8 research outputs found

    IMHOTEP: cross-professional evaluation of a three-dimensional virtual reality system for interactive surgical operation planning, tumor board discussion and immersive training for complex liver surgery in a head-mounted display

    Get PDF
    Background Virtual reality (VR) with head-mounted displays (HMD) may improve medical training and patient care by improving display and integration of different types of information. The aim of this study was to evaluate among different healthcare professions the potential of an interactive and immersive VR environment for liver surgery that integrates all relevant patient data from different sources needed for planning and training of procedures. Methods 3D-models of the liver, other abdominal organs, vessels, and tumors of a sample patient with multiple hepatic masses were created. 3D-models, clinical patient data, and other imaging data were visualized in a dedicated VR environment with an HMD (IMHOTEP). Users could interact with the data using head movements and a computer mouse. Structures of interest could be selected and viewed individually or grouped. IMHOTEP was evaluated in the context of preoperative planning and training of liver surgery and for the potential of broader surgical application. A standardized questionnaire was voluntarily answered by four groups (students, nurses, resident and attending surgeons). Results In the evaluation by 158 participants (57 medical students, 35 resident surgeons, 13 attending surgeons and 53 nurses), 89.9% found the VR system agreeable to work with. Participants generally agreed that complex cases in particular could be assessed better (94.3%) and faster (84.8%) with VR than with traditional 2D display methods. The highest potential was seen in student training (87.3%), resident training (84.6%), and clinical routine use (80.3%). Least potential was seen in nursing training (54.8%). Conclusions The present study demonstrates that using VR with HMD to integrate all available patient data for the preoperative planning of hepatic resections is a viable concept. VR with HMD promises great potential to improve medical training and operation planning and thereby to achieve improvement in patient care

    Diverse approaches to learning with immersive Virtual Reality identified from a systematic review

    Get PDF
    To investigate how learning in immersive Virtual Reality was designed in contemporary educational studies, this systematic literature review identified nine design features and analysed 219 empirical studies on the designs of learning activities with immersive Virtual Reality. Overall, the technological features for physical presence were more readily implemented and investigated than pedagogical features for learning engagement. Further analysis with k-means clustering revealed five approaches with varying levels of interactivity and openness in learning tasks, from watching virtual worlds passively to responding to personalised prompts. Such differences in the design appeared to stem from different practical and educational priorities, such as accessibility, interactivity, and engagement. This review highlights the diversity in the learning task designs in immersive Virtual Reality and illustrates how researchers are navigating practical and educational concerns. We recommend future empirical studies recognise the different approaches and priorities when designing and evaluating learning with immersive Virtual Reality. We also recommend that future systematic reviews investigate immersive Virtual Reality-based learning not only by learning topics or learner demographics, but also by task designs and learning experiences

    Diverse approaches to learning with immersive Virtual Reality identified from a systematic review

    Get PDF
    To investigate how learning in immersive Virtual Reality was designed in contemporary educational studies, this systematic literature review identified nine design features and analysed 219 empirical studies on the designs of learning activities with immersive Virtual Reality. Overall, the technological features for physical presence were more readily implemented and investigated than pedagogical features for learning engagement. Further analysis with k-means clustering revealed five approaches with varying levels of interactivity and openness in learning tasks, from watching virtual worlds passively to responding to personalised prompts. Such differences in the design appeared to stem from different practical and educational priorities, such as accessibility, interactivity, and engagement. This review highlights the diversity in the learning task designs in immersive Virtual Reality and illustrates how researchers are navigating practical and educational concerns. We recommend future empirical studies recognise the different approaches and priorities when designing and evaluating learning with immersive Virtual Reality. We also recommend that future systematic reviews investigate immersive Virtual Reality-based learning not only by learning topics or learner demographics, but also by task designs and learning experiences

    Non-Rigid Liver Registration for Laparoscopy using Data-Driven Biomechanical Models

