
Montclair State University Montclair State University

Montclair State University Digital Montclair State University Digital

Commons Commons

Theses, Dissertations and Culminating Projects

5-2007

Parallel Nonnegative Matrix Factorization Algorithms for Parallel Nonnegative Matrix Factorization Algorithms for

Hyperspectral Images Hyperspectral Images

Lukasz Grzegorz Maciak

Follow this and additional works at: https://digitalcommons.montclair.edu/etd

 Part of the Computer Sciences Commons

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F1197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.montclair.edu%2Fetd%2F1197&utm_medium=PDF&utm_campaign=PDFCoverPages

P ara lle l N onnegative M atrix F ac to riza tion
A lgorithm s for H y p ersp ec tra l Im ages

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Masters in Computer Science

by

Lukasz Grzegorz Maciak

Montclair State University

Montclair, NJ

2007

A bstract

Hyperspectral imaging is a branch of remote sensing which deals with creating
and processing aerial or satellite pictures that capture wide range of wavelengths,
most of which are invisible to the naked eye. Hyperspectral images are composed of
many bands, each corresponding to certain light frequencies. Because of their complex
nature, image processing tasks such as feature extraction can be resource and time
consuming. There are many unsupervised extraction methods available. A recently
investigated one is Nonnegative Matrix Factorization (NMF), a method that given
positive linear matrix of positive sources, attempts to recover them. In this thesis
we designed, implemented and tested parallel versions of two popular iterative NMF
algorithms: one based on multiplicative updates, and another on alternative gradient
computation.

Our algorithms are designed to leverage the multi-processor SMP architecture and
power of threading to evenly distribute the workload among the available CPU’s and
improve the performance as compared to their sequential counterparts. This work
could be used as a basis for creating even more powerful distributed algorithms that
would work on clustered architectures. The experiments show a speedup in both
algorithms without reduction in accuracy.

In addition, we have also developed a java based framework offering reading and
writing tools for various hyperspectral image types, as well as visualization tools, and
a graphical user interface to launch and control the factorization processes.

MONTCLAIR STATE UNIVERSITY

Parallel Nonnegative Matrix Factorization Algorithms for
Hyperspectral Images

by
Lukasz Grzegorz Maciak

A Master’s Thesis Submitted to the Faculty of

Montclair State University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Computer Science

May, 2007

College of Science and Mathematics Thesis Committee:

Department of Computer Science
Thesis Sponsor: Dr. Stefan A. Robila

ngel Gutierrez

mmittee Member: Dr. John Jenq

Department (Chair: Dr. Dorothy Deremer

Copyright © 2007 by Lukasz Grzegorz Maciak. All rights reserved.

Acknowledgments

The completion of this thesis would not be possible if it was not for the help and
support of the Computer Science Department faculty and staff. I would like to ex
press my deepest thanks to all the people who helped and supported me or somehow
contributed to this thesis.

I would like to extend special thanks to:

Dr. Stefan Robila, my thesis adviser, for always being supportive and accommodat
ing and ready to answer all my questions.

Dr. Deremer for continuous support throughout my graduate career.

Dr. Gutierez and Dr. Jenq who graciously agreed to be my thesis committee.

Dr. Koeller who introduced me to LaTex and made the process of writing and com
piling the thesis much easier.

Beverly Macaluso for help and assistance with all the clerical and administrative mat
ters during my graduate studies.

All the Computer Science faculty members who kept me motivated and helped me to
succeed over the years.

Work on this project has been supported by equipment awarded under the Sun Mi
crosystems Academic Exellence Grant #EDUD-7824-060154-US, Stefan Robila PI.

n

Contents

A cknow ledgm ents ii

List o f F igures vii

List o f Tables viii

1 In trod u ction 1
1.1 Remote Sensing and Hyperspectral D a t a .. 3
1.2 Challenges in Hyperspectral Data Processing.. 4

1.2.1 Visualization .. 5
1.2.2 I/O and Encoding ... 7

1.3 Feature E x tra c tio n ... 9
1.3.1 Dimensionality R ed u c tio n .. 9
1.3.2 Linear Mixing Model (LMM) .. 10
1.3.3 Supervised Feature Extraction.. 12
1.3.4 Unsupervised Feature E x tra c tio n .. 13

2 N on n egative M atrix Factorization M eth od s 15
2.1 Nonnegative Matrix Factorization (NM F).. 15

2.1.1 NMF: General Problem Description... 15
2.1.2 Applying NMF to Hyperspectral D a t a 18
2.1.3 Standard Iterative NMF A lgorithm ... 19
2.1.4 Projected Gradient NMF (PG -N M F).. 21
2.1.5 Other NMF A pproaches... 25

2.1.5.1 Stochastic NMF (S-N M F)... 25
2.1.5.2 Multilayer NMF .. 26
2.1.5.3 PG-NMF with Initial Newton S te p 27

2.1.6 Convergence C rite ria .. 28
2.2 Other M e th o d s ... 30

2.2.1 Principal Component Analysis.. 31
2.2.2 Independent Component A nalysis.. 33
2.2.3 Linear Mixing Model and PCA/ICA Feature Extraction . . . 34

iii

3 Parallel A pproaches and N M F A lgorithm s 36
3.1 Different Parallel Approaches .. 36

3.1.1 The Need for Parallel Implementation of N M F 36
3.1.2 Overview of Parallel Architectures.. 37

3.2 Data D istribution.. 39
3.2.1 Evaluation Criteria: S p e e d u p .. 40

3.3 Previous E fforts... 41
3.4 Parallel NMF Algorithms.. 42

3.4.1 Implementation Details.. 42
3.4.2 Parallel Nonnegative Matrix Factorization (P-NM F)............... 43
3.4.3 Parallel Projected Gradient Nonnegative Matrix Factorization

