Design and Implementation of a Fair Credit-Based
Bandwidth Sharing Scheme for Buses

Miladen Slijepcevich!, Carles Hernandez!, Jaume Abellaf, Francisco J. Cazorla®*
HUniversitat Politecnica de Catalunya (UPC), Spain
tBarcelona Supercomputing Center (BSC), Spain
*Spanish National Research Council (IIIA-CSIC), Spain

Abstract—Fair arbitration in the access to hardware shared
resources is fundamental to obtain low worst-case execution time
(WCET) estimates in the context of critical real-time systems, for
which performance guarantees are essential. Several hardware
mechanisms exist for managing arbitration in those resources
(buses, memory controllers, etc.). They typically attain fairness
in terms of the number of slots each contender (e.g., core)
gets granted access to the shared resource. However, those
policies may lead to unfair bandwidth allocations for workloads
with contenders issuing short requests and contenders issuing
long requests. We propose a Credit-Based Arbitration (CBA)
mechanism that achieves fairness in the cycles each core is
granted access to the resource rather than in the number of
granted slots. Furthermore, we implement CBA as part of a
LEON3 4-core processor for the Space domain in an FPGA
proving the feasibility and good performance characteristics of
the design by comparing it against other arbitration schemes.

I. INTRODUCTION

Across domains such as space and automotive, perfor-
mance demands of critical real-time embedded systems have
steadily grown over time. This is due to the increase in the
number and complexity of functions carried out by those
systems. For instance, autonomous driving and unmanned
vehicles in the automotive and avionics domain respectively
need orders of magnitude higher performance than that deliv-
ered by simple single-core microcontrollers [10]. To respond
to these demands, real-time industry is assessing the use
of multicores comprising multi-level cache hierarchies and
relatively powerful cores. These features, however, challenge
functional and timing verification as required in critical real-
time embedded systems. For the latter — the focus of this paper
— complex hardware designs challenge the mandatory step of
deriving worst-case execution time (WCET) bounds required
for scheduling real-time tasks.

In particular, multicore contention has been shown to be a
key performance limiter for real-time functions when hardware
is not designed properly and/or timing analysis is unable to
account for its impact reliably and tightly [14]. Given that in
these domains, industry has just started using multicores, core
counts are in many cases limited to up to four or eight. In this
scenario shared buses have been shown to be effective to cope
with the bandwidth requirements1 [21]. Several arbitration
policies have been proposed to control the access to the shared
bus and other resources. Among those, we find round-robin,
FIFO, TDMA, lottery, and random permutations [12], [13],
[15], [17]. All those policies have been shown to provide a high
degree of fairness across cores in terms of number of requests
(slots) granted. However, whenever requests from different
cores have different duration, fairness is lost since cores with
larger requests enjoy most of the bandwidth to the detriment
of cores with shorter requests. For instance, let us assume two
cores that are granted access to a resource alternatively, with

'In high core-count multicores with shared L2, a NoC is a better solution
as communication means [22].

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

one of them having 5-cycle requests and the other 45-cycle
requests. The first core uses 10% of the bandwidth and the
latter 90%, despite receiving the same number of slots.

In this paper we tackle this issue by proposing a credit-
based arbitration (CBA) policy that implements a credit-based
flow-control mechanism [4], [16] to balance shared resource
utilization by tracking how long each contender has used the
shared resource. CBA provides each contender with a time
budget that is decreased by the amount of time the shared
resource is used and recovered slowly later to ensure that no
contender (core) overuses the shared resource. In this way,
those cores issuing short requests are granted access more often
than those issuing long requests, thus achieving bandwidth
fairness. Moreover, we implement CBA in a 4-core LEON3
processor for the Space domain in a FPGA prototype, proving
that CBA has affordable implementation costs and achieves
the performance required. We focus on measurement-based
timing analysis since it is the dominant industrial practice in
these domains [2], [18], [23]. In particular we show that CBA
is compatible with Measurement-Based Probabilistic Timing
Analysis (MBPTA) [6], which targets complex processors.