    Get PDF
    During laparoscopic liver resection, the limited access to the organ, the small field of view and lack of palpation can obstruct a surgeon’s workflow. Automatic navigation systems could use the images from preoperative volumetric organ scans to help the surgeons find their target (tumors) and risk-structures (vessels) more efficiently. This requires the preoperative data to be fused (or registered) with the intraoperative scene in order to display information at the correct intraoperative position. One key challenge in this setting is the automatic estimation of the organ’s current intra-operative deformation, which is required in order to predict the position of internal structures. Parameterizing the many patient-specific unknowns (tissue properties, boundary conditions, interactions with other tissues, direction of gravity) is very difficult. Instead, this work explores how to employ deep neural networks to solve the registration problem in a data-driven manner. To this end, convolutional neural networks are trained on synthetic data to estimate an organ’s intraoperative displacement field and thus its current deformation. To drive this estimation, visible surface cues from the intraoperative camera view must be supplied to the networks. Since reliable surface features are very difficult to find, the networks are adapted to also find correspondences between the pre- and intraoperative liver geometry automatically. This combines the search for correspondences with the biomechanical behavior estimation and allows the networks to tackle the full non-rigid registration problem in one single step. The result is a model which can quickly predict the volume deformation of a liver, given only sparse surface information. The model combines the advantages of a physically accurate biomechanical simulation with the speed and powerful feature extraction capabilities of deep neural networks. To test the method intraoperatively, a registration pipeline is developed which constructs a map of the liver and its surroundings from the laparoscopic video and then uses the neural networks to fuse the preoperative volume data into this map. The deformed organ volume can then be rendered as an overlay directly onto the laparoscopic video stream. The focus of this pipeline is to be applicable to real surgery, where everything should be quick and non-intrusive. To meet these requirements, a SLAM system is used to localize the laparoscopic camera (avoiding setup of an external tracking system), various neural networks are used to quickly interpret the scene and semi-automatic tools let the surgeons guide the system. Beyond the concrete advantages of the data-driven approach for intraoperative registration, this work also demonstrates general benefits of training a registration system preoperatively on synthetic data. The method lets the engineer decide which values need to be known explicitly and which should be estimated implicitly by the networks, which opens the door to many new possibilities.:1 Introduction 1.1 Motivation 1.1.1 Navigated Liver Surgery 1.1.2 Laparoscopic Liver Registration 1.2 Challenges in Laparoscopic Liver Registration 1.2.1 Preoperative Model 1.2.2 Intraoperative Data 1.2.3 Fusion/Registration 1.2.4 Data 1.3 Scope and Goals of this Work 1.3.1 Data-Driven, Biomechanical Model 1.3.2 Data-Driven Non-Rigid Registration 1.3.3 Building a Working Prototype 2 State of the Art 2.1 Rigid Registration 2.2 Non-Rigid Liver Registration 2.3 Neural Networks for Simulation and Registration 3 Theoretical Background 3.1 Liver 3.2 Laparoscopic Liver Resection 3.2.1 Staging Procedure 3.3 Biomechanical Simulation 3.3.1 Physical Balance Principles 3.3.2 Material Models 3.3.3 Numerical Solver: The Finite Element Method (FEM) 3.3.4 The Lagrangian Specification 3.4 Variables and Data in Liver Registration 3.4.1 Observable 3.4.2 Unknowns 4 Generating Simulations of Deforming Organs 4.1 Organ Volume 4.2 Forces and Boundary Conditions 4.2.1 Surface Forces 4.2.2 Zero-Displacement Boundary Conditions 4.2.3 Surrounding Tissues and Ligaments 4.2.4 Gravity 4.2.5 Pressure 4.3 Simulation 4.3.1 Static Simulation 4.3.2 Dynamic Simulation 4.4 Surface Extraction 4.4.1 Partial Surface Extraction 4.4.2 Surface Noise 4.4.3 Partial Surface Displacement 4.5 Voxelization 4.5.1 Voxelizing the Liver Geometry 4.5.2 Voxelizing the Displacement Field 4.5.3 Voxelizing Boundary Conditions 4.6 Pruning Dataset - Removing Unwanted Results 4.7 Data Augmentation 5 Deep Neural Networks for Biomechanical Simulation 5.1 Training Data 5.2 Network Architecture 5.3 Loss Functions and Training 6 Deep Neural Networks for Non-Rigid Registration 6.1 Training Data 6.2 Architecture 6.3 Loss 6.4 Training 6.5 Mesh Deformation 6.6 Example Application 7 Intraoperative Prototype 7.1 Image Acquisition 7.2 Stereo Calibration 7.3 Image Rectification, Disparity- and Depth- estimation 7.4 Liver Segmentation 7.4.1 Synthetic Image Generation 7.4.2 Automatic Segmentation 7.4.3 Manual Segmentation Modifier 7.5 SLAM 7.6 Dense Reconstruction 7.7 Rigid Registration 7.8 Non-Rigid Registration 7.9 Rendering 7.10 Robotic Operating System 8 Evaluation 8.1 Evaluation Datasets 8.1.1 In-Silico 8.1.2 Phantom Torso and Liver 8.1.3 In-Vivo, Human, Breathing Motion 8.1.4 In-Vivo, Human, Laparoscopy 8.2 Metrics 8.2.1 Mean Displacement Error 8.2.2 Target Registration Error (TRE) 8.2.3 Champfer Distance 8.2.4 Volumetric Change 8.3 Evaluation of the Synthetic Training Data 8.4 Data-Driven Biomechanical Model (DDBM) 8.4.1 Amount of Intraoperative Surface 8.4.2 Dynamic Simulation 8.5 Volume to Surface Registration Network (V2S-Net) 8.5.1 Amount of Intraoperative Surface 8.5.2 Dependency on Initial Rigid Alignment 8.5.3 Registration Accuracy in Comparison to Surface Noise 8.5.4 Registration Accuracy in Comparison to Material Stiffness 8.5.5 Champfer-Distance vs. Mean Displacement Error 8.5.6 In-vivo, Human Breathing Motion 8.6 Full Intraoperative Pipeline 8.6.1 Intraoperative Reconstruction: SLAM and Intraoperative Map 8.6.2 Full Pipeline on Laparoscopic Human Data 8.7 Timing 9 Discussion 9.1 Intraoperative Model 9.2 Physical Accuracy 9.3 Limitations in Training Data 9.4 Limitations Caused by Difference in Pre- and Intraoperative Modalities 9.5 Ambiguity 9.6 Intraoperative Prototype 10 Conclusion 11 List of Publications List of Figures Bibliograph

