10,755 research outputs found

    Networks of Gene Regulation, Neural Development and the Evolution of General Capabilities, Such as Human Empathy

    Get PDF
    A network of gene regulation organized in a hierarchical and combinatorial manner is crucially involved in the development of the neural network, and has to be considered one of the main substrates of genetic change in its evolution. Though qualitative features may emerge by way of the accumulation of rather unspecific quantitative changes, it is reasonable to assume that at least in some cases specific combinations of regulatory parts of the genome initiated new directions of evolution, leading to novel capabilities of the brain. These notions are applied, in this paper, to the evolution of the capability of cognition-based human empa­thy. It is suggested that it has evolved as a secondary effect of the evolution of strategic thought. Development of strategies depends on abstract representations of one’s own pos­sible future states in one’s own brain to allow assessment of their emotional desirability, but also on the representation and emotional evaluation of possible states of others, allowing anticipation of their behaviour. This is best achieved if representations of others are con­nected to one’s own emotional centres in a manner similar to self-representations. For this reason, the evolution of the human brain is assumed to have established representations with such linkages. No group selection is involved, because the quality of strategic thought affects the fitness of the individual. A secondary effect of this linkage is that both the actual states and the future perspectives of others elicit vicarious emotions, which may contribute to the motivations of altruistic behaviour

    Environmental and genetic influences on neurocognitive development: the importance of multiple methodologies and time-dependent intervention

    Get PDF
    Genetic mutations and environmental factors dynamically influence gene expression and developmental trajectories at the neural, cognitive, and behavioral levels. The examples in this article cover different periods of neurocognitive development—early childhood, adolescence, and adulthood—and focus on studies in which researchers have used a variety of methodologies to illustrate the early effects of socioeconomic status and stress on brain function, as well as how allelic differences explain why some individuals respond to intervention and others do not. These studies highlight how similar behaviors can be driven by different underlying neural processes and show how a neurocomputational model of early development can account for neurodevelopmental syndromes, such as autism spectrum disorders, with novel implications for intervention. Finally, these studies illustrate the importance of the timing of environmental and genetic factors on development, consistent with our view that phenotypes are emergent, not predetermined

    Assumption 0 analysis: comparative phylogenetic studies in the age of complexity

    Get PDF
    Darwin's panoramic view of biology encompassed two metaphors: the phylogenetic tree, pointing to relatively linear (and divergent) complexity, and the tangled bank, pointing to reticulated (and convergent) complexity. The emergence of phylogenetic systematics half a century ago made it possible to investigate linear complexity in biology. Assumption 0, first proposed in 1986, is not needed for cases of simple evolutionary patterns, but must be invoked when there are complex evolutionary patterns whose hallmark is reticulated relationships. A corollary of Assumption 0, the duplication convention, was proposed in 1990, permitting standard phylogenetic systematic ontology to be used in discovering reticulated evolutionary histories. In 2004, a new algorithm, phylogenetic analysis for comparing trees (PACT), was developed specifically for use in analyses invoking Assumption 0. PACT can help discern complex evolutionary explanations for historical biogeographical, coevolutionary, phylogenetic, and tokogenetic processe

    Protein Import Into Chloroplasts: An Ever-Evolving Story

    Get PDF
    Chloroplasts are but one type of a diverse group of essential organelles that distinguish plant cells and house many critical biochemical pathways, including photosynthesis. The biogenesis of plastids is essential to plant growth and development and relies on the targeting and import of thousands of nuclear-encoded proteins from the cytoplasm. The import of the vast majority of these proteins is dependent on translocons located in the outer and inner envelope membranes of the chloroplast, termed the Toc and Tic complexes, respectively. The core components of the Toc and Tic complexes have been identified within the last 12 years; however, the precise functions of many components are still being elucidated, and new components are still being identified. In Arabidopsis thaliana (and other species), many of the components are encoded by more than one gene, and it apperas that the isoforms differentially associate with structurally distinct import complexes. Furthermore, it appears that these complexes represent functionally distinct targeting pathways, and the regulation of import by these separate pathways may play a role in the differentiation and specific functions of distinct plastid types during plant growth and development. This review summarizes these recent discoveries and emphasizes the mechanisms of differential Toc complex assembly and substrate recognition

    Extended Inclusive Fitness Theory bridges Economics and Biology through a common understanding of Social Synergy

