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ABSTRACT 

Family is one of the most important entities in the community. Mining the 

genetic information through facial images is increasingly being utilized in wide range 

of real-world applications to facilitate family members tracing and kinship analysis to 

become remarkably easy, inexpensive, and fast as compared to the procedure of 

profiling Deoxyribonucleic acid (DNA). However, the opportunities of building 

reliable models for kinship recognition are still suffering from the insufficient 

determination of the familial features, unstable reference cues of kinship, and the 

genetic influence factors of family features. This research proposes enhanced methods 

for extracting and selecting the effective familial features that could provide evidences 

of kinship leading to improve the kinship verification accuracy through visual facial 

images. First, the Convolutional Neural Network based on Optimized Local Raw 

Pixels Similarity Representation (OLRPSR) method is developed to improve the 

accuracy performance by generating a new matrix representation in order to remove 

irrelevant information. Second, the Siamese Convolutional Neural Network and 

Fusion of the Best Overlapping Blocks (SCNN-FBOB) is proposed to track and 

identify the most informative kinship clues features in order to achieve higher 

accuracy. Third, the Siamese Convolutional Neural Network and Ensembling Models 

Based on Selecting Best Combination (SCNN-EMSBC) is introduced to overcome the 

weak performance of the individual image and classifier. To evaluate the performance 

of the proposed methods, series of experiments are conducted using two popular 

benchmarking kinship databases; the KinFaceW-I and KinFaceW-II which then are 

benchmarked against the state-of-art algorithms found in the literature. It is indicated 

that SCNN-EMSBC method achieves promising results with the average accuracy of 

92.42% and 94.80% on KinFaceW-I and KinFaceW-II, respectively. These results 

significantly improve the kinship verification performance and has outperformed the 

state-of-art algorithms for visual image-based kinship verification. 
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ABSTRAK 

Keluarga adalah merupakan salah satu entiti yang terpenting dalam sesuatu 

komuniti. Perlombongan makumat genetik melalui kaedah pengimejan muka telah 

semakin meluas digunakan dalam pelbagai aplikasi dunia nyata bagi membantu 

menjejaki ahli keluarga dan analisis kekeluargaan menjadi mudah, murah dan cepat 

berbanding dengan prosedur pemprofilan Deoxyribonucleic acid (DNA). Walau 

bagaimanapun, peluang untuk membangunkan model yang boleh dipercayai untuk 

pengecaman kekeluargaan masih lagi mempunyai kekurangan dari aspek penentuan 

ciri-ciri kekeluargaan, ketidakstabilan penunjuk rujukan kekeluargaan, dan juga 

faktor-faktor pengaruh genetik sifat keluarga. Kajian ini mencadangkan 

penambahbaikan kaedah untuk mengekstrak dan memilih ciri-ciri kekeluargaan yang 

efektif yang boleh memberikan bukti kekeluargaan dan menjurus kepada peningkatan 

ketepatan terhadap pengenalpastian kekeluargaan di dalam pengesahan dan 

pengelasan melalui pengimejan visual muka. Pertamanya, kaedah Neural Network 

based on Optimized Local Raw Pixels Similarity Representation (OLRPSR) telah 

dibangunkan untuk memperbaiki ketepatan prestasi melalui penjanaan perwakilan 

matriks baru untuk menyisihkan maklumat yang tidak berkenaan. Keduanya, Siamese 

Convolutional Neural Network and Fusion of the Best Overlapping Blocks (SCNN-

FBOB) telah dicadangkan untuk menjejak dan mengenal pasti petunjuk kekeluargaan 

yang paling bermaklumat demi mencapai ketepatan yang tinggi. Ketiganya, Siamese 

Convolutional Neural Network and Ensembling Models Based on Selecting Best 

Combination (SCNN-EMSBC) telah juga diperkenalkan untuk mengatasi prestasi 

lemah untuk imej individu serta pengelas. Untuk menilai prestasi semua kaedah yang 

telah dicadangkan, beberapa siri eksperimen telah dikendalikan dengan menggunakan 

dua pangkalan data penanda aras kekeluargaan yang popular: KinFaceW-I, 

KinFaceW-II, yang seterusnya ditanda aras dengan menggunakan algoritma yang 

terdapat di literatur. Ianya menunjukkan bahawa kaedah verifikasi SCNN-EMSBC 

telah mencapai keputusan yang memberangsangkan dengan mencapai ketepatan 

purata terhadap KinFaceW-I (92.42%) dan KinFaceW-II (94.80%). Dapatan-dapatan 

ini telah memperbaiki secara signifikan prestasi pengecaman kekeluargaan dan telah 

mengatasi algoritma terkini untuk pengecaman kekeluargaan berdasarkan imej visual 

muka. 
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CHAPTER 1 

CHAPTER 1 INTRODUCTION 

1.1 Introduction 

Biometric is physiological and behavioural traits measurements originate from 

the human which used by human and machine to recognize individuals (Council and 

Committee, 2010). In fact, a face is a physiological characteristic that holds much and 

diverse types of information and exciting details, where the humans can use this 

information to reveals the human characteristics of kinship, gender, age, race, and 

others. However, humans in some cases can easily recognizing people in images by 

their faces (Hettiachchi et al., 2020). This skill is quite robust against significant 

changes in facial features such as illumination, noise, aging, and hairstyle (Sinha et al., 

2006).  

