
accuracy can further be increase in the future by training the MRNN over a much larger
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dataset, as well as increasing the number of exercises performed. As more exercises are
added, there will be more outputs with which the network can classify a movement
pattern.

Conclusion

The Smart Weights project proved to be a complex and engaging process. There
were hiccups initially when attempting to receive data from the Polulu IMU on the
Raspberry Pi. One of the first big hurdles involved an issue with getting the stdout of the
minimu9-ahrs program to feed into the python script correctly. They minimu9-ahrs
program was providing timesteps at a rate of 50Hz, and it initially appeared to be too fast
for the python script to handle. All the preliminary solutions tested caused buffer
overflows that limited the data received and caused much of a motion’s data to be lost.
After overcoming these issues, the main part of the project was developing a method to
analyze the type of exercises were being performed. In order to create datasets that
could be used to train the MRNN, a python script was created that recognized and
recorded direction changes. This helped the manual process of preparing the datasets
for training by indicating the start and stop of exercises performed. This data was then
trained with the help of Ersatz Labs to create an algorithm that could automatically
identify various exercises. The results were promising, showing that the MRNN was
indeed a good algorithm for discerning time-series patterns. Classification accuracies of
over 90% were achieved and adding more exercises in the future, along with a larger
dataset, will undoubtedly offer an even higher level of precision.

Future Goals

Dynamic Time Warping

Dynamic time warping is a method used to identify patterns that are done at
different rates. This is frequently used in machine learning codes and is applicable to our
project as the exercises are performed at different speeds. For a complete project, a
method such as dynamic time warping will be implemented in order to more accurately
identify exercises that are performed at different rates. Python has a machine learning
library that includes a dynamic time warping function in it: the .mlpy library.

Remove Orientation Dependancy

The Smart Weight prototype currently needs to be oriented correctly when
performing a workout in order for it to classify exercises correctly. Removing this
dependence on orientation is extremely important, and will make the device much more
accessible to wide range of exercises and movements.
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More Exercises

As a prototype, the Smart Weight was only trained with one exercise, the bicep
curl. In order for this to be a viable product that will be useful to users, a wide variety of
exercises will need to be implemented. This will involve working with fitness
professionals to get large datasets for a wide variety of exercises.

Form Correction

A useful feature of the Smart Weight would be the ability to notify user’s if they are
not performing the exercise properly. This can be displayed either on a user's
smartphone or announced through various personal assistants on newer smartphones
(Apple’s Siri, or Google Now).

Website and iPhone app

In order for the project to be more user friendly a website and iPhone application
will be developed. The Smart Weight will be able to connect to a user's smartphone and
sync the results of a workout. This data can then be uploaded to a website through an
open api, allowing this data to be accessed from any device with internet access. More
in-depth analysis of user workouts can also be performed server-side.

Finalizing Design and Packaging

The Smart Weight will need a custom PCB that integrates a power supply, a
microprocessor, a wireless chip, and the inertial measurement unit. This finalized design
should be power efficient (enough to last one day) and small enough to be convenient
for users.

Manufacturing

With the finalized design, a manufacturer must be identified in order to bring the
Smart Weight to market. Adjustments to the design may need to be made in order to
reduce the cost of the device.
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Appendices

Analysis of Senior Project Design
Smart Weights

Luke Rafla-Yuan
Austin Fox

Advised by Tina Smilkstein

+ 1. Summary of Functional Requirements
i) The Smart Weights project uses gyroscope and magnetometer data to track
workout patterns. A Raspberry Pi microcontroller is hooked up to a Polulu
Minimu-9 and communicates via i2c. After collecting data with the Raspberry Pi,
the exercises are analyzed by a neural network provided by Ersatz Labs. The
resulting algorithm is placed in a program stored on the Raspberry Pi in order to
identify future exercises.

* 2. Primary Constraints
i) Efficient neural network that can effectively recognize work out patterns. This
presented difficulties because of the complex pattern analysis required to
measure specific 3D motion.
ii) Clearly defined data and analysis to be used for future development. In order to
clearly present the project and set it up for the next stage in development, there
was code written to collect, label, store, and graph the exercise data.
iii) Stand-alone demo platform used for presenting. The Raspberry Pi and IMU
were attached to the weight in a specific orientation, and an SSH network was set
to remotely program and collect data from the Raspberry Pi.