(PPG-NM F)... 46

4 E xperim en ta l R esu lts 50
4.1 Experimental Data S e t ... 50
4.2 Testing Platform and Machine L im itations... 53
4.3 Testing Procedure.. 54
4.4 Results... 54

4.4.1 P-NMF ... 55
4.4.2 PPG-NM F.. 60
4.4.3 Discussion of R esu lts .. 66

5 Java B ased H ypersp ectra l Im age P rocessin g T oolkit 67
5.1 Introduction... 67
5.2 Data Structures and Representation... 68
5.3 Designing a Graphical User Interface . .. 69

5.3.1 Choosing a Widget Toolkit.. 69
5.3.2 GUI Overview.. 71
5.3.3 Visualization of Hyperspectral D a ta ... 75
5.3.4 Starting the GUI Interface.. 77

5.4 Handling I / O .. 77
5.4.1 Unified Framework for Handling Different Hyperspectral Data

T y p e s .. 78
5.4.2 Big Endian/Little Endian Conversion.. 79

5.5 Command Line User In terface.. 81

6 C onclusions and Future W ork 84

B ib liography 85

A p p en d ices 90

A Source C ode 91
A.l D ocum entation.. 92
A.2 Compiling the Code.. 92
A.3 Running The C o d e .. 93

IV

A.4 Extending the Toolkit .. 93
A.4.1 Adding new Reader or Writer C lass.. 93
A.4.2 Adding new Factorization A lgorithm ... 93
A.4.3 Adding new DataBuffer .. 94

A.5 Known Is s u e s .. 94

v

List of Figures

1.1 Conceptual Model of a Hyperspectral Im a g e ... 5
1.2 Visualization of a Hyperspectral Im a g e ... 6
1.3 Different Encoding M ethods.. 8
1.4 Reduction of Data Dimensionality.. 10
1.5 Linear Mixing M o d e l.. 11

2.1 Visual Example of Non Negative Matrix Factorization......................... 16
2.2 Nonnegative Matrix Factorization.. 18
2.3 Hyperspectral Data and N M F .. 19
2.4 NMF Algorithm... 20
2.5 PG-NMF A lg o rith m .. 24
2.6 Sample Graph of f(W ,H).. 29

3.1 Data Distribution in P-N M F.. 43
3.2 Diagram of P-NMF with 4 T h read s ... 45
3.3 PPG-NMF Diagram .. 49

4.1 Experimental D a t a ... 51
4.2 HYDICE Data Sample with the panels hilighted................................... 51
4.3 Abundance Graphs for different materials present in HYDICE sample 52
4.4 Abundance Graphs for different materials present in SOC700 sample 53
4.5 Accuracy Graph for P-NMF applied to the HYDICE data sample . . 56
4.6 Accuracy Graph for P-NMF applied to the SOC 700 data sample . . 56
4.7 Average Execution Time for P-NMF applied to the HYDICE data sample 57
4.8 Average Execution Time for P-NMF applied to the SOC 700 data sample 57
4.9 Average Time per Iteration for P-NMF applied to the HYDICE data

sam ple .. 58
4.10 Average Time per Iteration for P-NMF applied to the SOC 700 data

sam ple .. 58
4.11 Average Speedup for P-NMF applied to the HYDICE data sample . . 59
4.12 Average Speedup for P-NMF applied to the SOC 700 data sample . . 59
4.13 Accuracy Graph for PPG-NMF applied to the HYDICE data sample 61
4.14 Average Execution Time PPG-NMF applied to the HYDICE data sample 61
4.15 Average Execution Time per Iteration PPG-NMF applied to the HY

DICE data s a m p le ... 62

vi

4.16 Speedup for PPG-NMF applied to the HYDICE data sam ple............ 62
4.17 Accuracy Graph for PPG-NMF applied to the SOC 700 sample . . . 63
4.18 Average Execution Time for PPG-NMF applied to the SOC 700 sample 63
4.19 Average Execution Time per Iteration for PPG-NMF applied to the

SOC 700 sample... 64
4.20 Speedup for PPG-NMF applied to the SOC 700 sam ple..................... 64
4.21 Rounds Per Iteration in PPG-NMF (SOC 700 sample) 65

5.1 HyperJ GUI: Main W in d o w .. 72
5.2 HyperJ GUI: Open File Dialog .. 72
5.3 HyperJ GUI: Open File Dialog D e ta ils .. 73
5.4 HyperJ GUI: Image Toolbox.. 74
5.5 HyperJ GUI: HyperJ with an open image and text d u m p 74
5.6 Visualization of Hyperspectral Images using J a v a 76
5.7 Partial Class Diagram of the I/O Framework.. 80

vii

List of Tables

5.1 CLI Arguments

Chapter 1

Introduction

In this paper we describe, implement and test a fast, unsupervised, parallel feature ex

traction algorithms for hyperspectral images using Nonnegative Matrix Factorization

(NMF). The implementation leverages two different distributed processing paradigms

in order to speed up the time consuming processing stage of the algorithm. It is de

veloped as a part of a self contained hyperspectral imaging framework which includes

visualization tools, advanced I/O and conversion tools, user friendly graphical user

interface, and logging tools.

