140 research outputs found

    Encoder-Decoder-Based Intra-Frame Block Partitioning Decision

    Full text link
    The recursive intra-frame block partitioning decision process, a crucial component of the next-generation video coding standards, exerts significant influence over the encoding time. In this paper, we propose an encoder-decoder neural network (NN) to accelerate this process. Specifically, a CNN is utilized to compress the pixel data of the largest coding unit (LCU) into a fixed-length vector. Subsequently, a Transformer decoder is employed to transcribe the fixed-length vector into a variable-length vector, which represents the block partitioning outcomes of the encoding LCU. The vector transcription process adheres to the constraints imposed by the block partitioning algorithm. By fully parallelizing the NN prediction in the intra-mode decision, substantial time savings can be attained during the decision phase. The experimental results obtained from high-definition (HD) sequences coding demonstrate that this framework achieves a remarkable 87.84\% reduction in encoding time, with a relatively small loss (8.09\%) of coding performance compared to AVS3 HPM4.0

    Semi-Supervised Speech Emotion Recognition with Ladder Networks

    Full text link
    Speech emotion recognition (SER) systems find applications in various fields such as healthcare, education, and security and defense. A major drawback of these systems is their lack of generalization across different conditions. This problem can be solved by training models on large amounts of labeled data from the target domain, which is expensive and time-consuming. Another approach is to increase the generalization of the models. An effective way to achieve this goal is by regularizing the models through multitask learning (MTL), where auxiliary tasks are learned along with the primary task. These methods often require the use of labeled data which is computationally expensive to collect for emotion recognition (gender, speaker identity, age or other emotional descriptors). This study proposes the use of ladder networks for emotion recognition, which utilizes an unsupervised auxiliary task. The primary task is a regression problem to predict emotional attributes. The auxiliary task is the reconstruction of intermediate feature representations using a denoising autoencoder. This auxiliary task does not require labels so it is possible to train the framework in a semi-supervised fashion with abundant unlabeled data from the target domain. This study shows that the proposed approach creates a powerful framework for SER, achieving superior performance than fully supervised single-task learning (STL) and MTL baselines. The approach is implemented with several acoustic features, showing that ladder networks generalize significantly better in cross-corpus settings. Compared to the STL baselines, the proposed approach achieves relative gains in concordance correlation coefficient (CCC) between 3.0% and 3.5% for within corpus evaluations, and between 16.1% and 74.1% for cross corpus evaluations, highlighting the power of the architecture

    Attention-Inspired Artificial Neural Networks for Speech Processing: A Systematic Review

    Get PDF
    Artificial Neural Networks (ANNs) were created inspired by the neural networks in the human brain and have been widely applied in speech processing. The application areas of ANN include: Speech recognition, speech emotion recognition, language identification, speech enhancement, and speech separation, amongst others. Likewise, given that speech processing performed by humans involves complex cognitive processes known as auditory attention, there has been a growing amount of papers proposing ANNs supported by deep learning algorithms in conjunction with some mechanism to achieve symmetry with the human attention process. However, while these ANN approaches include attention, there is no categorization of attention integrated into the deep learning algorithms and their relation with human auditory attention. Therefore, we consider it necessary to have a review of the different ANN approaches inspired in attention to show both academic and industry experts the available models for a wide variety of applications. Based on the PRISMA methodology, we present a systematic review of the literature published since 2000, in which deep learning algorithms are applied to diverse problems related to speech processing. In this paper 133 research works are selected and the following aspects are described: (i) Most relevant features, (ii) ways in which attention has been implemented, (iii) their hypothetical relationship with human attention, and (iv) the evaluation metrics used. Additionally, the four publications most related with human attention were analyzed and their strengths and weaknesses were determined