    Full text link
    Inclusive Fitness Theory (IFT) was proposed half a century ago by W.D. Hamilton to explain the emergence and maintenance of cooperation between individuals that allows the existence of society. Contemporary evolutionary ecology identified several factors that increase inclusive fitness, in addition to kin-selection, such as assortation or homophily, and social synergies triggered by cooperation. Here we propose an Extend Inclusive Fitness Theory (EIFT) that includes in the fitness calculation all direct and indirect benefits an agent obtains by its own actions, and through interactions with kin and with genetically unrelated individuals. This formulation focuses on the sustainable cost/benefit threshold ratio of cooperation and on the probability of agents sharing mutually compatible memes or genes. This broader description of the nature of social dynamics allows to compare the evolution of cooperation among kin and non-kin, intra- and inter-specific cooperation, co-evolution, the emergence of symbioses, of social synergies, and the emergence of division of labor. EIFT promotes interdisciplinary cross fertilization of ideas by allowing to describe the role for division of labor in the emergence of social synergies, providing an integrated framework for the study of both, biological evolution of social behavior and economic market dynamics.Comment: Bioeconomics, Synergy, Complexit

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    Ageing as a price of cooperation and complexity: Self-organization of complex systems causes the ageing of constituent networks

    Get PDF
    The analysis of network topology and dynamics is increasingly used for the description of the structure, function and evolution of complex systems. Here we summarize key aspects of the evolvability and robustness of the hierarchical network-set of macromolecules, cells, organisms, and ecosystems. Listing the costs and benefits of cooperation as a necessary behaviour to build this network hierarchy, we outline the major hypothesis of the paper: the emergence of hierarchical complexity needs cooperation leading to the ageing of the constituent networks. Local cooperation in a stable environment may lead to over-optimization developing an ‘always-old’ network, which ages slowly, and dies in an apoptosis-like process. Global cooperation by exploring a rapidly changing environment may cause an occasional over-perturbation exhausting system-resources, causing rapid degradation, ageing and death of an otherwise ‘forever-young’ network in a necrosis-like process. Giving a number of examples we explain how local and global cooperation can both evoke and help successful ageing. Finally, we show how various forms of cooperation and consequent ageing emerge as key elements in all major steps of evolution from the formation of protocells to the establishment of the globalized, modern human society. Thus, ageing emerges as a price of complexity, which is going hand-in-hand with cooperation enhancing each other in a successful community

    Maintenance of host specialisation gradients in ectomycorrhizal symbionts

    Get PDF
    Many fungi that form ectomycorrhizas exhibit a degree of host specialisation, and individual trees are frequently colonised by communities of mycorrhizal fungi comprising species that fall on a gradient of specialisation along genetic, functional and taxonomic axes of variation. By contrast, arbuscular mycorrhizal fungi exhibit little specialisation. Here, we propose that host tree root morphology is a key factor that gives host plants fine-scale control over colonisation and therefore opportunities for driving specialisation and speciation of ectomycorrhizal fungi. A gradient in host specialisation is likely driven by four proximate mechanistic ‘filters’ comprising partner availability, signalling recognition, competition for colonisation, and symbiotic function (trade, rewards and sanctions), and the spatially restricted colonisation seen in heterorhizic roots enables these mechanisms, especially symbiotic function, to be more effective in driving the evolution of specialisation. We encourage manipulation experiments that integrate molecular genetics and isotope tracers to test these mechanisms, alongside mathematical simulations of eco-evolutionary dynamics in mycorrhizal symbioses.</p

    Functional genomics of parental care of insects

    Get PDF

    The role of cooperation in bacterial ecology and evolution

    Get PDF
    Bacteria can perform a range of cooperative behaviours, yet the significance of these cooperative behaviours in bacterial ecology and evolution is a burgeoning research area. In this thesis, I use a comparative genomics approach to elucidate the impact of cooperation on bacterial ecological and evolutionary processes. Specifically, I: (i) probe the effects of cooperation on the evolution of bacterial niche breadth; (ii) investigate the relationship between horizontal gene transfer and bacterial cooperation, with a specific emphasis on the interplay between gene connectivity and sociality in determining gene transfer potential. Additionally, I expand the scope by examining how ecological determinants and genomic characteristics shape the evolution of bacterial growth rates. In summary, this thesis offers novel perspectives on bacterial ecology and evolution through the lens of bacterial cooperation
    corecore