« 3. Economic
i) Human Capital: The Smart Weights project took 165 man hours to develop. The
project is intended aid workout routines, and expected to expedite workouts while
making them easier. This will allow user’s to be more efficient during workouts
and get better results with less effort and time.
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i) Financial Capital: The financial capital necessary for project development was
used for the prototype system including the Raspberry Pi and the Polulu
MinIMU-9 sensor.

iii) Manufactured Capital: The project had a monetary development cost of
$1760.00. Because of the low cost of development materials, most of the cost is
accredited to labor costs.

iv) Natural Capital: Smart Weights will require a small amount of natural capital in
order to develop the circuitry and housing. After being manufactured, the product
would have no further effect on natural capital.

* 4. If manufactured on a commercial basis:
i) The predicted number of devices to be sold per year will initially be 2,000. With
a predicted manufacturing cost of $50.00 dollars per device and an estimated
selling price of $70.00, a net profit of $20.00 is calculated per device sold, netting
a total of $40,000.00 per year. With a cost of $70.00 and an expected lifetime of
two years, the device will cost the user $35.00 per year.

* 5. Environmental
i) Because of the diminutive size of the Smart Weight it will use minutia natural
resources. The project will require a small amount of non-renewable resources
because of the plastics and silicon used. The weight is only used for the
prototyping so itis notincluded in the environmental impact. There is no predicted
environmental impact of the product after it is manufactured.

* 6. Manufacturability
i) The project was done with a prototyping platform consisting of a Raspberry Pi
microcontroller, Polulu IMU, and a demo five pound hand weight. To convert the
project from the prototyping to manufacturing stage, the Raspberry Pi
microcontroller will be replaced with a much smaller and cheaper CPU. Also the
platform would be placed in a small, custom manufactured package.

* 7. Sustainability
i) The Smart Weight will be designed to last for as long as itis taken care of and
maintained in a reasonable fashion. However, it will not be able to improve upon
the sustainability of classical weights because of the additional non-renewable
resources required to make it.
ii) In order to make the product more sustainable, research must be done to use
the sustainable components during manufacturing. Replacing the microcontroller
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with a pre-programmed CPU would get rid of the many unneeded peripherals on
the Raspberry Pi. Also, choosing and a sustainably constructed IMU and housing
for the final product would be beneficial.

iii) In order to use a CPU in the product, all the testing and development would
need to be finished before ordering the part. Since the project only covers a
prototype system, using a CPU wouldn’t be feasible. Similarly, choosing
sustainable housing and IMU would be done at a later stage in development.

« 8. Ethical
i) The Smart Weight project is designed to be used to improve the user’s health.
In and of itself, this is an ethical goal based on utilitarian standards. However, the
designers, must make sure to not overstate or make false claims when promoting
the application of Smart Weights.
i) Applying the IEEE code of ethics requires the projections made from the data to
be realistic and as accurate as possible. This constraint was applied when
predicting the future use and possibilities of the project.

* 9. Health and Safety
i) The Smart Weights project has no foreseeable health dangers associated with
it, as long as itis used correctly. Before manufacturing the device, the exercises
would be verified by health professionals and certified coaches to ensure they are
performed correctly.
Smart Weights will be used to promote a healthy lifestyle. One of the major goals
of the project is to allow users to exercise more efficiently. Smart Weights will
push individuals to work out consistently, and to their peak potential. Therefore,
Smart Weights is predicted to have a positive impact the health of its users.

* 10. Social and Political
i) The Smart Weights project has social implications because it can theoretically
be used to improve the health lifestyle of a community. As the project grows and
other similar projects are developed, social media will be a huge benefactor for
fitness training.
There are also political implications involved in the possible repercussions of a
faulty device. If the device is not calibrated correctly and guides users through
incorrect exercises, there is a possibility of incurring injury. There will be proactive
steps taken against this possibility by thoroughly testing the device with health
professionals.
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* 11. Development
i) Over the course of the project, the developers learned about creating a neural
network and the associated difficulties. The project team also dealt with the
difficulties of data processing. Significant effort went into trying to zero out
gravitational forces using Euler angles and initialized data. Using the current
orientation of the device at each timestep, a change of basis matrix was used to
convert the 1g of gravity (nhormally all in the z direction) into the corresponding
local x,y, and z acceleration values. These values were then subtracted off of the
acceleration values for each timestep in order to get the acceleration of the device
due user movement rather than movement and gravity combined. Ultimately, this
idea was not implemented in the final design because it dramatically increases
the number of calculations performed for each timestep and the developers
realized this will have no increase in accuracy for MRNN. The ultimate goal was
to prevent the orientation of the device from affecting the output of the network, but
no reliable method of doing so was achieved. There also was a learning curve
involved with integrating the hardware. The Pololu needed to be connected to the
Raspberry Pi and code needed to be implemented to set up the i2¢ protocol. Also,
an SSH network needed to be created so that the Raspberry Pi could be remotely
programmed and the data could be easily accessed. There was significant effort
putinto setting up the i2c communication between the Polulu IMU and the
Raspberry Pi, as well as setting up the SSH network for the Raspberry Pi.