The booming of big data in recent years witnesses digital photo being shared 

across many media platforms. Potential relationship in photos include those among 

kin, colleagues, and friends. Analysing facial images is one of the major research 

topics in computer vision and pattern analysis. In the past few decades, face 

recognition problems have been the focus of considerable attention and algorithms 

have also been shown to perform effectively under the controlled and uncontrolled 

environments using different databases (Fredj et al., 2020). Recently, due to genetic 

transmission (e.g., from parent to offspring), there is most likely to be facial 

characteristics similarities between family members. Thus, the researchers deliberately 

to analyse, understand and processing face images in order to identify kin relationship.  

Family resemblance, which is caused by the transmission of genetic traits 

through generations, relates to physical similarities commonly associated between 
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close relatives, particularly between parents and their offspring and between siblings. 

The kinship refers to the genetic relatedness, similarities and blood ties between 

individual members of the same family (Wang et al., 2020c). However, kinship 

recognition is becoming a new research area for image-based in computer vision and 

has significantly increased concern in recent years. In computer vision, kinship 

recognition is a mission of training a machine to classify and distinguish the blood ties 

between pairs based on visual information acquired from face image. In the other 

words, capability for discriminating kins from unrelated people based on the facial 

images. Figure 1.1 exhibits cases of the kinship verification problem, where given a 

pair of images, the target is to deciding whether two individuals are kin or not, or to 

determine relevant family based on resemblances in appearance. 

 

Figure 1.1 Example of the face-based kinship verification problem 

Kinship has been extensively studied in various scientific fields like 

psychology and computer vision. In the domain of psychology, several scientists have 

investigated the ability of human observers of recognizing kinship through similarity 

cues captured from facial images (Dal Martello and Maloney, 2006; DeBruine et al., 

2009; Froelich and Nettleton, 2013; Kaminski et al., 2009; Park et al., 2008). However, 

kinship can often be judged by calculating and considering the resemblance among 

facial regions between individuals. Thus, the biological similarities between traits 

found in the same family and also the psychological findings inspire researchers to 

take advantage of these facts to design and develop a computer-based system that can 

be able to recognize kinship automatically. In the field of computer vision and machine 
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learning, kinship recognition research started in 2010 by Fang et al. (2010). The 

computer-aided kinship recognition is a method that helps in studying and analysing 

the phenotypic properties that are reflected on the appearance of the face. 

Computational systems function via generating discriminatory features and 

informative information using for kinship measurement. Hence, it is important to 

determine the structural kin-relationship meaning for understanding the nature of 

familial traits and discovering an accurate model (Duan et al., 2017a). However, the 

computer vision and machine learning communities have devoted a lot of effort 

towards determining and tracking features responsible for providing kinship signals 

helping to build new reliable models that can improve performance. However, despite 

the development of computerized models over the past few years, they are inaccurate 

while recognizing the kinship due to the inherent complexity of this problem (Qin et 

al., 2020) that increase the misclassification error rate. Thus, the researchers must 

ensure define a set of stable features strictly associated with the familial traits during 

the model building stage, as the observation of adopting the deceptive clues that 

generates inaccurate features which can affect the efficiency of model. 

To date, different methods related to the detecting the discriminatory familial 

traits for recognizing kinship have been proposed. However, the results obtained under 

the current frameworks are providing unsatisfactory accuracy performance and 

reliability. Accordingly, extracting prominent familial features increases the 

opportunity to develop intelligent models to help overcome challenges, and enhances 

the ability to determine effective and precise cues indicating kin relationship from the 

appearance of the face, hence improving the overall accuracy performance of the 

kinship system. 

The focus of the research in this domain has been on automatically discovering 

familial traits from images in order to recognize kinship. In this research, the key issue 

of automatic kinship recognition system mainly focuses on the problem of kinship 

verification, as visually seen in Figure 1.1. The kinship verification refers to a system 

intended to determine if the given pair of facial images are kin or not. This task is one-
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to-one classification problem with model responses being either related or unrelated. 

1.2 Problem Background 

Understanding and analysing a family relationship based on face is a 

challenging for computer systems. As a result, many algorithms have been proposed 

in the literature for automatic face-based kinship recognition utilizing different 

machine learning techniques, which categorized into two groups; feature-based and 

learning-based (Kou et al., 2015; Wei et al., 2019; Xu and Shang, 2016a; Yan et al., 

2014b). 