    Context-Aware Mixup for Domain Adaptive Semantic Segmentation

    Full text link
    Unsupervised domain adaptation (UDA) aims to adapt a model of the labeled source domain to an unlabeled target domain. Existing UDA-based semantic segmentation approaches always reduce the domain shifts in pixel level, feature level, and output level. However, almost all of them largely neglect the contextual dependency, which is generally shared across different domains, leading to less-desired performance. In this paper, we propose a novel Context-Aware Mixup (CAMix) framework for domain adaptive semantic segmentation, which exploits this important clue of context-dependency as explicit prior knowledge in a fully end-to-end trainable manner for enhancing the adaptability toward the target domain. Firstly, we present a contextual mask generation strategy by leveraging the accumulated spatial distributions and prior contextual relationships. The generated contextual mask is critical in this work and will guide the context-aware domain mixup on three different levels. Besides, provided the context knowledge, we introduce a significance-reweighted consistency loss to penalize the inconsistency between the mixed student prediction and the mixed teacher prediction, which alleviates the negative transfer of the adaptation, e.g., early performance degradation. Extensive experiments and analysis demonstrate the effectiveness of our method against the state-of-the-art approaches on widely-used UDA benchmarks.Comment: Accepted to IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Large-Scale Light Field Capture and Reconstruction

    Get PDF
    This thesis discusses approaches and techniques to convert Sparsely-Sampled Light Fields (SSLFs) into Densely-Sampled Light Fields (DSLFs), which can be used for visualization on 3DTV and Virtual Reality (VR) devices. Exemplarily, a movable 1D large-scale light field acquisition system for capturing SSLFs in real-world environments is evaluated. This system consists of 24 sparsely placed RGB cameras and two Kinect V2 sensors. The real-world SSLF data captured with this setup can be leveraged to reconstruct real-world DSLFs. To this end, three challenging problems require to be solved for this system: (i) how to estimate the rigid transformation from the coordinate system of a Kinect V2 to the coordinate system of an RGB camera; (ii) how to register the two Kinect V2 sensors with a large displacement; (iii) how to reconstruct a DSLF from a SSLF with moderate and large disparity ranges. To overcome these three challenges, we propose: (i) a novel self-calibration method, which takes advantage of the geometric constraints from the scene and the cameras, for estimating the rigid transformations from the camera coordinate frame of one Kinect V2 to the camera coordinate frames of 12-nearest RGB cameras; (ii) a novel coarse-to-fine approach for recovering the rigid transformation from the coordinate system of one Kinect to the coordinate system of the other by means of local color and geometry information; (iii) several novel algorithms that can be categorized into two groups for reconstructing a DSLF from an input SSLF, including novel view synthesis methods, which are inspired by the state-of-the-art video frame interpolation algorithms, and Epipolar-Plane Image (EPI) inpainting methods, which are inspired by the Shearlet Transform (ST)-based DSLF reconstruction approaches

    Fusion features ensembling models using Siamese convolutional neural network for kinship verification

    Get PDF
    Family is one of the most important entities in the community. Mining the genetic information through facial images is increasingly being utilized in wide range of real-world applications to facilitate family members tracing and kinship analysis to become remarkably easy, inexpensive, and fast as compared to the procedure of profiling Deoxyribonucleic acid (DNA). However, the opportunities of building reliable models for kinship recognition are still suffering from the insufficient determination of the familial features, unstable reference cues of kinship, and the genetic influence factors of family features. This research proposes enhanced methods for extracting and selecting the effective familial features that could provide evidences of kinship leading to improve the kinship verification accuracy through visual facial images. First, the Convolutional Neural Network based on Optimized Local Raw Pixels Similarity Representation (OLRPSR) method is developed to improve the accuracy performance by generating a new matrix representation in order to remove irrelevant information. Second, the Siamese Convolutional Neural Network and Fusion of the Best Overlapping Blocks (SCNN-FBOB) is proposed to track and identify the most informative kinship clues features in order to achieve higher accuracy. Third, the Siamese Convolutional Neural Network and Ensembling Models Based on Selecting Best Combination (SCNN-EMSBC) is introduced to overcome the weak performance of the individual image and classifier. To evaluate the performance of the proposed methods, series of experiments are conducted using two popular benchmarking kinship databases; the KinFaceW-I and KinFaceW-II which then are benchmarked against the state-of-art algorithms found in the literature. It is indicated that SCNN-EMSBC method achieves promising results with the average accuracy of 92.42% and 94.80% on KinFaceW-I and KinFaceW-II, respectively. These results significantly improve the kinship verification performance and has outperformed the state-of-art algorithms for visual image-based kinship verification
    corecore