16,634 research outputs found

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    UniverSeg: Universal Medical Image Segmentation

    Full text link
    While deep learning models have become the predominant method for medical image segmentation, they are typically not capable of generalizing to unseen segmentation tasks involving new anatomies, image modalities, or labels. Given a new segmentation task, researchers generally have to train or fine-tune models, which is time-consuming and poses a substantial barrier for clinical researchers, who often lack the resources and expertise to train neural networks. We present UniverSeg, a method for solving unseen medical segmentation tasks without additional training. Given a query image and example set of image-label pairs that define a new segmentation task, UniverSeg employs a new Cross-Block mechanism to produce accurate segmentation maps without the need for additional training. To achieve generalization to new tasks, we have gathered and standardized a collection of 53 open-access medical segmentation datasets with over 22,000 scans, which we refer to as MegaMedical. We used this collection to train UniverSeg on a diverse set of anatomies and imaging modalities. We demonstrate that UniverSeg substantially outperforms several related methods on unseen tasks, and thoroughly analyze and draw insights about important aspects of the proposed system. The UniverSeg source code and model weights are freely available at https://universeg.csail.mit.eduComment: Victor and Jose Javier contributed equally to this work. Project Website: https://universeg.csail.mit.ed

    Corporate Social Responsibility: the institutionalization of ESG

    Get PDF
    Understanding the impact of Corporate Social Responsibility (CSR) on firm performance as it relates to industries reliant on technological innovation is a complex and perpetually evolving challenge. To thoroughly investigate this topic, this dissertation will adopt an economics-based structure to address three primary hypotheses. This structure allows for each hypothesis to essentially be a standalone empirical paper, unified by an overall analysis of the nature of impact that ESG has on firm performance. The first hypothesis explores the evolution of CSR to the modern quantified iteration of ESG has led to the institutionalization and standardization of the CSR concept. The second hypothesis fills gaps in existing literature testing the relationship between firm performance and ESG by finding that the relationship is significantly positive in long-term, strategic metrics (ROA and ROIC) and that there is no correlation in short-term metrics (ROE and ROS). Finally, the third hypothesis states that if a firm has a long-term strategic ESG plan, as proxied by the publication of CSR reports, then it is more resilience to damage from controversies. This is supported by the finding that pro-ESG firms consistently fared better than their counterparts in both financial and ESG performance, even in the event of a controversy. However, firms with consistent reporting are also held to a higher standard than their nonreporting peers, suggesting a higher risk and higher reward dynamic. These findings support the theory of good management, in that long-term strategic planning is both immediately economically beneficial and serves as a means of risk management and social impact mitigation. Overall, this contributes to the literature by fillings gaps in the nature of impact that ESG has on firm performance, particularly from a management perspective

    Hardware Acceleration of Neural Graphics

    Full text link
    Rendering and inverse-rendering algorithms that drive conventional computer graphics have recently been superseded by neural representations (NR). NRs have recently been used to learn the geometric and the material properties of the scenes and use the information to synthesize photorealistic imagery, thereby promising a replacement for traditional rendering algorithms with scalable quality and predictable performance. In this work we ask the question: Does neural graphics (NG) need hardware support? We studied representative NG applications showing that, if we want to render 4k res. at 60FPS there is a gap of 1.5X-55X in the desired performance on current GPUs. For AR/VR applications, there is an even larger gap of 2-4 OOM between the desired performance and the required system power. We identify that the input encoding and the MLP kernels are the performance bottlenecks, consuming 72%,60% and 59% of application time for multi res. hashgrid, multi res. densegrid and low res. densegrid encodings, respectively. We propose a NG processing cluster, a scalable and flexible hardware architecture that directly accelerates the input encoding and MLP kernels through dedicated engines and supports a wide range of NG applications. We also accelerate the rest of the kernels by fusing them together in Vulkan, which leads to 9.94X kernel-level performance improvement compared to un-fused implementation of the pre-processing and the post-processing kernels. Our results show that, NGPC gives up to 58X end-to-end application-level performance improvement, for multi res. hashgrid encoding on average across the four NG applications, the performance benefits are 12X,20X,33X and 39X for the scaling factor of 8,16,32 and 64, respectively. Our results show that with multi res. hashgrid encoding, NGPC enables the rendering of 4k res. at 30FPS for NeRF and 8k res. at 120FPS for all our other NG applications

    Worldtube excision method for intermediate-mass-ratio inspirals: scalar-field model in 3+1 dimensions

    Full text link
    Binary black hole simulations become increasingly more computationally expensive with smaller mass ratios, partly because of the longer evolution time, and partly because the lengthscale disparity dictates smaller time steps. The program initiated by Dhesi et al. (arXiv:2109.03531) explores a method for alleviating the scale disparity in simulations with mass ratios in the intermediate astrophysical range (10−4≲q≲10−210^{-4} \lesssim q \lesssim 10^{-2}), where purely perturbative methods may not be adequate. A region ("worldtube") much larger than the small black hole is excised from the numerical domain, and replaced with an analytical model approximating a tidally deformed black hole. Here we apply this idea to a toy model of a scalar charge in a fixed circular geodesic orbit around a Schwarzschild black hole, solving for the massless Klein-Gordon field. This is a first implementation of the worldtube excision method in full 3+1 dimensions. We demonstrate the accuracy and efficiency of the method, and discuss the steps towards applying it for evolving orbits and, ultimately, in the binary black-hole scenario. Our implementation is publicly accessible in the SpECTRE numerical relativity code.Comment: 19 pages, 10 figure