We looked at two prominent feature extraction algorithms: the original NMF

algorithm as defined by Lee and Seung [1] and the projected gradient optimization

described by Chih-Jen Lin [2]. We developed parallel versions of these two algorithms

which are semantically identical to the originals, but do perform faster on multi CPU

machines.

All the code was written in Java in order to take full benefit of the language’s

platform independence and rich distributed processing features. The aim was to

minimize the number of software and hardware dependencies for the working program,

and streamline the build procedure and installation. Thanks to Java’s compile-once,

1

run anywhere feature the code can be rapidly deployed on various machines provided

that they are able to host Java Virtual Machine. The finalized set of binaries can be

distributed as a single compressed jar file that can be used to invoke the graphical

user interface, or run heavy duty processing directly from the command line.

Our implementation used threading for parallel execution and is designed to run

on SMP architectures. Java has very good native support for this type of parallel

programming. Because of this our code is not dependent on any third party libraries,

or platform specific code adding much flexibility to our solution. In addition to

threading, we also briefly discuss other alternatives such as remote procedure calls

but we do not provide code samples or test results for these methods.

Due to their size and organization, hyperspectral images are usually not manage

able by mainstream image viewing toolkits. Thus visualization and I/O capabilities

were an important part of the project. We have developed an object oriented, mod

ular toolkit that can be easily extended to accommodate new or non-standard file

formats.

We will start this paper by by explaining the nature of Remote Sensing, and talk

about Hyperspectral images and their features. Then we will describe challenges in

implementation an automated system to process these images. We will provide a

an explanation of what is feature extraction, and describe both of the featured NMF

algorithms in detail. Finally we will go over the proposed parallelization strategies for

our algorithm, test their performance and discuss the results. We will also provide

detailed description of the implemented features in the Java based hyperspectral

processing toolkit we produced.

2

1.1 R em ote Sensing and H yperspectral D ata

The study of Earth’s surface and atmospheric features from a distance is usually re

ferred to as remote sensing [3]. It is a branch of science related closely to airspace

technology and has applications in many fields including agriculture, forestry, mete

orology and military surveillance. It involves direct observation, reconnaissance and

aerial or satellite photography and video. Thanks to recent advances in optics, the

focus shifted almost entirely toward photography and video. One of the most impor

tant features of photography is that an optical lens can usually register much more

information than a human eye. Using specialized sensory equipment it is possible to

take a picture which will include the full spectrum of reflected light, and not the only

the tiny fraction that is visible to humans [4].

Hyperspectral sensors are usually able to record reflected light frequencies between

0.4/rra and 2.4/rm. Only wavelengths from 0.4/rm to 0.7¡im are visible for a naked

eye [5]. Data is collected as hundreds of images, each corresponding to a narrow

wavelength interval. For example, the AVIRIS sensing system used by NASA’s Jet

Propulsion Laboratory, simultaneously takes 244 images, each with spectral resolution

of lOnra (or 0.01 ¡im) (See Figure 1.1) [6]. Each individual image is called a band.

A hyperspectral image is therefore a three dimensional data structure (image

cube), in which each pixel can be addressed by using 3 coordinates x, y and z repre

senting vertical position, horizontal position, and band number respectively. All the

pixels with the same x and y coordinates, are closely related as they represent the

same point in space. Collection of these related pixels can be refereed to as pixel

vector. This vector can be graphed as a continuous function of the wavelengths. Fig

ure 1.1 shows some sample graphs for selected ground features. The function of a

pixel vector is known as a spectra. Different photographed materials will have unique

spectra, due to the differences in reflectance at different wavelengths.

3

Hyperspectral images can convey wealth of information, but also have important

drawbacks. Very often, the photographed area may include unknown targets that are

smaller than the ground sampling distance (GSD). These end up embedded withing

a single pixel and cannot be identified using visual inspection. Their presence can

only be inferred by analyzing their spectral properties. Thus, traditional spatial based

methods used for image analysis cannot be used for hyperspectral data which requires

strong focus on to finding, identifying and classifying sub-pixel targets [7].

Hyperspectral data samples can often take up anywhere from tens to hundreds

of megabytes. For example, a 640 by 640 image, with 240 bands may take up 96

megabytes, if we assume that each pixel is represented by a single byte. During

processing it might be necessary to use floating point notation in which case the

space required to store the image quadruples [5]. The complexity of all processing

algorithms, is inevitably tied to the size of the sample, and therefore to number of

spectral bands. It is desirable to reduce the number of spectral dimensions as much

as possible before performing any heavy duty analysis. Since it can be assumed that

some spectral bands contain very little but noise or redundant data, this reduction

can be accomplished without significant loss of information. The process of reducing

a hyperspectral sample dimensionally by detecting and isolating meaningful features

of the image is known as feature extraction.

1.2 C hallenges in H yperspectral D ata P rocessing

Due to their complexity, handling hyperspectral images poses many challenges to the

researchers. Multi-band data is difficult to visualize and store in a meaningful way.

Furthermore, they often include large amounts of additive noise that needs to be

reduced using different feature extraction methods.

4

Figure 1.1: Conceptual Model of a Hyperspectral Image [8]

1.2.1 V isualization

The frequency range of the light captured by remote sensing devices far grater than

that which can be registered by the human eye. It is impossible to simultaneously

visualize all the bands of a hyperspectal image in a way that would be accessible

to a human being. However it is possible to break down the image into distinct

components that can be displayed and printed as standard 2d images. This way

researchers can examine both the data represented in the visible spectrum, as well as

information, contained in some of the invisible bands. There are two distinct ways to

partially visualize hyperspectral data, both of which involve partitioning the original

information into 2 dimensional components.