The feature-based methods generally extract discriminative feature from face 

image in order to characterize the genetic traits (genetic information) on between a 

parent and their children. This type of method is also divided into two groups: the first 

utilizing handcrafted features (Dibeklioglu et al., 2013; Dong et al., 2014; Fang et al., 

2010; Laiadi et al.; Van and Hoang, 2019b; Yan, 2019; Zhou et al., 2011) and the 

second utilizing deep features learning (Dehghan et al., 2014; Li et al., 2016; Luo et 

al., 2020; Robinson et al., 2018; Wang et al., 2015a; Yu et al., 2020a; Yu et al., 2020b). 

However, the majority existing methods of kinship recognition have adopted for 

handcrafted features (Qin et al., 2020). 

Existing feature extraction methods which have been used to learn feature 

representations from the facial images in regards to handcrafted features, i.e., local 

binary pattern (LBP) (Alirezazadeh et al., 2016; Patel et al., 2017; Yan et al., 2014a), 

local phase quantization (LPQ) (Alirezazadeh et al., 2016; Laiadi et al.; Zhao et al., 

2018), histogram of oriented gradients (HOG) (Dong et al., 2014; Mahpod and Keller, 

2018; Xu and Shang, 2016b), scale invariant feature transform (SIFT) (Dong et al., 

2014; Xu and Shang, 2016b; Yadav et al., 2019), Gabor wavelet (Somanath and 

Kambhamettu, 2012; Xia et al., 2012b; Zhou et al., 2012), colour and facial distances 

(Fang et al., 2010). Whilst deep belief network (Kohli et al., 2016), autoencoder 

(Dehghan et al., 2014; Kohli et al., 2016; Wang et al., 2015a), and convolutional neural 
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network (Chergui et al., 2019a; Chergui et al., 2019c; Crispim et al., 2020; Guo et al., 

2018; Rehman et al., 2019) are for deep features learning. 

The intrinsic characteristics of this very complex problem, for example facial 

appearance variance which makes a large distribution gap between parent and children, 

creates considerable challenges for the kinship algorithms. However, the results of 

feature-based methods are limited due to their less capability of simulating and 

modelling human ability and interactions in a difficult environment. In regards to 

handcrafted feature, which is also described as shallow feature that chosen to represent 

characteristics of the image, is incapable of describing the visual resemblance between 

biologically-related pair of face precisely (Li et al., 2017; Xia et al., 2018) because of 

its inflexibility, require domain knowledge expertise (Simonyan and Zisserman, 2014) 

general representation and lack of distinctiveness (Masi et al., 2018). 

On the other hand, in spite of the success of deep feature learning, existing 

solutions to modelling kinship recognition still suffer from some critical problems that 

hinder the effective use of such method. The insufficient database will affect 

functionality of deep learning algorithms (Najafabadi et al., 2015), thus affect to obtain 

more expressive representation and the modelling of kinship recognition particularly 

(Li et al., 2017). Therefore, the extremely extensive data is necessary to be collected 

containing extreme variation and balance in terms to number of families, members, 

images illumination, pose, and many others in order to meet challenges of kinship 

recognition. Moreover, these deep feature learning has limited capablity to fully and 

accurately define the underlying familial features among the kinship-related people. 

Another possible problem may result when using the deep learning algorithms 

is that the models are characterized as a black box and lack of transparency and 

interpretability (Buhrmester et al., 2019; Georgopoulos et al., 2018; O’Mahony et al., 

2019), which makes comprehension of how features represent kinship recognition cues 

very hard (Qin et al., 2020). However, as models learn through databases, they are 

likely to be subjected to unfair biases due to the contaminated data content (Buhrmester 

et al., 2019). However, CNN-based features can use cues such as background, 
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clothing, colours and shadows as an input data that taken from the same photograph, 

which can reduce some challenges (Yan et al., 2014a). Nevertheless, it may make the 

model more challenging to recognize kinship (Li et al., 2017), and can learn visual 

similarities rather than learning the valid familial traits characteristics implied in kin-

relationship (Dawson et al., 2018). Thus, may giving confusing inferential indications 

and consequently false classification results. 

Typically, the convolution neural network (CNN), as for example, aims to 

automatically extract a discriminative features, however, most existing models treat 

all the images samples of parents and children equally without consideration of other 

factors such as age gaps, and distribution difference (Duan et al., 2017a). Additionally, 

since different kin relationship between each image pair of the same family as well as 

among families render different similarity features, it is imperative to address each kin 

relation differently during the training of model (Lopez et al., 2018). 

Furthermore, the single deep learning model for kinship recognition remain yet 

to be suffered from the generalization ability. According to the no free lunch (NFL) 

theorem (Fernández-Delgado et al., 2014; Wolpert, 1996; Wolpert and Macready, 

1997), no single model is significantly superior on every dataset. Therefore, tries 

various methods to train, test and select the best models might increase the 

generalization ability and improve the performance. 