II. BACKGROUND ON ARBITRATION POLICIES

Arbitration policies are used to grant access to shared
resources when there are several requestors. For multicores
with cores connected to L2, memory and/or I/O with buses,
fairness is required across different cores to access the bus and
so the other hardware shared resources. Many policies exist for
that purpose, but only some of them have been shown to be
amenable for critical real-time systems where WCET needs to
be tightly and reliably estimated for scheduling purposes.

In general, priorities cannot be used for arbitration if all
cores need to run real-time tasks [19], since cores with high
priority can potentially issue requests uninterruptedly thus
preventing the other cores with lower priorities to access the
bus. Instead, policies such as FIFO, round-robin, and TDMA
ensure that all cores will be granted access to the shared
resource eventually and simplify WCET estimation. For a
detailed comparison of those policies we refer the interested
reader to the work in [12]. In general, FIFO, round-robin and
TDMA can be regarded as fair w.r.t. the number of requests,
but not w.r.t. the duration of those requests. For instance, let
us assume a scenario where all cores issue requests constantly
to the shared bus. In the case of FIFO and round-robin, the
different cores will access the bus alternatively keeping it
fully utilized. In the case of TDMA, time is typically split
across cores homogeneously and it is also common using
time slots whose duration matches the longest duration of
any request [12]. Since the duration of a request is unknown
a priori (i.e. whether it will hit/miss in L2, whether it will
produce a dirty line eviction in L2, etc.), TDMA typically
allows requests to be issued only during the first cycle of
the slot for each core. Allowing a request whose duration
is unknown to be issued at any other time could prevent

requests from other cores being issued at their expected time
— negatively impacting the derivation of WCET estimates.
Therefore, in our scenario where all cores issue requests
constantly, cores will be granted access to the bus alternatively,
but leaving the bus idle whenever a request takes less than the
maximum latency.

Other policies such as lottery [17] and random permuta-
tions [13] have been shown to be also compatible with proba-
bilistic timing analysis and, in particular, with MBPTA. Those
policies assign the grant randomly with different constraints
with the aim of making the worst case being closer to the
average case and thus, improving WCET estimates. In our
particular example, with a fully congested bus, in the long run
under these policies bus bandwidth is homogeneously shared
among cores in terms of number of requests, as it is the case
for FIFO, round-robin and TDMA.

Overall, existing policies share the common characteristic
that under high congestion, they balance the number of slots,
i.e. how many times each core is granted access to the bus,
however they neglect how long each core uses the bus.

Ilustrative Example. We illustrate this phenomena with
focus on our target hardware platform, in which we implement
of CBA. In particular a 4-core processor deploying a bus to
connect cores with the partitioned L2 cache and the memory
system and in which requests hold the bus until it is fully
served, i.e it is a non-split bus. In this setup, let us assume
that the task under analysis issues frequent requests that access
the L2 cache with a total turnaround latency of 6 cycles once
granted access to the bus. On the other hand, tasks in the
other cores are streaming applications issuing constantly read
requests to memory that take 28 cycles. Under this setup
the bus would be fully saturated by any of the tasks. When
consolidating the 4 tasks in the 4 cores so that all of them
run simultaneously, any request-fair arbitration policy will lead
to a situation where roughly 25% of the requests in the bus
belong to each of the cores. Hence, each 6-cycle request of
the task under analysis will have to wait for around 28x3=84
cycles to be granted access to the bus. If the task under
analysis runs for 10,000 cycles in isolation out of which
6,000 cycles are spent accessing the bus (1,000 requests),
its execution time with contention will be easily close to
(10,000 — 6,000) + 1,000 x (6 + 84) = 94,000. In other
words, in a 4-core processor this task can experience a 9.4x
slowdown. The high slowdown breaks the common wisdom
that the expected slowdown due to contention would be up
to 4x when consolidating in a multicore 4 tasks that fully
utilize a shared resource each one in isolation. This is so
because inappropriate design choices may lead to performance
issues such as those related to short requests competing with
long request, as already shown in some processors [9]. Thus,
specific arbitration policies that fairly share bandwidth in terms
of time rather than in terms of requests are needed. We propose
CBA to cover this gap.