    Trends and features of virtual reality: a literature review between 2017 and 2018

    Get PDF
    Virtual Reality has greatly evolved since the 1960´s to the present. It has been implemented in multiple research and knowledge areas, the most recognized being the entertainment industry. In order to establish the state of Virtual Reality and get an idea of its prospects, 537 scientific documents have been reviewed, applying search criteria, more specifically, Virtual Reality applied to education. A bibliometric analysis was realized based on summarizing each document, as well as its keywords and trends, then proceeding to categorize each one, according to the field of application. It was found that Virtual Reality is having relevance in medicine and training area, due to the ability to simulate difficult situations and above all, specific conditions raised by instructors. The future of Virtual Reality as a tool to train professionals in multiples areas is promising.La realidad virtual ha tenido una gran evolución desde la década de 1960 hasta el día de hoy. Se ha implementado en múltiples áreas, tanto de la investigación como del conocimiento, siendo más reconocida en la industria del entretenimiento. Con el propósito de establecer el estado de la realidad virtual y obtener una idea de su futuro, 537 documentos científicos han sido revisados aplicando criterios de búsqueda específicos, como realidad virtual aplicada a la educación. Un análisis bibliométrico fue realizado, teniendo como base un resumen y descripción de cada artículo, así como sus palabras claves y tendencias, procediendo a categorizar cada documento de acuerdo con su campo de aplicación. Se encontró que la realidad virtual tiene una gran relevancia en la medicina, industria militar y en el entrenamiento de personas, debido a su capacidad de simular situaciones difíciles y, sobre todo, condiciones específicas requeridas por instructores. El futuro de la realidad virtual como herramienta de entrenamiento para los profesionales de múltiples áreas es promisori

    Tendencias y características de la realidad virtual: Una revisión de la literatura

    Get PDF
    Virtual Reality has greatly evolved between 1940s and 1990s. Since then, it has been implemented in multiple research and knowledge areas, the most recognized being the entertainment industry. In order to establish the state of Virtual Reality and get an idea of its prospects, 537 scientific documents have been reviewed, applying search criteria, more specifically, Virtual Reality applied to education. A bibliometric analysis was realized based on summarizing each document, as well as its keywords and trends, then proceeding to categorize each one, according to the field of application. It was found that Virtual Reality is having relevance in medicine and training area, due to the ability to simulate difficult situations and above all, specific conditions raised by instructors. The future of Virtual Reality as a tool to train professionals in multiples areas is promising.La realidad virtual ha tenido una gran avance entre la década 1940 y 1990. Desde entonces, se ha implementado en múltiples áreas, tanto de la investigación como del conocimiento, siendo más reconocida en la industria del entretenimiento. Con el propósito de establecer el estado de la realidad virtual y obtener una idea de su futuro, 537 documentos científicos han sido revisados aplicando criterios de búsqueda específicos, como realidad virtual aplicada a la educación. Un análisis bibliométrico fue realizado, teniendo como base un resumen y descripción de cada artículo, así como sus palabras claves y tendencias, procediendo a categorizar cada documento de acuerdo con su campo de aplicación. Se encontró que la realidad virtual tiene una gran relevancia en la medicina y en el entrenamiento de personas, debido a su capacidad de simular situaciones difíciles y, sobre todo, condiciones específicas requeridas por instructores. El futuro de la realidad virtual como herramienta de entrenamiento para los profesionales de múltiples áreas es promisori
    corecore