226 research outputs found

    Spectrum Utilization and Congestion of IEEE 802.11 Networks in the 2.4 GHz ISM Band

    Get PDF
    Wi-Fi technology, plays a major role in society thanks to its widespread availability, ease of use and low cost. To assure its long term viability in terms of capacity and ability to share the spectrum efficiently, it is of paramount to study the spectrum utilization and congestion mechanisms in live environments. In this paper the service level in the 2.4 GHz ISM band is investigated with focus on todays IEEE 802.11 WLAN systems with support for the 802.11e extension. Here service level means the overall Quality of Service (QoS), i.e. can all devices fulfill their communication needs? A crosslayer approach is used, since the service level can be measured at several levels of the protocol stack. The focus is on monitoring at both the Physical (PHY) and the Medium Access Control (MAC) link layer simultaneously by performing respectively power measurements with a spectrum analyzer to assess spectrum utilization and packet sniffing to measure the congestion. Compared to traditional QoS analysis in 802.11 networks, packet sniffing allows to study the occurring congestion mechanisms more thoroughly. The monitoring is applied for the following two cases. First the influence of interference between WLAN networks sharing the same radio channel is investigated in a controlled environment. It turns out that retry rate, Clear-ToSend (CTS), Request-To-Send (RTS) and (Block) Acknowledgment (ACK) frames can be used to identify congestion, whereas the spectrum analyzer is employed to identify the source of interference. Secondly, live measurements are performed at three locations to identify this type of interference in real-live situations. Results show inefficient use of the wireless medium in certain scenarios, due to a large portion of management and control frames compared to data content frames (i.e. only 21% of the frames is identified as data frames)

    Spectrum Sharing Methods in Coexisting Wireless Networks

    Get PDF
    Radio spectrum, the fundamental basis for wireless communication, is a finite resource. The development of the expanding range of radio based devices and services in recent years makes the spectrum scarce and hence more costly under the paradigm of extensive regulation for licensing. However, with mature technologies and with their continuous improvements it becomes apparent that tight licensing might no longer be required for all wireless services. This is from where the concept of utilizing the unlicensed bands for wireless communication originates. As a promising step to reduce the substantial cost for radio spectrum, different wireless technology based networks are being deployed to operate in the same spectrum bands, particularly in the unlicensed bands, resulting in coexistence. However, uncoordinated coexistence often leads to cases where collocated wireless systems experience heavy mutual interference. Hence, the development of spectrum sharing rules to mitigate the interference among wireless systems is a significant challenge considering the uncoordinated, heterogeneous systems. The requirement of spectrum sharing rules is tremendously increasing on the one hand to fulfill the current and future demand for wireless communication by the users, and on the other hand, to utilize the spectrum efficiently. In this thesis, contributions are provided towards dynamic and cognitive spectrum sharing with focus on the medium access control (MAC) layer, for uncoordinated scenarios of homogeneous and heterogeneous wireless networks, in a micro scale level, highlighting the QoS support for the applications. This thesis proposes a generic and novel spectrum sharing method based on a hypothesis: The regular channel occupation by one system can support other systems to predict the spectrum opportunities reliably. These opportunities then can be utilized efficiently, resulting in a fair spectrum sharing as well as an improving aggregated performance compared to the case without having special treatment. The developed method, denoted as Regular Channel Access (RCA), is modeled for systems specified by the wireless local resp. metropolitan area network standards IEEE 802.11 resp. 802.16. In the modeling, both systems are explored according to their respective centrally controlled channel access mechanisms and the adapted models are evaluated through simulation and results analysis. The conceptual model of spectrum sharing based on the distributed channel access mechanism of the IEEE 802.11 system is provided as well. To make the RCA method adaptive, the following enabling techniques are developed and integrated in the design: a RSS-based (Received Signal Strength based) detection method for measuring the channel occupation, a pattern recognition based algorithm for system identification, statistical knowledge based estimation for traffic demand estimation and an inference engine for reconfiguration of resource allocation as a response to traffic dynamics. The advantage of the RCA method is demonstrated, in which each competing collocated system is configured to have a resource allocation based on the estimated traffic demand of the systems. The simulation and the analysis of the results show a significant improvement in aggregated throughput, mean delay and packet loss ratio, compared to the case where legacy wireless systems coexists. The results from adaptive RCA show its resilience characteristics in case of dynamic traffic. The maximum achievable throughput between collocated IEEE 802.11 systems applying RCA is provided by means of mathematical calculation. The results of this thesis provide the basis for the development of resource allocation methods for future wireless networks particularly emphasized to operate in current unlicensed bands and in future models of the Open Spectrum Alliance