Instead, if a cycle-fair arbitration is used, execution time
would be (10,000 — 6,000) + 1,000 x (6 + 18) = 28,000,
so a 2.8x slowdown. While such slowdown is still high, it is
expected when tasks saturating a given resource in isolation
are consolidated together in the multicore: given N cores, the
slowdown should be at most N times.

ITII. CREDIT-BASED ARBITRATION
CBA builds upon three principles. First requests will be
eventually granted access regardless of their duration, as long
as a maximum duration exists and its latency is known (or can
be upperbounded). We define this maximum duration (or its
upperbound) as MaxL. Second, requests will be eventually
granted access regardless of the core they belong. And third,

bandwidth is fairly distributed across contenders in terms of
cycle counts rather than in terms of request counts.

In practice, this is achieved by allocating each core a
given credit (budget) matching MazL. Then, arbitration is
performed across all cores with pending requests and an
available budget of exactly MaxL cycles. When a request is
granted access to the bus, the budget of the corresponding core
is decreased by the bus hold time. For instance, this can be
implemented decreasing by 1 the budget of the core using the
bus. Further, every cycle all cores get their budget increased
as shown in Equation 1:

Budget;(t + 1) = min(Budget;(t) + 1/N, MaxL) (1)

where Budget;(t) stands for the budget of core i at cycle
t and N stands for the number of cores. Note that budget
saturates at MaxL to prevent the case in which one core
spends long time not using the bus and then it tries to hog the
bus during a long period. Otherwise, the effective bandwidth
enjoyed by one task would depend on the shared resource
utilization performed by previously executed tasks in all cores,
which could lead to any arbitrary budget imbalance. Instead,
with our approach we only need to collect measurements
at analysis time making the task under analysis (TuA) start
with zero budget. Also note that, although conceptually the
budget is increased by a fraction, this can be implemented by
multiplying all factors in Equation 1 by V. In that case, when
using the bus, the budget should also be decreased by N every
cycle instead of by 1.

A. Arbitration Choices

CBA acts as a filter to determine the pending requests
that are eligible to be arbitrated: only those whose core has
MaxL budget can be arbitrated. Then, any arbitration policy
can be applied. For MBPTA, the the particular timing analysis
considered in this paper, several arbitration policies have
been shown to be compatible: round-robin, lottery, random
permutations [13] and TDMA [8].

With CBA, heterogeneous arbitration across different cores,
i.e. granting higher bandwidth to one core than others, can be
achieved in several ways: (1) by allowing the budget of a given
core grow above MaxL or (2) by increasing the budget of all
cores (in total) by 1 every cycle but in a heterogeneous way.
For instance, in the former case we could allow the budget of
core 1 grow to up to 2- Max L, and in the latter case we could
make bandwidth grow by 1/2 for core 1 and by 1/6 for each
of the other 3 cores in a 4-core processor. Each approach has
its own pros and cons. For instance, letting the budget grow
above MaxL allows requests from one core to be issued back-
to-back, which is good for this core but creates some temporal
starvation to the others.

B. WCET Estimation

MBPTA relies on measurements probabilistically capturing
the worst execution conditions that can arise during system
operation. As it has been shown in other works in the context
of buses or more complex NoCs [13], [22], for the intercon-
nection network this worst-case operation-time conditions can
be reproduced by collecting execution times of the TuA under
maximum contention scenarios. In our case this can be done
enforcing the following conditions: first, contending cores are
assumed to always have a request ready to compete with the
TuA, but new requests are created only if the TuA has a
request ready; and second, contending requests always take
the maximum latency, MaxL.

The first condition creates the highest contention since the
requests of the TuA always find the maximum number of

