398 research outputs found

    Quantitative Ink Analysis: Estimating the Number of Inks in Documents through Hyperspectral Imaging

    Full text link
    In the field of document forensics, ink analysis plays a crucial role in determining the authenticity of legal and historic documents and detecting forgery. Visual examination alone is insufficient for distinguishing visually similar inks, necessitating the use of advanced scientific techniques. This paper proposes an ink analysis technique based on hyperspectral imaging, which enables the examination of documents in hundreds of narrowly spaced spectral bands, revealing hidden details. The main objective of this study is to identify the number of distinct inks used in a document. Three clustering algorithms, namely k-means, Agglomerative, and c-means, are employed to estimate the number of inks present. The methodology involves data extraction, ink pixel segmentation, and ink number determination. The results demonstrate the effectiveness of the proposed technique in identifying ink clusters and distinguishing between different inks. The analysis of a hyperspectral cube dataset reveals variations in spectral reflectance across different bands and distinct spectral responses among the 12 lines, indicating the presence of multiple inks. The clustering algorithms successfully identify ink clusters, with k-means clustering showing superior classification performance. These findings contribute to the development of reliable methodologies for ink analysis using hyperspectral imaging, enhancing th

    Spoilage Detection in Raspberry Fruit Based on Spectral Imaging Using Convolutional Neural Networks

    Get PDF
    Effective spoilage detection of perishable food items like fruits and vegetables is essential for retailers who stock and sell large quantities of these items. This research is aimed at developing a non-destructive, rapid and accurate method which is based on Spectral Imaging (SI) used in tandem with Convolutional Neural Network (CNN) to predict whether the fruit is fresh or rotten. The study also aims to determine the number of days before which the fruit rots. This research employs a primary, quantitative and inductive methods to investigate the Deep Learning based approach to detect fruit spoilage. Raspberry fruit in particular has been chosen for the experiment. Baskets of raspberries from three different stores were bought and stored in the refrigerator at four-degree Celsius. Images of these baskets was captured on a daily basis using an RGB digital camera until all the baskets of fruits were rotten. The study employs a Supervised learning-based classification approach where-by the data is labelled based on the physical appearance of fruits in the basket. The results show that a Spectral imaging technique used along with a CNN yields a good accuracy of 86% with the F1 score of 0.82 to classify the fruits as Good or Bad but does not fare well in estimating the number of days before the fruit actually rots. The ability of CNN to process and identify patterns in a SI to detect spoilage in fruits would help fruit retail operators to optimize their business chain

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    Service robotics and machine learning for close-range remote sensing

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Web-Based Face Recognition using Line Edge Detection and Euclidean Distance Method

    Get PDF
    A face recognition system is to perform a match face image using the face extraction method. There are many applications used in various algorithms and implemented in many programming languages, but still difficult to implement on web-based applications using the PHP programming language. The purpose of this research is to produce a website-based application focused on the face recognition section. The author will limit the system only to detect the front view of the face, the main goal is to get a fairly high level of accuracy. There will be a feature to find where the face is located. The research method used is a laboratory experiment where the search system scheme based on face recognition will produce the appearance of several faces that have the closest Euclidean distance values from grades 1st to 5th. The results from the comparison of the test image with the training image based on Line Edge Detection and Euclidean Distance calculation concluded that the system can be implemented in searching of similarity and recognizing the face

    Hyperspectral Imaging from Ground Based Mobile Platforms and Applications in Precision Agriculture

    Get PDF
    This thesis focuses on the use of line scanning hyperspectral sensors on mobile ground based platforms and applying them to agricultural applications. First this work deals with the geometric and radiometric calibration and correction of acquired hyperspectral data. When operating at low altitudes, changing lighting conditions are common and inevitable, complicating the retrieval of a surface's reflectance, which is solely a function of its physical structure and chemical composition. Therefore, this thesis contributes the evaluation of an approach to compensate for changes in illumination and obtain reflectance that is less labour intensive than traditional empirical methods. Convenient field protocols are produced that only require a representative set of illumination and reflectance spectral samples. In addition, a method for determining a line scanning camera's rigid 6 degree of freedom (DOF) offset and uncertainty with respect to a navigation system is developed, enabling accurate georegistration and sensor fusion. The thesis then applies the data captured from the platform to two different agricultural applications. The first is a self-supervised weed detection framework that allows training of a per-pixel classifier using hyperspectral data without manual labelling. The experiments support the effectiveness of the framework, rivalling classifiers trained on hand labelled training data. Then the thesis demonstrates the mapping of mango maturity using hyperspectral data on an orchard wide scale using efficient image scanning techniques, which is a world first result. A novel classification, regression and mapping pipeline is proposed to generate per tree mango maturity averages. The results confirm that maturity prediction in mango orchards is possible in natural daylight using a hyperspectral camera, despite complex micro-illumination-climates under the canopy

    Parallel Nonnegative Matrix Factorization Algorithms for Hyperspectral Images

    Get PDF
    Hyperspectral imaging is a branch of remote sensing which deals with creating and processing aerial or satellite pictures that capture wide range of wavelengths, most of which are invisible to the naked eye. Hyperspectral images are composed of many bands, each corresponding to certain light frequencies. Because of their complex nature, image processing tasks such as feature extraction can be resource and time consuming. There are many unsupervised extraction methods available. A recently investigated one is Nonnegative Matrix Factorization (NMF), a method that given positive linear matrix of positive sources, attempts to recover them. In this thesis we designed, implemented and tested parallel versions of two popular iterative NMF algorithms: one based on multiplicative updates, and another on alternative gradient computation. Our algorithms are designed to leverage the multi-processor SMP architecture and power of threading to evenly distribute the workload among the available CPU’s and improve the performance as compared to their sequential counterparts. This work could be used as a basis for creating even more powerful distributed algorithms that would work on clustered architectures. The experiments show a speedup in both algorithms without reduction in accuracy. In addition, we have also developed a java based framework offering reading and writing tools for various hyperspectral image types, as well as visualization tools, and a graphical user interface to launch and control the factorization processes

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Washington University Record, December 15, 2000

    Get PDF
    https://digitalcommons.wustl.edu/record/1882/thumbnail.jp
    • …
    corecore