Each spectral band could be viewed individually. The data contained in that band

is transformed into a 2d pixel array and displayed as a monochromatic photograph.

(See Fig. 1.2a) The shade or brightness of each pixel indicates the intensity of reflected

light at the given point. Each of the bands can then be displayed by a standard

5

a) b)

Figure 1.2: Visualization of a Hyperspectral Image: a) Collection of Monochromatic Images, b)
Composite RGB Image. [9]

graphical toolkit, or saved in a standard lossless file format for processing in some

mainstream graphical analysis software. The snapshots of individual bands can be

visually compared, and contrasted providing useful clues for feature extraction, or

other types of analysis.

Alternatively, 3 bands could be combined together to produce a composite 2d

image in full RGB color. (See Fig. 1.2b) The photograph created in this way can be

handled exactly like the gray-scale snapshot. If the bands chosen in the composition

roughly correspond to read, green and blue light wavelengths, then the resulting

pictured will be displayed in true color. Other combinations will produce completely

artificial coloring. It has to be noted that artificially colored images may inadvertently

produce odd visual artifacts because the choice of colors is completely arbitrary. For

example swapping blue and green light frequencies may make a photo of a forest look

like a lake.

In both cases, visualizing hyperspectral data they may convey some additional

information. For example, vegetation may often look brighter in the near infra-red

wavelengths, making it easy to distinguish it from other green objects in the image.

This technique is often used to highlight certain features in satellite photography or

6

pictures of deep space objects.

Hyperspectral images with few or few dozen bands are usually referred to as

Multispectral. These images are usually taken with smaller, less complicated sensors

on the ground. Hyperspectral images on the other hand are usually taken by complex

and sensitive satellite systems [8]. However there is not clear cut distinction between

the two and they can be often used interchangeably. The accuracy and amount

of extractable information grows proportionally to the number of spectral bands and

thus the most desirable data sets are the hyperspectral images which are characterized

both by high resolution, and large number of bands.

1.2.2 I /O and Encoding

Because of their nature, multispectral and hyperspectral images are often different

than standard digital photography with respect to the way they are stored and en

coded. Most digital images are stored in files, written according to a rigid standardized

format such as JPG, PNG, GIFF, TIFF and etc.. These formats only describe how

to encode a 2 dimensional array of pixels, representing a single band, and thus they

do not apply to multi dimensional data used in remote sensing.

There are no standardized file formats defined for multi and hyper spectral data.

Different spectrographic tools can produce very different outputs. In most cases

hyperspectral files are simple data dumps, written according to one of the three basic

methods. Multi-band information can be encoded in following ways: Band Interleaved

by Line (BIL), Band Interleaved by Pixel (BIP), and Band Sequential (BSQ) [3].

In imaging a line (also known as scanline) can be defined as a vector of pixels,

whose length is equal to the width of the image. It should not be confused with

hyperspectral pixel vector. The values of a scanline are spatial neighboring pixels,

7

Figure 1.3: Different Encoding Methods: a) BIL - Band Interleaved by Line, b) BIP - Band
Interleaved by Pixel, c) BSQ - Band Sequential.

while values of the pixel vector are spectral identities of each other. BIL encoding

interleaves scanlines by band. Each actual line of hyperspectral the image can be

therefore represented as a matrix in which each row is a scanline of one band, and

each column is a pixel vector. A monochromatic image based on a single band can be

generated by reading every nth line (where n is the number of the band). See Figure

1.3a [3].

BIP encoding takes a different approach and interleaves bands by pixel. In other

words, each line of the image is composed of consecutive pixel vectors. All the infor

mation about a given pixel is contained in it’s respective scanline. A monochromatic

view can be obtained by reading every nth pixel of each line. See Figure 1.3b [3].

Finally, in BSQ each band exists as a separate gray scale image. These images

are concatenated to each other, and written sequentially. See Figure 1.3c. All three

methods are widely used, and neither one is more popular than the others [3].

The way in which bands are encoded in file is not the only issue when dealing with

hyperspectral images. Pixel representation is another one. There is not standardized

method for representing pixel values in a file. Therefore they can be encoded as bytes,

integers (both signed and unsigned, 32 or 64 bit long), or floating point values (both

32 and 64 bit). The values of pixels can furthermore be in big endian or little endian

encoding. Altogether there are around 42 different combinations of band format,

pixel representation, and endian encoding.

Handling some of the data types is more difficult than others, specifically be

cause Java lacks support for unsigned integers and thus they have to be emulated

using signed variables of higher order data type, and thus potentially increase the

complexity of I/O modules.

1.3 Feature E xtraction

Feature Extraction as applied in Hyperspectral Imaging field, roughly consists of two

separate but related problems: dimensionality reduction, and unmixing.

1.3.1 D im ensionality R eduction

In most cases, the aim of feature extraction is to reduce the dimensionality of the

processed sample without a significant data loss. In other words, the processing steps

should transform an image with m bands into a smaller image with n bands where

m > n (See 1.4). The result should be a representative sample of the original, and

contain all of its variance. In other words, reduction cannot be simply accomplished

by arbitrarily dropping bands, as this would lead to significant information loss.

A desirable result of dimensionality reduction is an increase in separation between

distinct classes (or types sources of reflected light) within the image [10]. In an ideal

situation one would achieve ideal separation of classes by band, so that each source

material could be viewed independently.