In contrast, the learning-based methods such as metric learning (Kaya and 

Bilge, 2019), usually focus on statistical learning techniques, in which the training data 

will used to learn an appropriate distance metric that able to distinguish kinship by 

increased the distance between the non-kin relationship samples as possible and 

decreased the distance between the kin relationship samples as possible 

simultaneously. 
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However, many various methods (Fang et al., 2016; Hu et al., 2017a; Hu et al., 

2017b; Li et al., 2016; Li et al., 2017; Liang et al., 2018; Liu and Zhu, 2017; Lu et al., 

2017; Lu et al., 2013; Yan et al., 2014a; Zhou et al., 2019) have been proposed to solve 

different issues into kinship recognition. The above-mentioned feature types can be 

utilized as feature representations methods for facial images to build the feature 

subspace. In particular, handcrafted features are used in (Fang et al., 2016; Hu et al., 

2017a; Hu et al., 2017b; Liu and Zhu, 2017; Lu et al., 2013; Yan et al., 2014a) whereas 

deep feature learning are used in (Li et al., 2016; Li et al., 2017; Zhou et al., 2019). 

For example, Lu et al. (2013) proposed neighbourhood repulsed metric learning 

(NRML) method that utilizes a single feature and metric with a view to learn a distance 

metric under which samples (positive kin relations) are pulled as close as possible and 

samples (negative kin relations) are pushed away as far as possible simultaneously, 

such that more discriminative information can be utilized for recognition. However, 

because the less of discriminative information that uses to characterize face images, 

the method failed to learn the distance from the single feature space, and hence 

producing insufficient results. 

Further to that, metric learning methods such as multiview NRML (MNRML) 

(Lu et al., 2013), discriminative multi-metric learning (DMML) (Yan et al., 2014a), 

large-margin multi-metric learning (LM3L) (Hu et al., 2017b), discriminative deep 

metric learning (DDML) (Lu et al., 2017), structured sparse similarity learning (S3L) 

(Xu and Shang, 2016a), and weighted graph embedding based metric learning 

(WGEML) (Liang et al., 2018) that are based on jointly utilize the complementary 

information from multiple features representations to learn and obtain multiple 

discriminative metrics in order to deal with multiview data. The results of such 

methods are limited since they learn a linear distance metric for input space, which is 

less powerful to capture the non-linear transformation. Besides, these methods which 

are based on handcrafted feature are suffer from different factors like physical 

appearance variance. In addition, deep feature learning needs a large number of labeled 

training data to find the best representation of face images (Najafabadi et al., 2015), 

and thus more flexible metric model. 



 

8 

However, metric learning methods have a limited precision reliability because 

it is incapable to accurately understand semantics of kin relationship. In addition, 

metric learning requires very large training data especially with deep neural networks 

(Zhou et al., 2019). Moreover, in kinship recognition domain, most of the existing 

methods have intensively focuses on the choice metric learning while overlooking the 

prominent facial features that indicates the kin relation (Duan et al., 2017a; Goyal and 

Meenpal, 2019; Li et al., 2016). Likewise, choose a proper metric to learn distance is 

difficult, as a rigid distance measure such as Euclidean distance has no ability to 

mining the substantial and stable underlying face image's structure for performing 

kinship recognition (Liang et al., 2018). Furthermore, it mostly use entire image 

globally to describe the visual content and generated features which is sensitivity to 

the facial appearance change like illumination and pose variances (Kabbai et al., 

2019), may failure to capture other substantial information that has different semantic 

meanings about kinship (Kamila, 2015), need large amount of data to generate learning 

patterns and confront the environment variations conditions like illumination (Qin et 

al., 2020; Zhao et al., 2019), and also not suitable for handling intra-class variations 

(the difference of face image pairs with kin relation) (Wu et al., 2010). 

Typically, two major components, namely, face representation and matching 

are crucial importance stages to kinship recognition (Fang et al., 2016; Liang et al., 

2018). Face representation focuses on describing and mining distinctive features from 

face images, while matching concentrates on developing effective models uses 

extracted features to compare and classify face images. However, the facial features 

extraction is an indispensable process of the kinship analysis. The idea of selecting and 

utilizing dynamic features for determining kinship is considered a significant challenge 

(Dornaika et al., 2020) as it strongly influences decision-making performance. The 

most frequently underlying causes related to identifying the prominent cues for kinship 

may back to various reasons, as follows: 

First, reported results showed that the face recognition methods may fail to 

train model if only using one training image per person (Tan et al., 2006). Similarly, a 

single image per person is not enough to well represent a familial traits either because 
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the variations of illumination and pose, or lost useful information from the image in 

order to explicitly handle kinship problem (Li et al., 2017; Xia et al., 2018). However, 

most of the reviewed methods of kinship strongly depends on learned and extracted 

general features representation from a single source of image, where the multiplicity 

images per person was overlooked. Therefore, the precise features of structural kin-

relationship meaning cannot be disclosed as well as decision on which of them are 

important for recognizing kinship is difficult. In this regard, the leverage of utilizing 

multiple images associated with the same person can enhance the reliability of kinship 

similarity and recognition. 