TABLE 1. SUMMARY OF SIGNALS

Every cycle When using bus
[BUDG; min(BUDG, + 1,228) BUDG; —4
WCET mode Operation mode
COM P — —
COMP2 34| BUDG; == 228 N REQ1 == 1
REQ1 when request ready when request ready
REQ2.3,4 1 when request ready

contenders ready. Note that by not creating requests when the
TuA has no pending requests, contenders are more likely to
have all their budget available by the time the TuA generates
a new request. In other words, contenders only consume
their budget when their requests compete against those of
the TuA. The second condition relates to the fact that, when
competing, requests from contenders are greedy creating the
highest contention as soon as possible. This holds under the
premise that the impact of contention in execution time is the
same for different requests of the TuA, which is often the case
in simple in-order processors such as those used for critical
real-time functions [5]. Hence, if at some point contenders
do not have enough budget to create contention for a given
request of the TuA, it can only be because that budget was used
creating contention for an earlier request of the TuA. Finally,
as stated before, measurements for the TuA are collected under
worst conditions which implies setting its initial budget to zero,
thus delaying the most the issuing of the first request of the
TuA. By that time all contenders will also have all their budget
available to compete with the TuA.

C. Implementation

Assessing implementation complexity and overheads is
fundamental for industrial adoption. We have implemented
CBA in an FPGA design of a 4-core LEON3 processor used in
the Space domain [11]. In particular, we have integrated CBA
with random permutations arbitration since it has been shown
to be a MBPTA-compliant efficient policy [13].

Our target processor implements a non-split AMBA
bus [1]. MazL is 56 cycles since this is the longest duration of
arequest (see Section IV). It is worth noting that, despite buses
with split transactions have more homogeneous request sizes,
the worst-case situation, having very long and very short re-
quests, is possible since atomic operations by definition cannot
be split. We have implemented CBA as a part of the AMBA
bus arbiter and connected it to the APRANDBANK module
that delivers random bits every cycle for random choices
of the random permutations arbitration [3], [11]. Arbitration
decisions are performed in one clock cycle.

Next we describe the signals used, which are conveniently
summarized in Table I. For each core the arbiter has an 8-
bit budget counter (BUDG;) that saturates at 228 (56x4).
Every cycle all BUDG,; saturated counters are incremented
by 1. Also, every cycle the core using the bus (if any) gets its
BUDG; counter decreased by 4. Our implementation allows
configuring the platform as either WCET estimation mode (for
analysis) or operation mode. During WCET estimation mode
the request (REQ);) signals of cores 2, 3 and 4 are always
set. Each of those cores has also a compete (COM P;) bit.
The COMP; bit is set when BUDG,; is 228 (so MaxL)
and REQ); is set, thus meaning that the TuA, which runs in
core 1, has a request ready. COM P; is reset whenever core
1 is granted access to the bus. Also, during WCET estimation
mode cores 2, 3 and 4 keep the bus busy during 56 cycles
when granted access.

During operation mode, RE(Q); signals are only activated
when the corresponding core has a request ready and COM P;
signals are always set, thus not making requests wait for

Normalised Average Execution Time

canrdr matrix tblook

cacheb

H RP-ISO

Fig. 1. Slowdown with and without CBA for EEMBC on the FPGA multicore.
ISO stands for isolation and CON for maximum contention.

CBA-ISO mH-CBA-ISO mRP-CON m CBA-CON H-CBA-CON

requests in core 1.

IV. EVALUATION
In this section we present the evaluation framework and
some results comparing CBA vs no-CBA in the context of a
bus implementing random permutations arbitration and using
MBPTA to derive the WCET.

A. Experimental Framework

We use a 4-core processor setup with each core hav-
ing private L1 data and instruction caches. The L2 cache
is shared among cores. Each core implements a pipelined
in-order SparcV8 LEON3 processor. Caches implement
random-placement and random-replacement caches to facil-
itate MBPTA application [11]. Data L1 cache implements
write-through policy, whereas L2 cache implements write-
back policy. Cores are connected to a shared (partitioned) L2
cache through an AMBA bus [1]. L2 cache is connected to
a memory controller that serves as bridge to DRAM DDR2
memory. We use random permutations policy to take arbitra-
tion decisions [13]. This architecture has been prototyped in
an ALTERA TerasIC DE4 FPGA.

Bus transactions take between 5 cycles for L2 read cache
hit and 56 cycles. Memory latency is 28 cycles and the
longest requests may produce 2 memory accesses, €.g. atomic
operations produce a read and a write operation and L2 cache
misses evicting a dirty line produce one access to write dirty
data back to memory and another to fetch requested data.

Results on the FPGA have been obtained for the EEMBC
Autobench suite [20], that reflects current real-world demand
of some critical real-time functionalities.