However, dimensionality reduction is only a part of the issue.

9

Figure 1.4: Reduction of Data Dimensionality [10]

1.3.2 L inear M ixing M odel (LM M)

Hyperspectral images are very often satellite or areal photos. As such they suffer

from spectral mixing. Each pixel of a hyperspectral image can contain more than one

object or source material. The intensity of a given pixel then represents a combination

of intensities of light reflected by all the materials which are contained in that pixel.

Of course, some pixels can be for the most part classified as pure if it’s evident that

they contain only a single structural component. For example a pixel located in the

middle of a calm lake can probably be quite accurately classified as ” lake water”.

Mixed pixels can usually be found on the edges of the pure areas or in areas

with high density of non-identical objects. For example, a snapshot of the beach will

usually contain a strip of pixels which contain both sand and water. In this example

it is very easy to guesstimate potential pure and mixed parts of the image. However

this is not always the case. A reversal of this scenario could be a picture of a dense

forest. The foliage of different trees may produce different spectral signatures. Since

different species of trees can grow very close to each other, one might expect the

photo to be composed mostly of mixed pixels. In fact, it might be quite difficult to

find any pure areas.

The feature extraction process has to be able to take the mixed pixels into account

when separating and reducing the data set. This issue is commonly known as the

unmixing problem. Good feature extraction algorithms for hyperspectral data must

10

be able to deal with unmixing.

Main assumption behind LMM is that each pixel is in fact composed of d primitive

components (or endmembers) which all contribute some fractional amount to the end

intensity of that pixel. Each endmember has therefore a corresponding abundance

value, which describes the magnitude of this contribution. The actual intensity can

be obtained by taking a dot product of abundance and endmember vectors. In this

model a pure pixel would be one whose abundance vector contains only one nonzero

value. Pixels close to pure would be those which either have few nonzero values, or a

single dominant value.

The unmixing problem can be formally described in terms of the Linear Mixing

Model (LMM).

n
◄---------------- ►

T T 1
X —

►
u a

T
S E

original endmembers abundance
pixel vector

Figure 1.5: Linear Mixing Model

A hyperspectral n dimensional pixel vector x can be described as [11]:

m
x — + w — Sa + w (1.1)

i = 1

where S is the n x m matrix of endmember spectra, a is an m dimensional vector of

the fractional abundances and w is some additive noise (See Fig 1.5). All the elements

of a are presumed to be positive, and their sum should be equal to one [11]:

11

CLi > 0 , z — 1 , m (1.2)

m
T a' —1 (1.3)

Feature extraction by unmixing in terms of LMM can be defined as finding end-

members and their abundances, for a given multidimensional vector x.

There are two general approaches to feature extraction: supervised and unsuper

vised.

1.3.3 Superv ised F ea tu re E x trac tio n

Supervised extraction assumes that composition of processed image is at least par

tially known, and that certain features can be identified prior to processing. This can

be easy in the beach example, where one can clearly identify a sample area of water,

and of sand. This sort of visual classification can be conducted using specialist tools

such as the MultiSpec software developed at Purdue University [12,13], or the ENVI

suite produced by ITT [14].

If visual classification is impossible, or impractical, it is still possible to use super

vised feature extraction, provided that some adequate training data is available. It

can either be obtained from previous experiments, or from archives cataloging spec

tral signatures for various materials. For example, when processing a satellite photo

of a forest one could use information about spectral properties of different types of

tree foliage as inputs.

The reduction is accomplished by comparing the known data to the processed

sample. Separation can be obtained by measuring the differences between spectral

12

signatures of each pixel and the set ones obtained from the inputs and appropriately

clustering the pixels according to the results.

Supervised feature extraction is limited because it heavily relies on preexisting set

of samples that can be used as training data. Results of the reduction are only as

good as the starting dataset allows them to be [15].

1.3.4 U nsuperv ised F ea tu re E x trac tio n

Unsupervised extraction is performed when no prior data is available or manual train

ing is not possible. In many ways, the unsupervised approach is more attractive both

to researchers, and for commercial applications because it allows for creating fully

automatic hyperspectral data processing systems. It also eliminates the possibility

of human error, skewing the results. Because of the absence of training samples, the

images must be analyzed using purely statistical methodology. In other words, the

unsupervised methodology concerns itself only with the data at hand, without any

inputs from the outside [15].

Consequently, the main focus is not comparison, but rather reduction of data

redundancy. The data is processed by applying various mathematical transforms to

the original set which reduce its dimensionality and increase data separation.

There are several interesting feature extraction algorithms but in the following

chaptes we will mainly concentrate on the Nonnegaive Matrix Factorization methods.

We will devote special attention to the original algorithm as defined by Lee and Seung

[1] and it’s proposed implementation in [16] as well as the highly optimized projected

gradient method described by Chih-Jen Lin in [2]. We will briefly discuss other related

implementations of NMF in section 2.1.5 and also other competing feature extraction

methods such as Principle Component Analysis (PCA) and Independent Component

13

Analysis (ICA) in section 2.2.