Second, the strong relevance cues of kinship are limited to specific facial parts, 

including eyes, nose and mouth (Georgopoulos et al., 2018; Patel et al., 2017; Xia et 

al., 2012b). However, the idea of restricting certain regions or even specifying those 

parts in advance to determine kinship is a sensitive and will affects the generalization 

ability, because kin can have strong or weak similarities of specific facial parts. For 

example, the eyes of a daughter can be similar to the eyes of her mother, but can be 

dissimilar to the eyes of her father, in which the similarities vary from an individual to 

another, thereby complicates the kinship analysis process. Further, two people from 

one family likely have a fair number of attributes sharing, yet may do not resemble 

each other, whereas individuals with no attributes sharing may look closely resemble 

(Laiadi et al., 2019b). However, the existing methods that have been proposed for 

kinship recognition by using multiple face region features are producing insufficient 

results. For example, (Guo and Wang, 2012; Van and Hoang, 2019a) noted that the 

results of such methods are controlled by specific facial parts, which are unable to 

locate the signs of kinship thus less capability of modelling kinship recognition system. 

Third, as mentioned above, as focusing on specific pre-defined local parts of 

the face is ineffective, likewise, utilize every local parts of the face to shape the final 

feature representation is not helpful (Cui and Ma, 2017) which will drive to select 

unnecessary part(s) that do not have semantic features indicating kinship. Moreover, 

the majority of current methods considered all the local parts of facial image equally 

in detecting the kinship, where single or multiple features are extracted from every part 
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are then concatenated together directly into a new feature vector. However, this 

process is meaningless because each feature and part has its own characteristic and 

hence cannot effectively discover the complementary information (Cui and Ma, 2017). 

In addition, ignore those features and parts that are might to be correctly classified or 

misclassified in order to recognize kinship. All of these concerns result in generate 

unwanted redundant and information, high dimension of features, and reduces 

performance (Alirezazadeh et al., 2016). 

Fourth, in image-based kinship analysis, fusing multiple feature 

representations is desirable to provide more discriminative and complementary 

information to describe face image, hence revealing the underlying kinship cues, 

increasing the learning capability and likely improving the overall performance 

(Bottinok et al., 2015; Dornaika et al., 2020; Lu et al., 2013; Yan and Lu, 2017a). The 

outcome is high-dimensional feature vector that may contains redundant, irrelevant 

and noisy information (Alirezazadeh et al., 2016; Van and Hoang, 2019a). 

Additionally, the parent-child images comprise many details that include inherited and 

environmental information, and other more, so it should only pay particular attention 

to the genetically inherited transmitted information. However, learning becomes 

significant inconvenient, increases computational complexity, more resources would 

be needed for processing, and overfitting problem (Zhao et al., 2018). Hence, the 

necessity of dimensionality reduction technique increases. In kinship recognition 

domain, feature space high dimensionality is a common problem (Alirezazadeh et al., 

2015; Alirezazadeh et al., 2016; Duan and Tan, 2015; Moujahid and Dornaika, 2019), 

which aim to get rid of the useless and unrelated features in order to improve the 

performance. The aim of feature selection is to get rid of the useless features from the 

defined features set, resulting the reduction of the dimensions of feature vector. 

Nevertheless, dimensionality reduction techniques can achieve promising results to 

resolve the high-dimensional features and improve computational intensive, yet, might 

lose some of the useful and distinctive cues information (Alirezazadeh et al., 2016; 

Guo et al., 2018), which could failure identification of cues about kinship, and thus 

cause difficulties on recognizing kinship. 



 

11 

Fifth, the determination of kinship information based on facial images will be 

further complicated under uncontrolled environments especially when the database has 

limited number of images, which makes the problem of kinship even more challenging. 

However, some of the face-based kinship recognition problems are inherited from the 

conventional face recognition domain issues including large diversity of facial 

appearance such as variations of illumination, pose, partial occlusion, facial 

expression, low resolution images and blur, besides inter-class similarities and the 

intra-class variations. It's also suffer from other factors like age gap, gender and 

ethnicities variations, and others (Akhtar and Rattani, 2017; Dandekar and Nimbarte, 

2014; Georgopoulos et al., 2018; Laiadi et al., 2019b; Li et al., 2016; Li et al., 2017; 

Wu et al., 2016a; Yan and Lu, 2017a). For example, the results of the previous works 

present some interesting consensus view on the problem of the aging effects (Laiadi et 

al., 2019b; Lelis, 2018; Liu and Zhu, 2017; Xia et al., 2011; Zhou et al., 2019), which 

should be taken into account when dealing with automatic kinship recognition. 

