8 research outputs found

    Probabilistic timing analysis on time-randomized platforms for the space domain

    Get PDF
    Timing Verification is a fundamental step in real-time embedded systems, with measurement-based timing analysis (MBTA) being the most common approach used to that end. We present a Space case study on a real platform that has been modified to support a probabilistic variant of MBTA called MBPTA. Our platform provides the properties required by MBPTA with the predicted WCET estimates with MBPTA being competitive to those with current MBTA practice while providing more solid evidence on their correctness for certification.The research leading to these results has received funding from the European Community’s FP7 [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernandez is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft

    Design and implementation of a fair credit-based bandwidth sharing scheme for buses

    Get PDF
    Fair arbitration in the access to hardware shared resources is fundamental to obtain low worst-case execution time (WCET) estimates in the context of critical real-time systems, for which performance guarantees are essential. Several hardware mechanisms exist for managing arbitration in those resources (buses, memory controllers, etc.). They typically attain fairness in terms of the number of slots each contender (e.g., core) gets granted access to the shared resource. However, those policies may lead to unfair bandwidth allocations for workloads with contenders issuing short requests and contenders issuing long requests. We propose a Credit-Based Arbitration (CBA) mechanism that achieves fairness in the cycles each core is granted access to the resource rather than in the number of granted slots. Furthermore, we implement CBA as part of a LEON3 4-core processor for the Space domain in an FPGA proving the feasibility and good performance characteristics of the design by comparing it against other arbitration schemes.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundaci´on la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Dynamic software randomisation: Lessons learnec from an aerospace case study

    Get PDF
    Timing Validation and Verification (V&V) is an important step in real-time system design, in which a system's timing behaviour is assessed via Worst Case Execution Time (WCET) estimation and scheduling analysis. For WCET estimation, measurement-based timing analysis (MBTA) techniques are widely-used and well-established in industrial environments. However, the advent of complex processors makes it more difficult for the user to provide evidence that the software is tested under stress conditions representative of those at system operation. Measurement-Based Probabilistic Timing Analysis (MBPTA) is a variant of MBTA followed by the PROXIMA European Project that facilitates formulating this representativeness argument. MBPTA requires certain properties to be applicable, which can be obtained by selectively injecting randomisation in platform's timing behaviour via hardware or software means. In this paper, we assess the effectiveness of the PROXIMA's dynamic software randomisation (DSR) with a space industrial case study executed on a real unmodified hardware platform and an industrial operating system. We present the challenges faced in its development, in order to achieve MBPTA compliance and the lessons learned from this process. Our results, obtained using a commercial timing analysis tool, indicate that DSR does not impact the average performance of the application, while it enables the use of MBPTA. This results in tighter pWCET estimates compared to current industrial practice.The research leading to these results has received funding from the European Community’s FP7 [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    On the use of probabilistic worst-case execution time estimation for parallel applications in high performance systems

    Get PDF
    Some high performance computing (HPC) applications exhibit increasing real-time requirements, which call for effective means to predict their high execution times distribution. This is a new challenge for HPC applications but a well-known problem for real-time embedded applications where solutions already exist, although they target low-performance systems running single-threaded applications. In this paper, we show how some performance validation and measurement-based practices for real-time execution time prediction can be leveraged in the context of HPC applications on high-performance platforms, thus enabling reliable means to obtain real-time guarantees for those applications. In particular, the proposed methodology uses coordinately techniques that randomly explore potential timing behavior of the application together with Extreme Value Theory (EVT) to predict rare (and high) execution times to, eventually, derive probabilistic Worst-Case Execution Time (pWCET) curves. We demonstrate the effectiveness of this approach for an acoustic wave inversion application used for geophysical explorationThis research was funded by the Horizon 2020 Framework Programme, grant number 801137, project RECIPEPeer ReviewedPostprint (published version

    IEC-61508 SIL 3 compliant pseudo-random number generators for probabilistic timing analysis