Chapter 2

N onnegative M atrix Factorization

M ethods

2.1 N on n egative M atrix Factorization (N M F)

2.1.1 N M F: G eneral P rob lem D escrip tion

Nonnegative Matrix Factorization is a good example of an unsupervised feature ex

traction method. Lee and Seung claim that what distinguishes NMF from other

extraction methods such as Principal Component Analysis, is it’s parts-based ap

proach. While other methods take a more holistic approach, NMF performs well in

discovering features of objects by learning about their parts. They suggest using it

for tasks such as facial recognition, or discovering semantic features of text [1]. Chu

and Plemmons however show that it can be adapted to other domains as well. They

specifically recommend it for image and spectral data processing, text mining and air

emission quality problems [17]. Paucca, Piper and Plemmons develop an NMF based

algorithm especially geared for hyperspectral data in [16]. This algorithm will be

15

described in greater detail later. Before that, it is best to define the NMF problem,

and talk about it more thoroughly.

Original

x

Figure 2.1: Visual Example Non Negative Matrix Factorization [8]

A good visual representation of the NMF algorithm at work can be seen in Figure

2.1. There, it is clearly visible how the original image of a face, is decomposed into a

large array of partial facial features such as eyes, noses, lips and etc., and a mapping

of how these parts contribute to the original image. These arrays correspond to end-

members (W) and abundances (H) from the Linear Mixing model. This compatibility

with LLM is one of the major advantages of NMF over alternative feature extraction

methods. Other notable advantages are it’s relative simplicity and the low complexity

of basic calculations it requires.

As mentioned before, NMF is designed to work with nonnegative inputs so all

the processed data must be greater or equal to zero. As long as that requirement is

fulfilled NMF will always produce nonnegative results. It is highly desirable because

it guarantees that equations 1.2 and 1.3 will hold. This is not always true for other

methods. Fulfilling the requirement of always using nonnegative inputs is not difficult,

since most imaging data is by nature either zero or positive.

NMF problem can can be formally defined as follows [1,16,17]:

Given a nonnegative mxn matrix Y and a positive integer k such that:

NMF
i i

j S/ r r
1 F » |

i i i t
» ’V*

! * !
' — i------F

i
! /— 1 * * 3 lit

1*
i Ii i# i*

-4~f-1 'N _

- T - h i -

! | _ _! ^

16

k < m in{m , n} (2 .1)

find two nonnegative matrices W G Rmxk and H G R kxn such that their product

approximates Y :

Y « W H (2 .2)

while minimizing the functional:

f{W ,H)-.= l- \ \ Y - W H \\2f (2.3)

where || ||jr denotes a Frobenius (or Euclidean) norm. W is the matrix of endmembers,

and H is the matrix of abundances (See Fig. 2.2).

The product of W and H will be of rank of at most k and almost never actually

be equal to Y. The choice of the integer k is often a very critical choice, but it is

usually problem dependent. The equation 2.3 can be modified to better reflect the

given situation. For example, penalty terms could be added to f(W t H) in order to

enforce sparsity or to enhance smoothness in the solution matrices [16,17].

In addition, because W H = (W D)(D~1H) for any invertible matrix D G Rkxk

sometimes it might be desirable to normalize the columns of W [16,17].

It has been experimentally shown that NMF performs well as a feature extraction

method and provides an elegant solution to the unmixing problem. Other approaches

such as PCA and ICA are focused on strong restrictions on the separability of the

resulting bands, and do not have a natural interpretation for the nature of hyper-

spectral data. Compared to them, NMF is much less restrictive simply assuming

17

m m k

Y
i

c

i

w H
t

c

1J T f
original endmembers abundance

array

Figure 2.2: Nonnegative Matrix Factorization

that features must be separable, and positively defined [10].

2.1.2 A pplying N M F to H y p ersp ec tra l D a ta

A hyperspectral image can usually be conceptualized as a 3D cube created by stacking

individual spectral band images on top of each other. It could be relatively easily

represented as a cubical data model represented as a 3D matrix (a matrix of 2D

matrices). Unfortunately such a representation would be overly complex to work

with and technically unusable. Most feature extraction algorithms (including NMF)

are designed to work with 2 dimensional data structures which can be represented

with matrices. Thus the data must be transformed into a more conventional format

before any processing is done.

One way to avoid unnecessary complexity is treating each band as a linear vector

(or bandvector) rather than a matrix. A bandvector can be created by concatenating

all the scanlines of a given band. The whole image then can be treated as a two

dimensional nn x n matrix Y where m is the total number of pixels in a single band

image, and n is the total number of bands (See Fig. 2.3).

In Y the spatial relationship between pixels is lost. However, if the original row

length is retained somewhere, then Y can be easily converted back to the 3D form by

simply cutting up the rows, and stacking them up.

18

2.1.3 S tan d ard Ite ra tiv e N M F A lgorithm

Applying an iterative NMF algorithm to a general unmixing/feature extraction prob

lem was first proposed by by Lee and Seung in [1]. Later it was refined to be used on

Hyperspectral data by Pauca, Piper and Plemmons in [17]. The algorithm presented

below is a refinement largely based on these ideas. The algorithm adapted from [17]

was experimentally tested and shown to produce good feature separation in [10] and

[9]. The tests were conducted on a sequential iterative algorithm much like the one

presented below.

The algorithm can be characterized as diagonally scaled gradient descent method

[16]. It is based on minimizing the distance between Y and iterations of W H by

repeatedly updating the values of W and H [9,10,18]:

W = W - df {W,H)
dW

(2.4)

H = H a f f i g)
dH

(2.5)

The function /(IT, H) is of course the same one as defined in equation 2.3.