Consequently, in such circumstances, the implicit familial traits may not be adequately 

represented. Thus, the kin-relationship exact features extracting is still a very 

challenging task. 

Therefore, feature extraction and learning strategy are of vital importance, 

which also are desired for achieving accurate recognition results. Accordingly, in order 

to enhance the effectiveness of determining the set of physical characteristics that can 

highlight relevant information closely associated to a specific pair of face, methods of 

the kinship recognition should be developed, which have the power to learn and extract 

more abstract and reliable resemblance patterns of kin samples from images. 

1.3 Research Aim 

The aim of this study is to develop enhanced methods for identifying, tracking, 

and extracting the visual similarity of familial features  correlated with detecting 

kinship via facial images in order to improve the performance of the kinship 

verification. 
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1.4 Problem Statement 

The development of an accurate computational system for kinship recognition 

crucially depends not only on the extraction of discriminative facial feature 

representation that represent the content of the face image but also on the design 

suitable matching scheme and learning methods applied (Fang et al., 2016; Liang et 

al., 2018). 

The kinship recognition becomes more challenging since the familial features 

have own properties for each certain pair of family members (Guo and Wang, 2012), 

the cues information that provide evidence for kinship are still remain unknown 

(Alvergne et al., 2007; DeBruine et al., 2009). In addition, facial resemblance between 

one family members could be found in different facial parts, which is also seems 

differently across various families (Lopez et al., 2018). This shows that perceiving the 

decisive clues of kinship is ambiguous and vulnerable to instability, thereby cannot be 

easily revealed under the ordinary methods (Zhao et al., 2018). Besides, attempting 

using the same parts or features to determine the kinship among people is probably 

exposed to failure, because there is no general rule of the similarity’s features can be 

generalized to all facial pairs or relationships types (Lopez et al., 2018). Moreover, on 

account of less amount of similarities among family members, a single image per 

person may not be informative enough to extract the precise familial traits, which 

leading to inaccurate measure of kin relation. This essentially needs adopting 

additional images to utilize further complementary information of the given person in 

order to improve the generalization ability. 

Furthermore, considering the following problems: 1) lack of evidence about 

which the specific part(s) of image can provide indication regarding kinship, 2) the 

difficulty to disclose the whereabouts of kinship signals and making a decision on 

which part(s) are important, and 3) with the assumption that not all regions of an image 

is useful to determine the kin relation, thus it is possible to obtain irrelevant and 

inaccurate information of kinship clues when using either or both of multiple images 

and local parts which resulting false matched kinship. Therefore, utilizing a singular 
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classifier performs less well to make decision of recognizing kinship as compared to 

considering combined several classifiers developed cooperatively to form a robust 

model, where combines the decision of multiple classifiers can be more stable, helpful 

to reduce the error in classification by eliminating falsely matches (outliers removal), 

and the truly matches are only considered, also reduce model variance and bias, and 

hence improve the overall accuracy performance (Kim et al., 2006; Moreno-Seco et 

al., 2006; Tsai and Hsiao, 2010). 

By awareness and comprehension of the problem background and problem 

statement which have been discussed previously, the methods attempt to discover and 

utilize the familial resemblance information extracted from facial images to be able to 

perform kinship recognition. However, the traditional methods of kinship still suffer 

from low accuracy, further works are still required to design new methods for the 

domain of kinship. Therefore, this research raises various challenges, such as minimize 

the recognition errors to improve the accuracy and enhance the tracking the most fitting 

cues of the physical similarities shared between people for determining the kin 

relationships. 

The following section puts forward the research questions (RQs) that will be 

further investigated in this research study. 

1.5 Research Question 

This research proposes enhanced familial features to measure kin relationships 

between individuals and between families through facial image for robust kinship 

verification. The main research question is: 

“How the familial resemblance features can be determined and extracted from 

the facial images, and utilized in order to develop enhanced methods for the effective 

performance of kinship verification?” 
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Moreover, the following are the research questions (RQs) that will need to be 

investigated in order to answer the main research question stated above. 

(a) What are the current kinship recognition approaches and feature extraction 

methods that capable of describing the visual resemblance information well 

besides achieving better performance for the face-based kinship recognition? 

(b) How to utilize deep learning convolutional neural network (CNN) improve 

the performance of kinship recognition? 

(c) How to incorporate the facial images of parent and children into one matrix 

representation, and eliminate redundant, unwanted and noisy information for 

efficient kinship recognition? 

(d) How can the integration of all the useful feature sets extracted from several 

important local parts of image while removing irrelevant local parts generate 

a better performance in kinship recognition system? 

(e) How can utilize multiple images and different representations per person to 

produce complementary information and effective familial features than that 

provided by a single image to improve the performance of the kinship 

recognition model? 