B. Results

We run EEMBC benchmarks under 3 different bus configu-
rations, all based on random permutations as arbitration policy.
Those configurations include the baseline random-permutation
bus (RP), the credit-based one (CBA), and a heterogeneous
implementation of the CBA (H-CBA) where the TuA gets
50% of the bandwidth. The TuA is run under each of these 3
configurations in isolation and maximum contention scenarios.

Since the bus performance strongly depends on the number
of bus accesses performed, for each benchmark we show aver-
age execution time results for 1,000 runs of each configuration.
Having a significant number of runs is important to carry out
a fair quantification of bus performance since in our platform
cache behavior and bus arbitration are randomized.

Results under contention: Figure 1 shows per-benchmark
slowdown results, i.e. performance normalized to the result
obtained for RP in isolation. As shown, with EEMBC slow-
downs are below 4x. This is so because in general real-time
workloads such as EEMBC automotive do not saturate the bus.
Yet, we can see that when CBA is not in place, slowdowns
are high under maximum contention (3.34X for matrix).

When CBA is used, execution times of tasks under maximum
contention are much lower suffering in the worst case a
2.34X slowdown. We have also evaluated a configuration in
which the TuA receives more bandwidth than its contenders
(H-CBA). In particular, each cycle the TuA recovers 1/2
cycles of budget and each other core only 1/6 cycles. This
virtually allocates 50% of the bandwidth to the core where
the TuA runs. As shown in the Figure, H-CBA reduces the
maximum slowdown experienced across benchmarks, thus
showing the effectiveness of CBA also with heterogeneous
bandwidth allocation. However, this solution is better suited
to applications with heterogeneous bandwidth requirements
like those found is the space domain [7]. Since EEMBCs
do not have significant bandwidth requirements we do not
always get significant performance improvements and using
CBA configuration would worsen the performance of any task
running in the other cores.

Results in Isolation. Another important effect we can
observe is the impact that CBA arbitration has in the execution
time of tasks in isolation. Given that under CBA a core is
not granted access to the bus until it has enough budget, the
execution of a task can get stalled. However, as we can see
in Figure 1, this effect is not very important and its impact
depends on how often a program has a request ready before
having recovered its budget. In fact, we observe that CBA
increases only the execution time by 3% on average w.r.t.
the RP bus in isolation. Moreover, when H-CBA is deployed,
the impact is negligible being very close to the RP bus on
average. Note that, for tblook we observe slightly better
performance with CBA in isolation than with RP arbitration
and worse performance with contention with CBA than with
RP. We have investigated these scenarios and verified that
two conditions concur in this case: (1) tblook is almost
insensitive to the potential delays created by CBA since its
bus requests barely occur consecutively in time; and (2)
tblook is highly sensitive to the particular (random) cache
placements experienced in the experiments. For cache sensitive
applications like tblook cache placements influence notably
average execution times depending on whether “bad” cache
placements occur more or less often. While this may have
an effect on average performance, it does not affect WCET
estimates since MBPTA builds upon EVT, which keeps only
the group of high execution times to predict the WCET.

Implementation Overheads. Hardware overheads of CBA
can be regarded as negligible. In particular, the processor
model has been synthesized at 100MHz - the maximum
reachable frequency for our multicore processor in the TerasIC
board — with and without CBA. Also, the FPGA occupancy
without CBA is 73% and it has grown by far less than 0.1%
to implement CBA. Hence, our arbitration policy is simple
enough to be implemented in real designs.

V. CONCLUSIONS

Critical real-time embedded systems need to build upon
multicores to reach the level of performance required for in-
creasingly complex functionalities. However, existing policies
to arbitrate the access to hardware shared resources focus
mostly on achieving fairness in terms of request counts rather
than in terms of time. This leads to severe slowdowns for tasks
issuing frequent-but-short requests to shared resources.