An elegant solution that ensures positivity is described in [18] for which the update

a) original 3D
image cube

m = w x h
Mr ----------- ►

À band 1
band 2
band 3
band 4

▼ band 5

b) 2D representation used in NMF

Figure 2.3: Hyperspectral Data and NMF

19

steps are:

W = W
(Y H T)

('W H H T) + e
(2.6)

H = H
(W TY)

(WtHW H) + e (2.7)

These steps are relatively straightforward and can be easily implemented in code.

Thus the NMF algorithm can be formally defined in Figure 2.4.

T he N M F A lgorithm

1. Given
Y G Rmxn > 0, k > 0 and k <C mm(m, n) (2.8)

randomly initialize matrices W G Mmxfc and H G Rfcxn with nonnegaive values

2. Scale the columns of W to sum up to one (to satisfy eq. 1.3)

3. Create temporary variables W and H. Sent their contents to be equal to H
and W respectively.

4. Repeatedly apply the following steps until convergence criteria are met:

(a) Update W and H by using:

Hr i <G= Hr/i '
(W TY)C J

CJ CJ (W TW H)cj + e

w ic <= w ic—hrfh—
(W H H T)ic + €

(b) Set W = Wand H = H
(c) Scale the columns of W to sum up to one

(1 < c < k) (1 < j < n) (2.9)

1 < i < m) (1 < c < k) (2.10)

Figure 2.4: NMF Algorithm

The algorithm requires that operations 2.9 and 2.10 and the scaling step are

repeated until the values of W and H converge. The exact criteria for convergence

may vary and are discussed in Sect. 2.1.6. For now we can assume that there exists an

20

explicit condition that will cause the execution to stop, and result in optimal source

separation.

Please note that temporary variables are used in order to store the data during

the calculation. This way, values in each step are calculated using a ’clean’ matrices

H or W as a source. While this takes up memory, and creates overhead due to matrix

copying it ensures data integrity. In other words each new set of matrices is computed

based using data solely from the previous iteration.

The e value is a very small positive quantity. As suggested in [16] an optimal

starting value is e < 10~9. The size of e can be used to tweak the accuracy of the

algorithm. It is for possible for this algorithm to converge on a local optima that is

not the best approximation of Y. Increasing, or decreasing the size of e can help to

find the optimal convergence [1,16].

The computational complexity of this algorithm has been shown to be O(kmn) per

iteration [16]. Since the number of iterative steps is usually unknown, or dependent

on convergence criteria, the total time of execution for very large images can be very

long.

2.1.4 P ro jec ted G rad ien t N M F (P G -N M F)

Lee and Seung work in [18] proves that the function / (equation 2.3) in non-increasing

after every update. Prom that property it follows that NMF could be solved by

alternatively fixing one matrix and updating another. Thus the problem can be

redefined as [19]:

f ind W k+1 such that f (W k+1, H k) < f { W k, H k) (2.11)

21

and

f ind H k+l such that f (W k+\ H k+1) < f (W k+l, H k) (2.12)

This approach can be categorized as a block coordinate descent method in bound

constrained optimization [20] where one block of variables in minimized under corre

sponding constraints and the remaining blocks are fixed. Of course in our example

we have a very simple case with only two block variables [2].

Since bound constrained optimization problems are very efficiently solved by pro

jected gradient approach Chih-Jen Lin in [2] proposes to apply it to the NMF prob

lem. He starts of with a generalized problem for bound constrained optimization:

Find minf(x) where x E Mn and U < Xi < Ui and z — 1,..., n

The update rule for x can be defined as follows:

Given 0 < qj< 1 , 0 < / 3 < 1 and randomly initialized x compute:

Xk+1 = P[xk - (2.13)

where:

Xi i f U < X{ < Ui

P[Xi\ = { Ui i f Xi> Ui

and ah — (3tk where tk is some non-negative integer t for which:

f { x k+1) - f (x k) < a\\Vf{xk)T(x‘,k\T f k+1 (2.14)

22

The a should be updated using following criteria:

1. if o'* satisfies 2.14 then repeatedly increase a* (3 as long as it still satisfies

2.14.

2. else repeatedly decrease <— * ¡3 until it satisfies 2.14.

This general framework can be applied to NMF problem. Chih-Jen Lin defines the

H updates as follows [2]:

Hk+1 = P[Hk - a V f (H k)]where V f (H) = W T(W H - Y) (2.15)

In a more concise form, updates for both matrices can be defined as:

Hk+1 = P[Hk - a W l (WkHk - Y)] (2.16)

Wk+1 = P[W l - aHk+i(-)] (2.17)

The a update rule 2.14 can be rewritten for H:

(1 -a)(Wj[(WkHk- Y) , H k+1- H k) + ±(Hk+1- H k,(W?Wk)(Hk+l- H k)) 0 (2.18)

and for W:

(l-<7)(Hk+l(HZ+1W £ - Y T),WT+1-W £)+ ± (W k+1- W k, (Hk+iHk+1)(Wk+1- W k)) < 0

(2.19)

23

In the above, the (,) denotes the sum of component wise products of two matrices.

The recommended value of a is 0.01 The Projected Gradient Nonnegative Matrix

Factorization is defined in Figure 2.5.

P G -N M F A lgorithm

1. Given

Y G Mmxn > 0, k > 0, k <C ram(ra, n), a = 1, (3 = 0.1, a — 0.01 (2.20)

randomly initialize matrices W G Rmx xk and H G Mfcxn with nonnegaive
values.