(f) How can utilize fusion technique to combines the outputs of multiple 

classifiers into a single decision to improve the performance of kinship 

recognition? 

(g) Do the kinship recognition models based on the proposed methods yield 

significant results? 
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1.6 Research Objectives 

This research introduces new methods to develop high-accuracy computerized 

models, with ability to improve the quality and effectiveness of image-based system 

of kinship verification. However, kinship verification seeks to verify whether there a 

specified kind of kinship between pair of individuals based on given facial images by 

measuring features similarities extracted from these facial images. 

The objectives of this research have been set as follows: 

i. To develop an enhanced method based on incorporate parent and child information 

into new matrix representation using local raw pixels similarity, and convolutional 

neural network. 

ii. To propose an enhanced fusion feature method based on the best familial feature of 

different overlapping facial blocks that would be capable of improving the 

verification accuracy. 

iii. To propose an ensembling method based on selecting best combination of different 

augmented image representations that consider the selection of the best combination 

sets besides utilizing Siamese convolutional neural network that would be capable 

of achieving better performance than individual image representation methods.  

1.7 Research Scope 

The following aspects are the scope of this research study: 

i. This research focuses on faces taken from images, so the contents of other 

multimedia types such as videos are out of this research scope. 
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ii. This research is concerned with two well-known task including image-based 

kinship verification (the definition has been mentioned in Section 1.6), thus 

other tasks such as kinship identification are out of this research scope. 

iii. This research focuses on three popular databases, namely, KinFaceW-I and 

KinFaceW-II (Lu et al., 2013) databases for kinship verification where all 

images have been considered.  

iv. This research is using the popular machine learning algorithms including 

convolutional neural network (CNN) (O'Shea and Nash, 2015), support vector 

machines (SVM) (Zoppis et al., 2019) and artificial neural network (ANN) 

(Rojas, 2013) as classifiers for kinship verification. 

v. This research focuses on the common evaluation metric, i.e., accuracy (ACC) 

to be used to measure and evaluate the proposed methods, however, the most 

common evaluation protocol, i.e., k-fold cross validation, especially 5-fold 

cross validation will be used in this study. 

vi. This research has been implemented in the Keras API (Chollet, 2015) (version 

2.2.4) which is an open source deep learning library running on top of 

TensorFlow (version 1.14.0) using Python (version 3.7.6) programming 

language.   

vii. The methods proposed in this research concentrates on achieving higher level 

of accuracy performance, thus, the complexity analysis of these methods is 

beyond the scope of this study.  
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1.8 Research Significance 

So far, the deoxyribonucleic acid (DNA) is considered most reliable and 

popular testing method to determine biological relationship between people with 

highly accurate result. In place of direct DNA comparison, recently, a new powerful 

identification tool known as genetic genealogy (GG) (Bettinger, 2019; Kennett, 2019; 

Ney et al., 2020) which also known as relative matching (Ney et al., 2020), is 

genealogical DNA tests uses to analysis and predict the family genealogical details 

using genetic information.  

Practically, however, utilizing DNA is very limited, for reasons related to the 

time that takes for processing which is not suitable for the real-time applications, high 

cost, privacy concerns and accessibility. All these reasons have turned the researchers 

to looking for an alternative solution to measure the genetic similarities and kin 

relationship among people. However, the human face can be the typical solution to 

provide clues about kinship, due to the following reasons: face is the most widely 

method used to identify people, obtaining an image effortlessly and mostly, does not 

requires a user cooperation, inexpensive to implement due to the availability of 

resources, suitable for the real-time applications, and user friendliness. 

Motivated by these discoveries, the biological relationship and similarities 

between family members inspire researchers to develop a computer-based system that 

will be able to automatically recognize kinship based on the facial image. Recognizing 

people and their relationship has significant social, security and business values. 

One of important application of kinship recognition system is finding missing 

children. In this case, most often, there are several common ways for this task, such as 

description, DNA and photograph. In fact, find a missing child among millions of 

children is costly and time consuming. However, the easiest, faster, inexpensive and 

most widespread way which can cover large-scale maps, is using the visual 

resemblance based on face image that passes to a computerized kinship recognition 

system operating on the basis of machine learning and advanced artificial intelligence. 
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Another possible application of kinship recognition is forensic investigation. 

The security, fighting against crimes, and countering terrorism are extremely important 

to the safety and preserve societies. To the best of authors' knowledge, most countries 

have records of citizens and residents, suppose that a person committed an offense, but 

unluckily does not have a record file in the database. In this scenario, therefore, the 

interrogators could go forward and searching for all possible signs of kinship between 

the person who committed the offense and the rest of individuals contained in the 

database. In the other words, search for all the potential relatives in the database 

(Slooten and Meester, 2012). However, automatic recognition of kinship is essential 

for many potential real-world applications (Robinson et al., 2016a, 2016b; Wang et 

al., 2020c), for example, family tree and album organization, automatic management 

and labeling/annotation of image databases, image retrieval, social media analysis, 

historical and genealogical research, finding missing children, human trafficking, and 

forensic science. Moreover, models of the kinship recognition could be utilized to 

further improving the performance of facial recognition systems.  

