43 research outputs found

    Performance study of synthetic AER generation on CPUs for Real-Time Video based on Spikes

    Get PDF
    Address-Event-Representation (AER) is a neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. Previous work presented several software methods for converting digital frames into AER format. Those methods were not feasible for real-time conversion those days because the processor performance was insufficient. Nowadays, Multi-core processor architectures and cache hierarchies have evolved and the performance is much better than Pentium 4 Mobile of those years. In this paper we study frame-to-AER methods for realtime video applications (40ms per frame) using modern processor architectures, compilers, and processors oriented for stand-alone applications (mini-PC processors

    Static Partitioning vs Dynamic Sharing of Resources in Simultaneous MultiThreading Microarchitectures

    Full text link
    Simultaneous MultiThreading (SMT) achieves better system resource utilization and higher performance because it exploits Thread-Level Parallelism (TLP) in addition to "conventional" Instruction-Level Parallelism (ILP). Theoretically, system resources in every pipeline stage of an SMT microarchitecture can be dynamically shared. However, in commercial applications, all the major queues are statically partitioned. From an implementation point of view, static partitioning of resources is easier to implement and has a lower hardware overhead and power consumption. In this paper, we strive to quantitatively determine the trade-off between static partitioning and dynamic sharing. We find that static partitioning of either the instruction fetch queue (IFQ) or the reorder buffer (ROB) is not sufficient if implemented alone (3% and 9% performance decrease respectively in the worst case comparing with dynamic sharing), while statically partitioning both the IFQ and the ROB could achieve an average performance gain of 9% at least, and even reach 148% when running with floating-point benchmarks, when compared with dynamic sharing. We varied the number of functional units in our efforts to isolate the reason for this performance improvement. We found that static partitioning both queues outperformed all the other partitioning mechanisms under the same system configuration. This demonstrates that the performance gain has been achieved by moving from dynamic sharing to static partitioning of the system resources

    Efficient resources assignment schemes for clustered multithreaded processors

    Get PDF
    New feature sizes provide larger number of transistors per chip that architects could use in order to further exploit instruction level parallelism. However, these technologies bring also new challenges that complicate conventional monolithic processor designs. On the one hand, exploiting instruction level parallelism is leading us to diminishing returns and therefore exploiting other sources of parallelism like thread level parallelism is needed in order to keep raising performance with a reasonable hardware complexity. On the other hand, clustering architectures have been widely studied in order to reduce the inherent complexity of current monolithic processors. This paper studies the synergies and trade-offs between two concepts, clustering and simultaneous multithreading (SMT), in order to understand the reasons why conventional SMT resource assignment schemes are not so effective in clustered processors. These trade-offs are used to propose a novel resource assignment scheme that gets and average speed up of 17.6% versus Icount improving fairness in 24%.Peer ReviewedPostprint (published version

    LATE Ain'T Earley: A Faster Parallel Earley Parser

    Full text link
    We present the LATE algorithm, an asynchronous variant of the Earley algorithm for parsing context-free grammars. The Earley algorithm is naturally task-based, but is difficult to parallelize because of dependencies between the tasks. We present the LATE algorithm, which uses additional data structures to maintain information about the state of the parse so that work items may be processed in any order. This property allows the LATE algorithm to be sped up using task parallelism. We show that the LATE algorithm can achieve a 120x speedup over the Earley algorithm on a natural language task

    A Survey of Microarchitectural Timing Attacks and Countermeasures on Contemporary Hardware

    Get PDF
    Microarchitectural timing channels expose hidden hardware states though timing. We survey recent attacks that exploit microarchitectural features in shared hardware, especially as they are relevant for cloud computing. We classify types of attacks according to a taxonomy of the shared resources leveraged for such attacks. Moreover, we take a detailed look at attacks used against shared caches. We survey existing countermeasures. We finally discuss trends in attacks, challenges to combating them, and future directions, especially with respect to hardware support

    Specognitor: Identifying Spectre Vulnerabilities via Prediction-Aware Symbolic Execution

    Full text link
    Spectre attacks exploit speculative execution to leak sensitive information. In the last few years, a number of static side-channel detectors have been proposed to detect cache leakage in the presence of speculative execution. However, these techniques either ignore branch prediction mechanism, detect static pre-defined patterns which is not suitable for detecting new patterns, or lead to false negatives. In this paper, we illustrate the weakness of prediction-agnostic state-of-the-art approaches. We propose Specognitor, a novel prediction-aware symbolic execution engine to soundly explore program paths and detect subtle spectre variant 1 and variant 2 vulnerabilities. We propose a dynamic pattern detection mechanism to account for both existing and future vulnerabilities. Our experimental results show the effectiveness and efficiency of Specognitor in analyzing real-world cryptographic programs w.r.t. different processor families

    Hardware-Assisted Dependable Systems

    Get PDF
    Unpredictable hardware faults and software bugs lead to application crashes, incorrect computations, unavailability of internet services, data losses, malfunctioning components, and consequently financial losses or even death of people. In particular, faults in microprocessors (CPUs) and memory corruption bugs are among the major unresolved issues of today. CPU faults may result in benign crashes and, more problematically, in silent data corruptions that can lead to catastrophic consequences, silently propagating from component to component and finally shutting down the whole system. Similarly, memory corruption bugs (memory-safety vulnerabilities) may result in a benign application crash but may also be exploited by a malicious hacker to gain control over the system or leak confidential data. Both these classes of errors are notoriously hard to detect and tolerate. Usual mitigation strategy is to apply ad-hoc local patches: checksums to protect specific computations against hardware faults and bug fixes to protect programs against known vulnerabilities. This strategy is unsatisfactory since it is prone to errors, requires significant manual effort, and protects only against anticipated faults. On the other extreme, Byzantine Fault Tolerance solutions defend against all kinds of hardware and software errors, but are inadequately expensive in terms of resources and performance overhead. In this thesis, we examine and propose five techniques to protect against hardware CPU faults and software memory-corruption bugs. All these techniques are hardware-assisted: they use recent advancements in CPU designs and modern CPU extensions. Three of these techniques target hardware CPU faults and rely on specific CPU features: ∆-encoding efficiently utilizes instruction-level parallelism of modern CPUs, Elzar re-purposes Intel AVX extensions, and HAFT builds on Intel TSX instructions. The rest two target software bugs: SGXBounds detects vulnerabilities inside Intel SGX enclaves, and “MPX Explained” analyzes the recent Intel MPX extension to protect against buffer overflow bugs. Our techniques achieve three goals: transparency, practicality, and efficiency. All our systems are implemented as compiler passes which transparently harden unmodified applications against hardware faults and software bugs. They are practical since they rely on commodity CPUs and require no specialized hardware or operating system support. Finally, they are efficient because they use hardware assistance in the form of CPU extensions to lower performance overhead
    corecore