229 research outputs found

    A review of PHIL testing for smart grids—selection guide, classification and online database analysis

    Get PDF
    The Smart Grid is one of the most important solutions to boost electricity sharing from renewable energy sources. Its implementation adds new functionalities to power systems, which increases the electric grid complexity. To ensure grid stability and security, systems need flexible methods in order to be tested in a safe and economical way. A promising test technique is Power Hardware In-the-Loop (PHIL), which combines the flexibility of Hardware-In-the-Loop (HIL) technique with power exchange. However, the acquisition of PHIL components usually represents a great expense for laboratories and, therefore, the setting up of the experiment involves making hard decisions. This paper provides a complete guideline and useful new tools for laboratories in order to set PHIL facilities up efficiently. First, a PHIL system selection guide is presented, which describes the selection process steps and the main system characteristics needed to perform a PHIL test. Furthermore, a classification proposal containing the desirable information to be obtained from a PHIL test paper for reproducibility purposes is given. Finally, this classification was used to develop a PHIL test online database, which was analysed, and the main gathered information with some use cases and conclusions are shown

    Assessment of Grid-Side Filters for Three-Phase Current-Source Inverter PV Systems

    Full text link

    Efficiency Analytical Characterization for Brushless Electric Drives

    Get PDF
    The paper is focused on the formalization of an experimental procedure aimed to char-acterize the efficiency behaviour of a Permanent Magnet Synchronous Motor-based drive. The characterization is intended to expose the analytical behaviour of the system efficiency by the actual operating condition assigned through torque/speed value. The availability of such a relation in a simple analytical form would allow for real-time adjustment by advanced power management strategies to maximize the whole system efficiency. The proposed method is based on a defined set of measures corresponding to several drive operating conditions. A straightforward elaboration procedure is then formulated with the aim to quantify the different parameters, which intervene in the efficiency characterization. The method has been applied on a 155 kW drive. The results show that good accuracy is achieved while keeping the analytical approach relatively simple

    Vision based dynamic thermal comfort control using fuzzy logic and deep learning

    Get PDF
    A wide range of techniques exist to help control the thermal comfort of an occupant in indoor environments. A novel technique is presented here to adaptively estimate the occupant’s metabolic rate. This is performed by utilising occupant’s actions using computer vision system to identify the activity of an occupant. Recognized actions are then translated into metabolic rates. The widely used Predicted Mean Vote (PMV) thermal comfort index is computed using the adaptivey estimated metabolic rate value. The PMV is then used as an input to a fuzzy control system. The performance of the proposed system is evaluated using simulations of various activities. The integration of PMV thermal comfort index and action recognition system gives the opportunity to adaptively control occupant’s thermal comfort without the need to attach a sensor on an occupant all the time. The obtained results are compared with the results for the case of using one or two fixed metabolic rates. The included results appear to show improved performance, even in the presence of errors in the action recognition system

    Toward a substation automation system based on IEC 61850

    Get PDF
    With the global trend to digitalize substation automation systems, International Electro technical Commission 61850, a communication protocol defined by the International Electrotechnical Commission, has been given much attention to ensure consistent communication and integration of substation high-voltage primary plant assets such as instrument transformers, circuit breakers and power transformers with various intelligent electronic devices into a hierarchical level. Along with this transition, equipment of primary plants in the switchyard, such as non-conventional instrument transformers, and a secondary system including merging units are expected to play critical roles due to their fast-transient response over a wide bandwidth. While a non-conventional instrument transformer has advantages when compared with the conventional one, extensive and detailed performance investigation and feasibility studies are still required for its full implementation at a large scale within utilities, industries, smart grids and digital substations. This paper is taking one step forward with respect to this aim by employing an optimized network engineering tool to evaluate the performance of an Ethernet-based network and to validate the overall process bus design requirement of a high-voltage non-conventional instrument transformer. Furthermore, the impact of communication delay on the substation automation system during peak traffic is investigated through a detailed simulation analysis. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Intelligent Power Control of DC Microgrid

    Get PDF

    Advanced laboratory testing methods using real-time simulation and hardware-in-the-loop techniques : a survey of smart grid international research facility network activities

    Get PDF
    The integration of smart grid technologies in interconnected power system networks presents multiple challenges for the power industry and the scientific community. To address these challenges, researchers are creating new methods for the validation of: control, interoperability, reliability of Internet of Things systems, distributed energy resources, modern power equipment for applications covering power system stability, operation, control, and cybersecurity. Novel methods for laboratory testing of electrical power systems incorporate novel simulation techniques spanning real-time simulation, Power Hardware-in-the-Loop, Controller Hardware-in-the-Loop, Power System-in-the-Loop, and co-simulation technologies. These methods directly support the acceleration of electrical systems and power electronics component research by validating technological solutions in high-fidelity environments. In this paper, members of the Survey of Smart Grid International Research Facility Network task on Advanced Laboratory Testing Methods present a review of methods, test procedures, studies, and experiences employing advanced laboratory techniques for validation of range of research and development prototypes and novel power system solutions

    Structural Resemblance Between Droop Controllers and Phase-Locked Loops

    Get PDF
    It is well known that droop control is fundamental to the operation of power systems and now the parallel operation of inverters while phase-locked loops (PLL) are widely adopted in modern electrical engineering. In this paper, it is shown at first that droop control and PLLs structurally resemble each other. This bridges the gap between the two communities working on droop control and PLLs. As a result, droop controllers and PLLs can be improved and further developed via adopting the advancements in the other field. This finding is then applied to operate the conventional droop controller for inverters with inductive output impedance to achieve the function of PLLs, without having a dedicated synchronization unit. Extensive experimental results are provided to validate the theoretical analysis

    Prospective submodule topologies for MMC-BESS and its control analysis with HBSM

    Get PDF
    Battery energy storage systems and multilevel converters are the most essential constituents of modern medium voltage networks. In this regard, the modular multilevel converter offers numerous advantages over other multilevel converters. The key feature of modular multilevel converter is its capability to integrate small battery packs in a split manner, given the opportunity to submodules to operate at considerably low voltages. In this paper, we focus on study of potential SMs for modular multilevel converter based battery energy storage system while, keeping in view the inconsistency of secondary batteries. Although, selecting a submodule for modular multilevel converter based battery energy storage system, the state of charge control complexity is a key concern, which increases as the voltage levels increase. This study suggests that the half-bridge, clamped single, and full-bridge submodules are the most suitable submodules for modular multilevel converter based battery energy storage system since, they provide simplest state of charge control due to integration of one battery pack along with other advantages among all 24 submodule topologies. Depending on submodules analysis, the modular multilevel converter based battery energy storage system based on half-bridge submodules is investigated by splitting it into AC and DC equivalent circuits to acquire the AC and DC side power controls along with an state of charge control. Subsequently, to validate different control modes, a downscaled laboratory prototype has been developed
    • …
    corecore