The aforementioned motives and applications attract a significant number of 

researchers to present their contributions in this area. Evidently, research in this 

domain is still active and evolves dramatically. The face image-based kinship model 

development process and the necessity of understand visual similarities and 

discovering discriminant representations for building a system for detecting biological 

relationship (kinship) between people, the reason to form the cornerstone for the work 

given here. It is firmly believed that identifying powerful familial features can improve 

and help the fully automated kinship recognition system development process. The 

significance behind conducting this PhD research study is to propose new state-of-the-

art and advanced methods for the recognizing kinship via facial image. In view of the 

aforementioned issues, the results of this research study will contribute not only to 

knowledge enrichment, but also to more detailed understanding about kin relationship 

and how to reducing the recognition errors and improving kinship recognition. 

Although inherent complexity of kinship problem, which dealing with many severe 

issue challenges, however, the results also contribute the effective solutions to these 

challenges can be successfully developed and implemented within an appropriate 

technique framework. 
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1.9 Thesis Structure 

This thesis comprises of seven chapters, which includes: 

Chapter 1: this chapter presents a general introduction to the topic of the 

research work. This chapter also includes a brief overview of some of the issues and 

challenges concerning the research. In addition to the problem background and 

problem statement, besides the research aim, objectives, scope, significance of the 

study, and finally, the organization of this thesis. 

Chapter 2: this chapter gives a review of related literatures of kinship 

recognition studies. The chapter introduces the fundamental concepts related to 

kinship recognition, such as the definition, systems of verification and classification, 

relationship with the identity recognition, major characteristics and challenges. Then, 

it discusses the significant efforts of psychology studies which have been put to 

comprehension of human ability to recognize kinship and provides the explanation and 

fundamental concepts related to it. Also, this chapter also covers the basic approaches 

of designing an automated computer-aided kinship recognition system. Moreover, 

reviews and discusses other details related to the current study, such as feature 

extraction methods, information fusion methods, common machine learning 

algorithms, and later, the chapter presents the deep learning techniques, particularly 

convolutional neural network (CNN).  

Chapter 3: this chapter presents the research operational framework used in this 

research. It consists of the methodology of the research and the steps in all phases 

required to proceed with the research systematically. Furthermore, this chapter 

introduces discussion of the research components, such as the phases, classification 

method, evaluation protocol, and performance evaluation measurements. Finally, the 

kinship database and the experimental design are presented. 

Chapter 4: in this chapter, the convolutional neural network (CNN) based on 

optimized local raw pixels similarity representation (CNN-OLRPSR) method for 

kinship verification has been explained in detail, that would capable of eliminating 

redundant information and reduce the dimensions of the feature space. This chapter 
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includes the description of a new matrix representation based on non-overlapping local 

block that incorporate the pixels information of parent and child images, the 

architecture of deep convolutional neural network model for feature extraction and 

classification, the similarity measurement techniques, and the experimental setup. The 

details of the method steps and other procedures, are further discussed in this chapter. 

Finally, the results of CNN-OLRPSR method using the adopted databases are reported, 

compared, and discussed, also in this chapter. 

Chapter 5: in this chapter, the method of fusion of the best familial feature of 

different overlapping facial blocks (FBOB) along with Siamese convolutional neural 

network (SCNN) to formulation of a new SCNN-FBOB method for kinship 

verification has been discussed in detail. The experimental results of SCNN-FBOB 

method on adopted databases are presented and discussed. The details of the method 

steps and other procedures, are further discussed in this chapter. Finally, the 

comparison between the performance of SCNN-FBOB method, on one hand, and the 

CNN-OLRPSR method and previous state-of-the-art studies performance, on the other 

hand, is highlighted. 

Chapter 6: this chapter explains the ensembling method based on selecting best 

combination (EMSBC) using different augmented image representations, constructed 

on Siamese convolutional neural network (SCNN) in the form of SCNN-EMSBC for 

kinship verification. This chapter describes the image-based kinship verification using 

the several image representations in the SCNN model, and examines the performance 

of every image representations, individually, and the different possible combinations 

subsets are also examined. Additionally, it also includes the information fusion 

technique, artificial data augmentation, and the procedure of combination generator. 

However, the detailed explanation of the method steps and other procedures, are 

discussed extensively in this chapter. Finally, the experimental results of SCNN-

EMSBC method on adopted databases are presented, and the comparisons with the 

performance of CNN-OLRPSR method, SCNN-FBOB method, and previous state-of-

the-art studies, are also shown. 
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Chapter 7: this chapter provides the conclusions and findings of the study 

discussed throughout this research work. The chapter also highlights research 

contributions and future work suggestions. 
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