Bill of Materials

-Raspberry Pi: $40 (http://www.element14.com/community/community/raspberry-pi)
-Polulu Minimui-9 v2: $39.95 (http://www.pololu.com/product/1268)

-Hand Weight: $0.00 (Provided)

-Total Material Cost: $79.95

Code

import pexpect

import xIwt

import timeit

cmd = 'minimu9-ahrs -b /dev/i2c-1 --mode=raw
rawData = pexpect.spawn(cmd)

i=1

start=0

#Open xIs worksheet and name rows
book = xlwt.Workbook()
sheet1 = book.add_sheet("Exercises")

sheet1.write(0, 0, "X")
sheet1.write(0, 1, "Y")
sheet1.write(0, 2, "Z")
sheet1.write(0, 3, "Time")
sheet1.write(0, 4, "Delta Time")

#lnitialize timer
start_time = timeit.default_timer()
time2 = start_time

x_counter_0=0
x_counter_1=0
y_counter_0=0
y_counter_1=0
z_counter_0=0
z_counter_1=0

prev_x_direction=0
prev_y_direction=0
prev_z_direction=0

x_switch=0
y_switch=0
z_switch=0
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for line in rawData:

#Get XYZ acceleration values and convert them into floating point numbers
values = line.split()

accel = "x=" + values[3] + " y=" + values[4] + " z=" + values[5]

x = float(values[3])

y = float(values[4])

z = float(values[5])

if i==1:
initial_x = float(values[3])
initial_y = float(values[4])
initial_z = float(values[5])
prev_x=x
prev_y=y
prev_z=z

print accel

if X > prev_x:
x_counter_1 = x_counter_1 + 1
if x_counter_1 > 5:
X_max = X
x_counter 0=0
if x_switch == 1:
sheet1.write(i-5, 5, "-500")
x_switch =0
else:
x_counter_0 = x_counter_0 + 1
if x_counter_0 > 8:
X_min = X
x_counter_1=0
if x_switch == 0:
sheet1.write(i-8, 5, "500")
x_switch = 1

if y > prev_y:
y_counter_1 =y counter_1 + 1
if y_counter_1 > 5:

y_max =y
y_counter 0=0
if y_switch == 1:
sheet1.write(i-5, 6, "-500")
y_switch =0

else:



y_counter_ 0 =y _counter 0 + 1
if y_counter 0 > 8:

y_min=y

y_counter 1=0

if y_switch == 0:
sheet1.write(i-8, 6, "500")
y_switch =1

if z > prev_z:
z_counter_1=z_counter_1 + 1
if z_counter_1 > 5:

Z_ max =z
z_counter 0=0
if z_switch == 1;
sheet1.write(i-5, 7, "-500")
z_switch =0
else:
z_counter_0 = z_counter 0 + 1
if z_counter_0 > 8:
z_min=z
z_counter_ 1=0
if z_switch == 0:
sheet1.write(i-8, 7, "500")
z_switch =1
prev_x=x
prev_y=y
prev_z=z

if (abs(initial_x-x)>20) and (abs(initial_y-y)>20) and (abs(initial_z-z)>20) and start<1:

# sheet1.write(i, 0, "Approx_start")

# sheet1.write(i, 1, "Approx_start"
# sheet1.write(i, 2, "Approx_start"

# sheet1.write(i, 3, "Approx_start'

# sheet1.write(i, 4, "Approx_start"

sheet1.write(i, 5, "1")

)
)
")
)

i=i+1
start=2

#Calculate time and delta time values
time1 = timeit.default_timer()
delta_time = time1-time2

time2 = timeit.default_timer()

print ("i = %f" % (i)

print ("time = %f" % (time1-start_time))
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#Write values to xIs sheet and increment row number (i)
sheet1.write(i, 0, x)

sheet1.write(i, 1, y)

sheet1.write(i, 2, z)

sheet1.write(i, 3, time1-start_time)

sheet1.write(i, 4, delta_time)

i=i+1
#After i data points, save xlIs sheet and close program
if i>1000:

book.save("Random_Data.xlIs")
exit()

rawData.close()
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