    No full text
    Probabilistic Timing Analysis (PTA), especially its measurement based variant (MBPTA), has shown to be competitive with state-of-the-art timing analysis techniques. The use of MBPTA to analyse the timing behaviour of safety-critical systems rests on its ability to derive trustworthy WCET bounds. This ability depends on the soundness of the MBPTA method per se, as well as on the satisfaction of safety requirements placed on the pseudo-random number generator (prng) that plays a key role in the platform-level randomisation needed by MBPTA. This paper presents the design of a low-area, low-power prng that meets IEC-61508 SIL 3 safety requirements and allows for seamless integration in a real-world multicore architecture. This work enables the development and the IEC-61508 certification of mixed-criticality systems that use MBPTA for deriving timing bounds for mixed-criticality software programs running on multicore processors

    Development and certification of mixed-criticality embedded systems based on probabilistic timing analysis

    Get PDF
    An increasing variety of emerging systems relentlessly replaces or augments the functionality of mechanical subsystems with embedded electronics. For quantity, complexity, and use, the safety of such subsystems is an increasingly important matter. Accordingly, those systems are subject to safety certification to demonstrate system's safety by rigorous development processes and hardware/software constraints. The massive augment in embedded processors' complexity renders the arduous certification task significantly harder to achieve. The focus of this thesis is to address the certification challenges in multicore architectures: despite their potential to integrate several applications on a single platform, their inherent complexity imperils their timing predictability and certification. Recently, the Measurement-Based Probabilistic Timing Analysis (MBPTA) technique emerged as an alternative to deal with hardware/software complexity. The innovation that MBPTA brings about is, however, a major step from current certification procedures and standards. The particular contributions of this Thesis include: (i) the definition of certification arguments for mixed-criticality integration upon multicore processors. In particular we propose a set of safety mechanisms and procedures as required to comply with functional safety standards. For timing predictability, (ii) we present a quantitative approach to assess the likelihood of execution-time exceedance events with respect to the risk reduction requirements on safety standards. To this end, we build upon the MBPTA approach and we present the design of a safety-related source of randomization (SoR), that plays a key role in the platform-level randomization needed by MBPTA. And (iii) we evaluate current certification guidance with respect to emerging high performance design trends like caches. Overall, this Thesis pushes the certification limits in the use of multicore and MBPTA technology in Critical Real-Time Embedded Systems (CRTES) and paves the way towards their adoption in industry.Una creciente variedad de sistemas emergentes reemplazan o aumentan la funcionalidad de subsistemas mecánicos con componentes electrónicos embebidos. El aumento en la cantidad y complejidad de dichos subsistemas electrónicos así como su cometido, hacen de su seguridad una cuestión de creciente importancia. Tanto es así que la comercialización de estos sistemas críticos está sujeta a rigurosos procesos de certificación donde se garantiza la seguridad del sistema mediante estrictas restricciones en el proceso de desarrollo y diseño de su hardware y software. Esta tesis trata de abordar los nuevos retos y dificultades dadas por la introducción de procesadores multi-núcleo en dichos sistemas críticos: aunque su mayor rendimiento despierta el interés de la industria para integrar múltiples aplicaciones en una sola plataforma, suponen una mayor complejidad. Su arquitectura desafía su análisis temporal mediante los métodos tradicionales y, asimismo, su certificación es cada vez más compleja y costosa. Con el fin de lidiar con estas limitaciones, recientemente se ha desarrollado una novedosa técnica de análisis temporal probabilístico basado en medidas (MBPTA). La innovación de esta técnica, sin embargo, supone un gran cambio cultural respecto a los estándares y procedimientos tradicionales de certificación. En esta línea, las contribuciones de esta tesis están agrupadas en tres ejes principales: (i) definición de argumentos de seguridad para la certificación de aplicaciones de criticidad-mixta sobre plataformas multi-núcleo. Se definen, en particular, mecanismos de seguridad, técnicas de diagnóstico y reacción de faltas acorde con el estándar IEC 61508 sobre una arquitectura multi-núcleo de referencia. Respecto al análisis temporal, (ii) presentamos la cuantificación de la probabilidad de exceder un límite temporal y su relación con los requisitos de reducción de riesgos derivados de los estándares de seguridad funcional. Con este fin, nos basamos en la técnica MBPTA y presentamos el diseño de una fuente de números aleatorios segura; un componente clave para conseguir las propiedades aleatorias requeridas por MBPTA a nivel de plataforma. Por último, (iii) extrapolamos las guías actuales para la certificación de arquitecturas multi-núcleo a una solución comercial de 8 núcleos y las evaluamos con respecto a las tendencias emergentes de diseño de alto rendimiento (caches). Con estas contribuciones, esta tesis trata de abordar los retos que el uso de procesadores multi-núcleo y MBPTA implican en el proceso de certificación de sistemas críticos de tiempo real y facilita, de esta forma, su adopción por la industria.Postprint (published version