In this paper we propose an credit-based arbitration (CBA)
policy that allows a fair sharing of hardware resources by
balancing the true utilization of those resources. Moreover,
we show that implementation costs of CBA are affordable
by implementing it in a Space multicore prototyped in a
FPGA. Our results show that the maximum slowdown roughly
matches the core count — as one would expect — when all

tasks saturate the shared resource, which compares to existing
policies whose slowdown is virtually unbounded.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under the PROXIMA Project
(www.proxima-project.eu), grant agreement no 611085. This
work has also been partially supported by the Spanish Ministry
of Science and Innovation under grant TIN2015-65316-P and
the HIPEAC Network of Excellence. Mladen Slijepcevic is
funded by the Obra Social Fundacion la Caixa under grant
Doctorado “la Caixa” - Severo Ochoa. Carles Herndndez
is jointly funded by the Spanish Ministry of Economy and
Competitiveness (MINECO) and FEDER funds through grant
TIN2014-60404-JIN. Jaume Abella has been partially sup-
ported by the MINECO under Ramon y Cajal postdoctoral
fellowship number RYC-2013-14717.

REFERENCES

[11 AMBA Bus Specification. http://'www.arm.com/products/system-
ip/amba/amba-open-specifications.php.

[2] J. Abella et al. WCET analysis methods: Pitfalls and challenges on
their trustworthiness. In SIES, 2015.

[3] I. Agirre et al. IEC-61508 SIL 3-compliant pseudo-random number
generators for probabilistic timing analysis. In DSD, 2015.

[4] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-
time scheduling using credit-controlled static-priority arbitration. In
2008 14th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 3—14, Aug 2008.

[5] Cobham Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-
NGMP-DRAFT - Data Sheet and Users Manual, 2011.

[6] L. Cucu-Grosjean et al. Measurement-based probabilistic timing anal-
ysis for multi-path programs. In ECRTS, 2012.

[7]1 Javier Jalle et al. A dual-criticality memory controller (demc): Proposal
and evaluation of a space case study. In Real-Time Systems Sympo-
sium,RTSS, 2014.

[8] Milos Panic et al. Enabling TDMA arbitration in the context of MBPTA.
In 2015 Euromicro DSD, 2015.

[9] M. Fernandez et al. Assessing the suitability of the ngmp multi-core
processor in the space domain. In EMSOFT, 2012.

[10] E. Francis. Autonomous cars: no longer just science fiction. Automotive
Industries, 193, 2014.

[11] C. Hernandez et al. Towards making a LEON3 multicore compatible
with probabilistic timing analysis. In DASIA, 2015.

[12] J. Jalle et al. Deconstructing bus access control policies for real-time
multicores. In SIES, 2013.

[13] J. Jalle et al. Bus designs for time-probabilistic multicore processors.
In DATE, 2014.

[14] Ahmed Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr,
editors. Proceedings of the 12th International Conference on Embedded
Software, EMSOFT 2012, part of the Eighth Embedded Systems Week,
ESWeek 2012, Tampere, Finland, October 7-12, 2012. ACM, 2012.

[15] T. Kelter et al. Static analysis of multi-core TDMA resource arbitration
delays. Real-Time Systems, 50(2):185-229, 2014.

[16] H. T. Kung, Trevor Blackwell, and Alan Chapman. Credit-based flow
control for atm networks: Credit update protocol, adaptive credit allo-
cation and statistical multiplexing. In Proceedings of the Conference on
Communications Architectures, Protocols and Applications, SIGCOMM
94, pages 101-114, New York, NY, USA, 1994. ACM.

[17] K. Lahiri et al. LOTTERYBUS: a new high-performance communica-
tion architecture for system-on-chip designs. In DAC, 2001.

[18] E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis.
In WCET Workshop, 2011.

[19] M. Paolieri et al. Hardware support for WCET analysis of hard real-
time multicore systems. In ISCA, 2009.

[20] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[21] E. Salminen et al. Benchmarking mesh and hierarchical bus networks
in system-on-chip context. J. Syst. Archit., 53(8), August 2007.

[22] M. Slijepcevic et al. pTNoC: Probabilistically time-analyzable tree-
based noc for mixed-criticality systems. In DSD, 2016.

[23] R. Wilhelm et al. The worst-case execution-time problem overview
of methods and survey of tools. ACM Transactions on Embedded
Computing Systems, 7:1-53, May 2008.