    Accurate and Interpretable Solution of the Inverse Rig for Realistic Blendshape Models with Quadratic Corrective Terms

    Full text link
    We propose a new model-based algorithm solving the inverse rig problem in facial animation retargeting, exhibiting higher accuracy of the fit and sparser, more interpretable weight vector compared to SOTA. The proposed method targets a specific subdomain of human face animation - highly-realistic blendshape models used in the production of movies and video games. In this paper, we formulate an optimization problem that takes into account all the requirements of targeted models. Our objective goes beyond a linear blendshape model and employs the quadratic corrective terms necessary for correctly fitting fine details of the mesh. We show that the solution to the proposed problem yields highly accurate mesh reconstruction even when general-purpose solvers, like SQP, are used. The results obtained using SQP are highly accurate in the mesh space but do not exhibit favorable qualities in terms of weight sparsity and smoothness, and for this reason, we further propose a novel algorithm relying on a MM technique. The algorithm is specifically suited for solving the proposed objective, yielding a high-accuracy mesh fit while respecting the constraints and producing a sparse and smooth set of weights easy to manipulate and interpret by artists. Our algorithm is benchmarked with SOTA approaches, and shows an overall superiority of the results, yielding a smooth animation reconstruction with a relative improvement up to 45 percent in root mean squared mesh error while keeping the cardinality comparable with benchmark methods. This paper gives a comprehensive set of evaluation metrics that cover different aspects of the solution, including mesh accuracy, sparsity of the weights, and smoothness of the animation curves, as well as the appearance of the produced animation, which human experts evaluated

    A Visual Modeling Method for Spatiotemporal and Multidimensional Features in Epidemiological Analysis: Applied COVID-19 Aggregated Datasets

    Full text link
    The visual modeling method enables flexible interactions with rich graphical depictions of data and supports the exploration of the complexities of epidemiological analysis. However, most epidemiology visualizations do not support the combined analysis of objective factors that might influence the transmission situation, resulting in a lack of quantitative and qualitative evidence. To address this issue, we have developed a portrait-based visual modeling method called +msRNAer. This method considers the spatiotemporal features of virus transmission patterns and the multidimensional features of objective risk factors in communities, enabling portrait-based exploration and comparison in epidemiological analysis. We applied +msRNAer to aggregate COVID-19-related datasets in New South Wales, Australia, which combined COVID-19 case number trends, geo-information, intervention events, and expert-supervised risk factors extracted from LGA-based censuses. We perfected the +msRNAer workflow with collaborative views and evaluated its feasibility, effectiveness, and usefulness through one user study and three subject-driven case studies. Positive feedback from experts indicates that +msRNAer provides a general understanding of analyzing comprehension that not only compares relationships between cases in time-varying and risk factors through portraits but also supports navigation in fundamental geographical, timeline, and other factor comparisons. By adopting interactions, experts discovered functional and practical implications for potential patterns of long-standing community factors against the vulnerability faced by the pandemic. Experts confirmed that +msRNAer is expected to deliver visual modeling benefits with spatiotemporal and multidimensional features in other epidemiological analysis scenarios

    Human-Art: A Versatile Human-Centric Dataset Bridging Natural and Artificial Scenes

    Full text link
    Humans have long been recorded in a variety of forms since antiquity. For example, sculptures and paintings were the primary media for depicting human beings before the invention of cameras. However, most current human-centric computer vision tasks like human pose estimation and human image generation focus exclusively on natural images in the real world. Artificial humans, such as those in sculptures, paintings, and cartoons, are commonly neglected, making existing models fail in these scenarios. As an abstraction of life, art incorporates humans in both natural and artificial scenes. We take advantage of it and introduce the Human-Art dataset to bridge related tasks in natural and artificial scenarios. Specifically, Human-Art contains 50k high-quality images with over 123k person instances from 5 natural and 15 artificial scenarios, which are annotated with bounding boxes, keypoints, self-contact points, and text information for humans represented in both 2D and 3D. It is, therefore, comprehensive and versatile for various downstream tasks. We also provide a rich set of baseline results and detailed analyses for related tasks, including human detection, 2D and 3D human pose estimation, image generation, and motion transfer. As a challenging dataset, we hope Human-Art can provide insights for relevant research and open up new research questions.Comment: CVPR202

    Deep Learning for Scene Flow Estimation on Point Clouds: A Survey and Prospective Trends

    Get PDF
    Aiming at obtaining structural information and 3D motion of dynamic scenes, scene flow estimation has been an interest of research in computer vision and computer graphics for a long time. It is also a fundamental task for various applications such as autonomous driving. Compared to previous methods that utilize image representations, many recent researches build upon the power of deep analysis and focus on point clouds representation to conduct 3D flow estimation. This paper comprehensively reviews the pioneering literature in scene flow estimation based on point clouds. Meanwhile, it delves into detail in learning paradigms and presents insightful comparisons between the state-of-the-art methods using deep learning for scene flow estimation. Furthermore, this paper investigates various higher-level scene understanding tasks, including object tracking, motion segmentation, etc. and concludes with an overview of foreseeable research trends for scene flow estimation
    • …
    corecore