    Static Probabilistic Timing Analysis for Real-Time Embedded Systems in Presence of Faults

    Get PDF
    RÉSUMÉ Une mémoire cache est le lien entre le processeur et la mémoire principale. Elle permet de réduire considérablement les temps d’accès aux blocs de mémoire dans un système embarqué temps-réel et critique (CRTES), ce qui influence énormément son comportement temporel. Des caches à accès aléatoire—caches avec une politique de remplacement aléatoire—ont été proposées dans le but d’améliorer les estimations du comportement temporel des CRTES, et cela en diminuant les cas pathologiques. Les Measurement Based Probabilistic Timing Analysis (MBPTA) et Static Probabilistic Timing Analysis (SPTA) sont deux méthodes qui ciblent à estimer le pire temps d’exécution (Worst Case Execution Time probabiliste - pWCET) d’une façon probabiliste et sécuritaire pour les caches aléatoires. À travers cette dissertation, on présente des travaux de recherche concernant l’estimation temporelle basée sur la méthode SPTA. L’état de l’art sur les méthodologies SPTA fournissent des estimations sécuritaires et strictes. En revanche, au vu de la réduction d’échelle des technologies des semiconducteurs utilisés pour la mise en oeuvre des composants faisant partie des CRETS, les caches sur puce sont de plus en plus prédisposés aux pannes. Par conséquent, nous avons développé des méthodologies SPTA pour l’estimation des pWCETs en présence de pannes. Nous avons effectué également des évaluations de l’impact de ces fautes sur les comportements temporels. Afin d’examiner les pannes, nous avons modélisé dans un premier temps les pannes transitoires et permanentes. Une panne transitoire représente un changement d’état temporaire. Le système peut ainsi être restauré en utilisant des techniques de détection et de correction des pannes. D’un autre côté, une panne permanente introduit un changement permanent. Elle persiste après son apparition et affecte en conséquence le comportement général du système. Nous avons alors proposé une méthode basée sur les chaînes de Markov afin de modéliser les états de disposition de la mémoire. Pour chaque accès à un bloc de mémoire, le changement de l’état est calculé en utilisant une matrice de transition, tout en tenant compte des impacts des fautes transitoires. Nous avons également utilisé différents types de modèles de la chaîne de Markov pour représenter le système ayant subi un nombres différent de pannes permanentes. Les expériences montrent que notre méthode SPTA assure des résultats précis en présence des pannes transitoires et permanentes.----------ABSTRACT : A cache is typically the bridge between a processor and its main memory. It significantly reduces the access latencies to memory blocks and its timing behavior. Random caches—caches with a random replacement policy—have been proposed to improve timing behavior estimates in critical real-time embedded systems (CRTESs) by reducing pathological cases due to systematic cache misses. Measurement Based Probabilistic Timing Analysis (MBPTA)and Static Probabilistic Timing Analysis (SPTA) aim at providing safe probabilistic Worst Case Execution Time (pWCET) estimates for random caches. In this dissertation, we present research work on timing estimation based on SPTA. State-of-the-art SPTA methodologies produce safe and tight pWCET estimates. However, as semiconductor technology scales down, CRTES components—especially their on-chip caches—become prone to faults. Consequently,we developed SPTA methodologies to estimate pWCETs in the presence of faults, and evaluated the impacts of faults on timing behaviors. To investigate faults, we first defined transient and permanent fault models. A transient fault represents a temporary change of state. The system with transient faults can be recovered using fault detection and correction techniques. A permanent fault represents a permanent change of state. It persists after its occurrence and affects the system’s behavior afterwards. Additionally, we proposed a Markov chain method to model memory layout states. For each memory block access, the state changes are calculated using a transition matrix. The transient fault impacts were integrated into the transition matrix computation, and we used different groups of Markov chain models to represent the system with different number of permanent faults. Experiments showed that our SPTA method provided accurate results in the presence of both transient and permanent faults

