96 research outputs found

    On Content-centric Wireless Delivery Networks

    Full text link
    The flux of social media and the convenience of mobile connectivity has created a mobile data phenomenon that is expected to overwhelm the mobile cellular networks in the foreseeable future. Despite the advent of 4G/LTE, the growth rate of wireless data has far exceeded the capacity increase of the mobile networks. A fundamentally new design paradigm is required to tackle the ever-growing wireless data challenge. In this article, we investigate the problem of massive content delivery over wireless networks and present a systematic view on content-centric network design and its underlying challenges. Towards this end, we first review some of the recent advancements in Information Centric Networking (ICN) which provides the basis on how media contents can be labeled, distributed, and placed across the networks. We then formulate the content delivery task into a content rate maximization problem over a share wireless channel, which, contrasting the conventional wisdom that attempts to increase the bit-rate of a unicast system, maximizes the content delivery capability with a fixed amount of wireless resources. This conceptually simple change enables us to exploit the "content diversity" and the "network diversity" by leveraging the abundant computation sources (through application-layer encoding, pushing and caching, etc.) within the existing wireless networks. A network architecture that enables wireless network crowdsourcing for content delivery is then described, followed by an exemplary campus wireless network that encompasses the above concepts.Comment: 20 pages, 7 figures,accepted by IEEE Wireless Communications,Sept.201

    Energy-efficient caching for Video-on-Demand in Fixed-Mobile Convergent networks

    Get PDF
    The success of novel bandwidth-consuming multimedia services such as Video-on-Demand (VoD) is leading to a tremendous growth of the Internet traffic. Content caching can help to mitigate such uncontrolled growth by storing video content closer to the users in core, metro and access network nodes. So far, metro and especially access networks supporting mobile and fixed users have evolved independently, leveraging logically (and often also physically) separate infrastructures; this means that mobile users cannot access caches placed in the fixed access network (and vice-versa), even if they are geographically close to them, and energy consumption implications of such undesired effect must be investigated. We define an optimization problem modeling an energy-efficient placement of caches in core, metro and fixed/mobile access nodes of the network. Then, we show how the evolution towards a Fixed-Mobile Converged metro/access network, where fixed and mobile users can share caches, can reduce the energy consumed for VoD content delivery

    Beyond 5G Networks: Integration of Communication, Computing, Caching, and Control

    Get PDF
    In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.Comment: This article has been accepted for inclusion in a future issue of China Communications Journal in IEEE Xplor

    Quality-driven management of video streaming services in segment-based cache networks

    Get PDF

    Recent advances in information-centric networking based internet of things (ICN-IoT)

    Get PDF
    Information-Centric Networking (ICN) is being realized as a promising approach to accomplish the shortcomings of current IP-address based networking. ICN models are based on naming the content to get rid of address-space scarcity, accessing the content via name-based-routing, caching the content at intermediate nodes to provide reliable, efficient data delivery and self-certifying contents to ensure better security. Obvious benefits of ICN in terms of fast and efficient data delivery and improved reliability raises ICN as highly promising networking model for Internet of Things (IoTs) like environments. IoT aims to connect anyone and/or anything at any time by any path on any place. From last decade, IoTs attracts both industry and research communities. IoTs is an emerging research field and still in its infancy. Thus, this paper presents the potential of ICN for IoTs by providing state-of-the-art literature survey. We discuss briefly the feasibility of ICN features and their models (and architectures) in the context of IoT. Subsequently, we present a comprehensive survey on ICN based caching, naming, security and mobility approaches for IoTs with appropriate classification. Furthermore, we present operating systems (OS) and simulation tools for ICN-IoT. Finally, we provide important research challenges and issues faced by ICN for IoTs

    5G Security Challenges and Solutions: A Review by OSI Layers

    Get PDF
    The Fifth Generation of Communication Networks (5G) envisions a broader range of servicescompared to previous generations, supporting an increased number of use cases and applications. Thebroader application domain leads to increase in consumer use and, in turn, increased hacker activity. Dueto this chain of events, strong and efficient security measures are required to create a secure and trustedenvironment for users. In this paper, we provide an objective overview of5G security issues and theexisting and newly proposed technologies designed to secure the5G environment. We categorize securitytechnologies usingOpen Systems Interconnection (OSI)layers and, for each layer, we discuss vulnerabilities,threats, security solutions, challenges, gaps and open research issues. While we discuss all sevenOSIlayers, the most interesting findings are in layer one, the physical layer. In fact, compared to other layers,the physical layer between the base stations and users’ device presents increased opportunities for attackssuch as eavesdropping and data fabrication. However, no singleOSI layer can stand on its own to provideproper security. All layers in the5G must work together, providing their own unique technology in an effortto ensure security and integrity for5G data
    • …
    corecore