    A Comprehensive Study of the Enhanced Distributed Control Access (EDCA) Function

    Get PDF
    This technical report presents a comprehensive study of the Enhanced Distributed Control Access (EDCA) function defined in IEEE 802.11e. All the three factors are considered. They are: contention window size (CW), arbitration inter-frame space (AIFS), and transmission opportunity limit (TXOP). We first propose a discrete Markov chain model to describe the channel activities governed by EDCA. Then we evaluate the individual as well as joint effects of each factor on the throughput and QoS performance. We obtain several insightful observations showing that judiciously using the EDCA service differentiation mechanism is important to achieve maximum bandwidth utilization and user-specified QoS performance. Guided by our theoretical study, we devise a general QoS framework that provides QoS in an optimal way. The means of realizing the framework in a specific network is yet to be studied

    A differentiated Services Architecture for Quality of Service Provisioning in Wireless Local Area Networks

    Get PDF
    Currently the issue of Quality of Service (QoS) is a major problem in IP networks due to the growth in multimedia traffic (e.g. voice and video applications) and therefore many mechanisms like IntServ, DiffServ, etc. have been proposed. Since the IEEE 802.11b (or Wi-Fi) standard was approved in 1999, it has gained in popularity to become the leading Wireless Local Area Network (WLAN) technology with millions of such networks deployed worldwide. Wireless networks have a limited capacity (11 Mbits/s in the case of Wi-Fi networks) owing to the limited amount of frequency spectrum available. At any given time there may be a large number of users contending for access which results in the bandwidth available to each user being severely limited. Moreover, the system does not differentiate between traffic types which means that all traffic, regardless of its importance or priority, experiences the same QoS. An important network application requiring QoS guarantees is the provision of time-bounded services, such as voice over IP and video streaming, where the combination of packet delay, jitter and packet loss will impact on the perceived QoS. Consequently this has led to a large amount of research work focussing mainly on QoS enhancement schemes for the 802.11 MAC mechanism. The Task Group E of the IEEE 802.11 working group has been developing an extension to the Wi-Fi standard that proposes to make changes to the MAC mechanism to support applications with QoS requirements. The 802.11e QoS standard is currently undergoing final revisions before approval expected sometime in 2004. As 802.11e WLAN equipment is not yet available, performance reports can only be based on simulation. The objective of this thesis was to develop a computer simulator that implements the upcoming IEEE 802.11e standard and to use this simulator to evaluate the QoS performance enhancement potential of 802.11e. This thesis discusses the QoS facilities, analyses the MAC protocol enhancements and compares them with the original 802.11 standard. The issue of QoS provisioning is primarily concerned with providing predictable performance guarantees with regard to throughput, packet delay, jitter and packet loss. The simulated results indicate that the proposed QoS enhancements to the MAC will considerably improve QoS performance in 802.11b WLANs. However, in order for the proposed 802.11e QoS mechanism to be effective the 802.11e parameters will need to be continually adjusted in order to ensure QoS guarantees are fulfilled for all traffic loads

    Adaptive management of cognitive radio networks employing femtocells

    Get PDF
    Network planning and management are challenging issues in a two-tier network. Tailoring to cognitive radio networks (CRNs), network operations and transmissions become more challenging due to the dynamic spectrum availability. This paper proposes an adaptive network management system that provides switching between different CRN management structures in response to the spectrum availability and changes in the service time required for the radio access. The considered network management system includes conventional macrocell-only structure, and centralized/distributed structures overlaid with femtocells. Furthermore, analytical expressions of per-tier successful connection probability and throughput are provided to characterize the network performance for different network managements. Spectrum access in dynamic radio environments is formulated according to the quality of service (QoS) constraint that is related to the connection probability and outage probability. Results show that the proposed intelligent network management system improves the maximum capacity and reduces the number of blocked connections by adapting between various network managements in response to free spectrum transmission slots. A road map for the deployment and management of cognitive macro/femto networks is also presented
    corecore