    Enabling caches in probabilistic timing analysis

    Get PDF
    Hardware and software complexity of future critical real-time systems challenges the scalability of traditional timing analysis methods. Measurement-Based Probabilistic Timing Analysis (MBPTA) has recently emerged as an industrially-viable alternative technique to deal with complex hardware/software. Yet, MBPTA requires certain timing properties in the system under analysis that are not satisfied in conventional systems. In this thesis, we introduce, for the first time, hardware and software solutions to satisfy those requirements as well as to improve MBPTA applicability. We focus on one of the hardware resources with highest impact on both average performance and Worst-Case Execution Time (WCET) in current real-time platforms, the cache. In this line, the contributions of this thesis follow three different axes: hardware solutions and software solutions to enable MBPTA, and MBPTA analysis enhancements in systems featuring caches. At hardware level, we set the foundations of MBPTA-compliant processor designs, and define efficient time-randomised cache designs for single- and multi-level hierarchies of arbitrary complexity, including unified caches, which can be time-analysed for the first time. We propose three new software randomisation approaches (one dynamic and two static variants) to control, in an MBPTA-compliant manner, the cache jitter in Commercial off-the-shelf (COTS) processors in real-time systems. To that end, all variants randomly vary the location of programs' code and data in memory across runs, to achieve probabilistic timing properties similar to those achieved with customised hardware cache designs. We propose a novel method to estimate the WCET of a program using MBPTA, without requiring the end-user to identify worst-case paths and inputs, improving its applicability in industry. We also introduce Probabilistic Timing Composability, which allows Integrated Systems to reduce their WCET in the presence of time-randomised caches. With the above contributions, this thesis pushes the limits in the use of complex real-time embedded processor designs equipped with caches and paves the way towards the industrialisation of MBPTA technology.La complejidad de hardware y software de los sistemas críticos del futuro desafía la escalabilidad de los métodos tradicionales de análisis temporal. El análisis temporal probabilístico basado en medidas (MBPTA) ha aparecido últimamente como una solución viable alternativa para la industria, para manejar hardware/software complejo. Sin embargo, MBPTA requiere ciertas propiedades de tiempo en el sistema bajo análisis que no satisfacen los sistemas convencionales. En esta tesis introducimos, por primera vez, soluciones hardware y software para satisfacer estos requisitos como también mejorar la aplicabilidad de MBPTA. Nos centramos en uno de los recursos hardware con el máximo impacto en el rendimiento medio y el peor caso del tiempo de ejecución (WCET) en plataformas actuales de tiempo real, la cache. En esta línea, las contribuciones de esta tesis siguen 3 ejes distintos: soluciones hardware y soluciones software para habilitar MBPTA, y mejoras de el análisis MBPTA en sistemas usado caches. A nivel de hardware, creamos las bases del diseño de un procesador compatible con MBPTA, y definimos diseños de cache con tiempo aleatorio para jerarquías de memoria con uno y múltiples niveles de cualquier complejidad, incluso caches unificadas, las cuales pueden ser analizadas temporalmente por primera vez. Proponemos tres nuevos enfoques de aleatorización de software (uno dinámico y dos variedades estáticas) para manejar, en una manera compatible con MBPTA, la variabilidad del tiempo (jitter) de la cache en procesadores comerciales comunes en el mercado (COTS) en sistemas de tiempo real. Por eso, todas nuestras propuestas varían aleatoriamente la posición del código y de los datos del programa en la memoria entre ejecuciones del mismo, para conseguir propiedades de tiempo aleatorias, similares a las logradas con diseños hardware personalizados. Proponemos un nuevo método para estimar el WCET de un programa usando MBPTA, sin requerir que el usuario dentifique los caminos y las entradas de programa del peor caso, mejorando así la aplicabilidad de MBPTA en la industria. Además, introducimos la composabilidad de tiempo probabilística, que permite a los sistemas integrados reducir su WCET cuando usan caches de tiempo aleatorio. Con estas contribuciones, esta tesis empuja los limites en el uso de diseños complejos de procesadores empotrados en sistemas de tiempo real equipados con caches y prepara el terreno para la industrialización de la tecnología MBPTA
    corecore