5 research outputs found

    DALF: An AI Enabled Adversarial Framework for Classification of Hyperspectral Images

    Get PDF
    Hyperspectral image classification is very complex and challenging process. However, with deep neural networks like Convolutional Neural Networks (CNN) with explicit dimensionality reduction, the capability of classifier is greatly increased. However, there is still problem with sufficient training samples. In this paper, we overcome this problem by proposing an Artificial Intelligence (AI) based framework named Deep Adversarial Learning Framework (DALF) that exploits deep autoencoder for dimensionality reduction, Generative Adversarial Network (GAN) for generating new Hyperspectral Imaging (HSI) samples that are to be verified by a discriminator in a non-cooperative game setting besides using aclassifier. Convolutional Neural Network (CNN) is used for both generator and discriminator while classifier role is played by Support Vector Machine (SVM) and Neural Network (NN). An algorithm named Generative Model based Hybrid Approach for HSI Classification (GMHA-HSIC) which drives the functionality of the proposed framework is proposed. The success of DALF in accurate classification is largely dependent on the synthesis and labelling of spectra on regular basis. The synthetic samples made with an iterative process and being verified by discriminator result in useful spectra. By training GAN with associated deep learning models, the framework leverages classification performance. Our experimental results revealed that the proposed framework has potential to improve the state of the art besides having an effective data augmentation strategy

    A Comprehensive Literature Review on Convolutional Neural Networks

    Get PDF
    The fields of computer vision and image processing from their initial days have been dealing with the problems of visual recognition. Convolutional Neural Networks (CNNs) in machine learning are deep architectures built as feed-forward neural networks or perceptrons, which are inspired by the research done in the fields of visual analysis by the visual cortex of mammals like cats. This work gives a detailed analysis of CNNs for the computer vision tasks, natural language processing, fundamental sciences and engineering problems along with other miscellaneous tasks. The general CNN structure along with its mathematical intuition and working, a brief critical commentary on the advantages and disadvantages, which leads researchers to search for alternatives to CNN’s are also mentioned. The paper also serves as an appreciation of the brain-child of past researchers for the existence of such a fecund architecture for handling multidimensional data and approaches to improve their performance further

    Hyperspectral Image Super-Resolution via Dual-domain Network Based on Hybrid Convolution

    Full text link
    Since the number of incident energies is limited, it is difficult to directly acquire hyperspectral images (HSI) with high spatial resolution. Considering the high dimensionality and correlation of HSI, super-resolution (SR) of HSI remains a challenge in the absence of auxiliary high-resolution images. Furthermore, it is very important to extract the spatial features effectively and make full use of the spectral information. This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet). Specifically, a dual-domain network is designed to fully exploit the spatial-spectral and frequency information among the hyper-spectral data. To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain. Meanwhile the pyramid structure is applied to increase the acceptance field of attention, which further reinforces the feature representation ability of the network. Moreover, to further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain. The dynamic weighting mechanism drives the network to gradually refine the generated frequency and excessive smoothing caused by spatial loss. Finally, In order to better fully obtain the mapping relationship between high-resolution space and low-resolution space, a hybrid module of 2D and 3D units with progressive upsampling strategy is utilized in our method. Experiments on a widely used benchmark dataset illustrate that the proposed SRDNet method enhances the texture information of HSI and is superior to state-of-the-art methods

    Research on Multimodal Fusion Recognition Method of Upper Limb Motion Patterns

    Get PDF
    In order to solve the problems of single movement pattern recognition information and low recognition accuracy of multijoint upper limb exoskeleton rehabilitation training, a multimodal information fusion method with human surface electromyography (sEMG) and electrocardiogram (ECG) was proposed, and an Inception-Sim model for upper limb motion pattern recognition was designed. Integrating the advantages of multimodal information, inspired by the convolutional neural network processing image classification problem, the original signal was converted into a Gramian angular summation/difference fields-histogram of oriented gradient (GASF/GADF-HOG) image based on the principle of Grameen angle superposition/difference field, and the directional gradient histogram feature of the GASF/GADF image was extracted. The Inception-Sim model was constructed based on the Inception V3 model, and the human motion pattern recognition was completed on the basis of the transfer learning network. VGG16, ResNet-50, and other backbone networks were selected as comparison models. The recognition accuracy of each motion pattern for all participants reaches up to 90%, which is better than that of the control model. The average iteration speed of the proposed Inception-Sim model improved by about 21% compared to the control model. The experimental results show that the proposed multimodal information fusion recognition method can improve the accuracy and iteration speed of the upper limb motion recognition mode and then improve the effect of upper limb rehabilitation training
    corecore