206,173 research outputs found

    Peer-to-Peer Energy Trading in Smart Residential Environment with User Behavioral Modeling

    Get PDF
    Electric power systems are transforming from a centralized unidirectional market to a decentralized open market. With this shift, the end-users have the possibility to actively participate in local energy exchanges, with or without the involvement of the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs), supported by their ease of installation and operation, with the facilitation of Electric Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy possible, has contributed to this changing landscape in the distribution side of the traditional power grid. Trading energy among users in a decentralized fashion has been referred to as Peer- to-Peer (P2P) Energy Trading, which has attracted significant attention from the research and industry communities in recent times. However, previous research has mostly focused on engineering aspects of P2P energy trading systems, often neglecting the central role of users in such systems. P2P trading mechanisms require active participation from users to decide factors such as selling prices, storing versus trading energy, and selection of energy sources among others. The complexity of these tasks, paired with the limited cognitive and time capabilities of human users, can result sub-optimal decisions or even abandonment of such systems if performance is not satisfactory. Therefore, it is of paramount importance for P2P energy trading systems to incorporate user behavioral modeling that captures users’ individual trading behaviors, preferences, and perceived utility in a realistic and accurate manner. Often, such user behavioral models are not known a priori in real-world settings, and therefore need to be learned online as the P2P system is operating. In this thesis, we design novel algorithms for P2P energy trading. By exploiting a variety of statistical, algorithmic, machine learning, and behavioral economics tools, we propose solutions that are able to jointly optimize the system performance while taking into account and learning realistic model of user behavior. The results in this dissertation has been published in IEEE Transactions on Green Communications and Networking 2021, Proceedings of IEEE Global Communication Conference 2022, Proceedings of IEEE Conference on Pervasive Computing and Communications 2023 and ACM Transactions on Evolutionary Learning and Optimization 2023

    Learning, Computing, and Trustworthiness in Intelligent IoT Environments: Performance-Energy Tradeoffs

    Get PDF
    An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications, examples of which include highly automated manufacturing cells or autonomously interacting harvesting machines. Energy efficiency is key in such edge environments, since they are often based on an infrastructure that consists of wireless and battery-run devices, e.g., e-tractors, drones, Automated Guided Vehicle (AGV)s and robots. The total energy consumption draws contributions from multipleiIoTe technologies that enable edge computing and communication, distributed learning, as well as distributed ledgers and smart contracts. This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption. Finally, the paper provides a vision for integrating these enabling technologies in energy-efficient iIoTe and a roadmap to address the open research challengesComment: Accepted for publication in IEEE Transactions on Green Communication and Networkin

    Supporting the development of mobile adaptive learning environments: A case study

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. E. Martín and R. M. Carro, "Supporting the development of mobile adaptive learning environments: A case study" IEEE Transactions on learning technologies, vol. 2, no. 1, pp. 23-36, january-march 2009In this paper, we describe a system to support the generation of adaptive mobile learning environments. In these environments, students and teachers can accomplish different types of individual and collaborative activities in different contexts. Activities are dynamically recommended to users depending on different criteria (user features, context, etc.), and workspaces to support the corresponding activity accomplishment are dynamically generated. In this paper, we present the main characteristics of the mechanism that suggests the most suitable activities at each situation, the system in which this mechanism has been implemented, the authoring tool to facilitate the specification of context-based adaptive m-learning environments, and two environments generated following this approach will be presented. The outcomes of two case studies carried out with students of the first and second courses of “Computer Engineering” at the “Universidad Auto´noma de Madrid” are also presented.This work has been supported by the Spanish Ministry of Science and Education, project number TIN2007-64718

    Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution

    Full text link
    [EN] In this paper, we propose a benchmark problem for the challengers aiming to energy efficiency control of hybrid electric vehicles (HEVs) on a road with slope. Moreover, it is assumed that the targeted HEVs are in the connected environment with the obtainment of real-time information of vehicle-to-everything (V2X), including geographic information, vehicle-to-infrastructure (V2I) information and vehicle-to-vehicle (V2V) information. The provided simulator consists of an industrial-level HEV model and a traffic scenario database obtained through a commercial traffic simulator, where the running route is generated based on real-world data with slope and intersection position. The benchmark problem to be solved is the HEVs powertrain control using traffic information to fulfill fuel economy improvement while satisfying the constraints of driving safety and travel time. To show the HEV powertrain characteristics, a case study is given with the speed planning and energy management strategy.Xu, F.; Tsunogawa, H.; Kako, J.; Hu, X.; Eben Li, S.; Shen, T.; Eriksson, L.... (2022). Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution. Control Theory and Technology. 20:145-160. https://doi.org/10.1007/s11768-022-00086-y14516020Zhou, Q., Zhao, D., Shuai, B., Li, Y., Williams, H., & Xu, H. (2021). Knowledge implementation and transfer with an adaptive learning network for real-time power management of the plug-in hybrid vehicle. IEEE Transactions on Neural Networks and Learning Systems, 32(12), 5298–5308. https://doi.org/10.1109/TNNLS.2021.3093429Xu, F., & Shen, T. (2021). Decentralized optimal merging control with optimization of energy consumption for connected hybrid electric vehicles. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2021.3054903Zhuang, W., Li, S., Zhang, X., et al. (2020). A survey of powertrain configuration studies on hybrid electric vehicles. Applied Energy, 262, 114553.Wang, S., Chen, K., Zhao, F., & Hao, H. (2019). Technology pathways for complying with corporate average fuel consumption regulations up to 2030: A case study of China. Applied Energy, 241, 257–277.Zhang, J., Shen, T., & Kako, J. (2020). Short-term optimal energy management of power-split hybrid electric vehicles under velocity tracking control. IEEE Transactions on Vehicular Technology, 69(1), 182–193.Asaei, B. (2010). A fuzzy-genetic algorithm approach for finding a new HEV control strategy idea. 1st Power Electronic and Drive Systems and Technologies Conference, pp. 224 – 229. Tehran, Iran.Wu, J., Zhang, C. H., & Cui, N. X. (2008). PSO algorithm-based parameter optimization for HEV powertrain and its control strategy. International Journal of Automotive Technology, 9(1), 53–59.Lin, C. C., Peng, H., Grizzle, J. W., & Kang, J.-M. (2003). Power management strategy for a parallel hybrid electric truck. IEEE Transactions on Control Systems Technology, 11(6), 839–849.Luján, J. M., Guardiola, C., Pla, B., & Reig, A. (2018). Analytical optimal solution to the energy management problem in series hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 67(8): 6803 – 6813.Larsson, V., Johannesson, L., & Egardt, B. (2014). Analytic solutions to the dynamic programming subproblem in hybrid vehicle energy management. IEEE Transactions on Vehicular Technology, 64(4), 1458–1467.Serrao, L., Onori, S., & Rizzoni, G. (2009). ECMS as a realization of Pontryagin’s minimum principle for HEV control. American Control Conference, pp. 3964-3969. St. Louis, MO, USA.Kim, N., Cha, S., & Peng, H. (2011). Optimal equivalent fuel consumption for hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 20(3), 817–825.Rezaei, A., Burl, J. B., Solouk, A., Zhou, B., et al. (2017). Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles. Applied Energy, 208, 655–665.Xie, S., Hu, X., Qi, S., & Lang, K. (2018). An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 163, 837–848.Zhang, J., & Shen, T. (2016). Real-time fuel economy optimization with nonlinear MPC for PHEVs. IEEE Transactions on Control Systems Technology, 24(6), 2167–2175.Sciarretta, A., Serrao, L., Dewangan, P. C., et al. (2014). A control benchmark on the energy management of a plug-in hybrid electric vehicle. Control Engineering Practice, 29, 287–298.Lars, E. (2019). An overview of various control benchmarks with a focus on automotive control. Control Theory and Technology, 17(2), 121–130.Moura, S. J., Fathy, H. K., Callaway, D. S., & Stein, J. L. (2010). A stochastic optimal control approach for power management in plug-in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 19(3), 545–555.Sun, C., Hu, X., Moura, S. J., & Sun, F. (2014). Velocity predictors for predictive energy management in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 23(3), 1197–1204.Xiang, C., Ding, F., Wang, W., & He, W. (2017). Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control. Applied Energy, 189, 640–653.Sun, C., Sun, F., & He, H. (2017). Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles. Applied Energy, 185, 1644–1653.Zhang, F., Hu, X., Langari, R., & Cao, D. (2019). Energy management strategies of connected HEVs and PHEVs: Recent progress and outlook. Progress in Energy and Combustion Science, 73, 235–256.Yang, C., Zha, M., Wang, W., Liu, K., & Xiang, C. (2020). Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. IET Intelligent Transport Systems, 14(7), 702–711. https://doi.org/10.1049/iet-its.2019.0606Zhang, J., Xu, F., Zhang, Y., & Shen, T. (2019). ELM-based driver torque demand prediction and real-time optimal energy management strategy for HEVs. Neural Computing and Applications, 32: 14411C14429.Zhang, B., Zhang, J., Xu, F., & Shen, T. (2020). Optimal control of power-split hybrid electric powertrains with minimization of energy consumption. Applied Energy, 266, 114873.Zhang, F., Xi, J., & Langari, R. (2016). Real-time energy management strategy based on velocity forecasts using V2V and V2I communications. IEEE Transactions on Intelligent Transportation Systems, 18(2), 416–430.Li, J., Zhou, Q., He, Y., et al. (2019). Dual-loop online intelligent programming for driver-oriented predict energy management of plug-in hybrid electric vehicles. Applied Energy, 253, 113617.Qi, X., Wu, G., Hao, P., Boriboonsomsin, K., & Barth, M. J. (2017). Integrated-connected eco-driving system for PHEVs with co-optimization of vehicle dynamics and powertrain operations. IEEE Transactions on Vehicular Technology, 2(1), 2–13.Uebel, S., Murgovski, N., Ba¨\ddot{\rm a}ker, B., & Sjo¨\ddot{\rm o}berg, J. (2019). A two-level mpc for energy management including velocity control of hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 68(6): 5494–5505.Chen, B., Evangelou, S. A., & Lot, R. (2019). Hybrid electric vehicle two-step fuel efficiency optimization with decoupled energy management and speed control. IEEE Transactions on Vehicular Technology, 68(12), 11492–11504.Wang, S., & Lin, X. (2020). Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios. Applied Energy, 271, 115233.Zhang, J., & Xu, F. (2020). Real-time optimization of energy consumption under adaptive cruise control for connected HEVs. Control Theory and Technology, 18(2), 182–192.Fu, Q., Xu, F., Shen, T., & Takai, K. (2020). Distributed optimal energy consumption control of HEVs under MFG-based speed consensus. Control Theory and Technology, 18(2), 193–203.Chen, B., Evangelou, S. A., & Lot, R. (2019). Series hybrid electric vehicle simultaneous energy management and driving speed optimization. IEEE/ASME Transactions on Mechatronics, 24(6), 2756–2767.Hu, Q., Amini, M. R., Feng, Y., Yang, Z., Wang, H., Kolmanovsky, I., & Seeds, J. B. (2020). Engine and aftertreatment co-optimization of connected HEVs via multi-range vehicle speed planning and prediction. SAE Technical Paper, -01-0590.Xu, F., & Shen, T. (2020). Look-ahead prediction-based real-time optimal energy management for connected HEVs. IEEE Transactions on Vehicular Technology, 69(3), 2537–2551.Xu, F., & Shen, T. (2019). MPC-based optimal control for diesel engine coupled with lean NOx trap system. SICE Journal of Control, Measurement, and System Integration, 12(3), 94–101
    • …
    corecore