2. Find Hk+\ using Equation 2.16

3. Evaluate Equation 2.16 and:

(a) if Equation 2.18 is satisfied then:

i. if at the last iteration Equation 2.18 was not satisfied set Hk+i <—
Hk+1 and goto 4

ii. else save the value of Hk+1 in a temporary buffer Hk+i

iii. save the outcome of Equation 2.18
iv. update a a / ¡3
v. go back to 2.

(b) if Equation 2.18 is not satisfied then:

i. if at the last iteration Equation 2.18 was satisfied set Hk+1 Hk+i
and goto 4

ii. else save the value of Hk+\ in a temporary buffer Hk+i
iii. save the outcome of Equation 2.18
iv. update a <— a * ¡3
v. go back to 2.

4. Find Wk+i using Equation 2.17

5. Evaluate Equation 2.16 and perform steps analogous to 3a and 3b for W.

6. Set H = Hk+1 and W = Wk+1

7. Go back to 2 until convergence criteria are met.

Figure 2.5: PG-NMF Algorithm

Please note that in the above algorithm initially W is fixed, while H is repeatedly

24

updated to find the best value. Next, H is kept fixed while W is updated. Such

approach in some cases may be more desirable than standard NMF because the total

number of iterations required to reach convergence might be smaller. On the other

hand, compared to the other algorithm PG-NMF uses a considerably more complex

(and thus time consuming) procedure to find Hk+i and Wk+1 -

Lin’s algorithm is one of the most optimized NMF implementations based on the

bound constrained optimization model. He was able to drastically reduce the cost of

inner iterations by taking advantage of the unique formulation of this problem. Ex

periments conducted by Ingram, seem to suggest that this approach can be decidedly

faster than Lee and Seung’s multiplicative approach [21]

The initial a, ¡3 and a values were chosen based on the recommendations out

lined in [2]. Since the focus of this project is investigating parallelization of NMF

algorithms we will simply assume that these values are optimal in all cases.

2.1.5 O th er N M F A pproaches

There are several other notable approaches to NMF problem which were not our

main focus. This paper mainly concentrates on standard NMF as defined in [16]

and the PG-NMF variant developed by [2]. However, some approaches are especially

noteworthy.

2.1 .5 .1 S toch astic N M F (S -N M F)

The original algorithm in [16] did not implicitly recommend using temporary matrices

for W and H during the updates. They were included in our implementation of

the algorithm because of concerns about data integrity and concurrency conflicts.

However conducting updates on live data is an attractive alternative. In theory,

25

stochastic approach could potentially speed up the time required for convergence as

updated values would become available immediately rather than after each iteration

hopefully creating a much smoother curve of function 2.3.

The algorithm for S-NMF would be identical to the one defined in 2.1.3 but instead

of using temporary variables the updates would be applied directly to H and W.

2 .1 .5 .2 M ultilayer N M F

Performance of multiplicative and projected gradient NMF algorithms such as the

ones presented in Section 2.1.3 and 2.1.4 can often be poor. This is especially true

when the unknown nonnegative components are badly scaled, insufficiently sparse

or number of observations is equal or only slightly greater than a number of latent

(hidden) components [22]. This is one of the reasons why we are developing parallel

implementation of these algorithms in this paper.

However Cichocki, and Zdunek in [22] propose a solution which would increase

the performance. Their idea is relatively simple. Initially a decomposition step is

conducted using any available algorithm, be it standard NMF, PG-NMF or some

other implementation yielding:

T = tfiVFi (2.21)

The next step would then be conducted on the obtained set of results rather than

on the original matrix Y:

Hx = H2W2 (2.22)

The final model for the composition would be as follows:

26

Y = HlH2H^....HLWL (2.23)

The authors claim that this approach can improve performance and accuracy of

most NMF algorithms, and mention that they concluded extensive simulations to

prove it. Unfortunately they did not include any experimental data or results in [22]

so it is difficult to judge the effectiveness of their design.

2 .1 .5 .3 P G -N M F w ith In itia l N ew to n Step

In [21] Ingram proposes to extend the Chi-Jen Lin’s algorithm by ading some extra

steps that can further optimizes the performance. He notes that the Hessian matrices

of W and H are W TW and H H T respectively. These matrices are both kxk and

positive definite. Therefore it makes sense to add a Newton direction into the Lin’s

line search algorithm. It can be accomplished by inverting the the Hessian matrix,

multiplying the gradient and performing a projected line search.

Unfortunately the Newton step can only be used on free (non-zero) variables. If

any value of W or H becomes zero, it’s corresponding column of the Hessian must

be excluded from the computation. Excluding columns from these matrices however

would not make sense in PG-NMF framework. Therefore Ingram proposes to test

values of W and H at each iteration, and only compute Newton direction if they are

non-zero.

He argues that the benefits of this added step will offset the overhead involved with

testing for non-zero values. The cost of such a test is O(mk) and O(nk) respectively

and thus it can be performed relatively quickly. In addition most algorithms initialize

W and H to random non-zero noise, so at least the initial few iterations could take

full benefit from the Newton direction computation. When zero values are found, we

27

should simply fall back to Lin’s standard PG-NMF implementation [21].

Ingram’s experiments suggest that while this method can improve the quality of

the results, and the overall performance it does not always do so. In some cases the

algorhithm was shown to yield worse results than PG-NMF. In addition the costs of

computing a Newton step on data sets with a very large k can be very expensive.

Ingram suggests that his approach is best suited for real-time processing problems in

which reduced quadratic model is inadequate (such as robotics, signal processing and

etc..) [21].

2.1.6 Convergence C rite ria

Choosing appropriate convergence criteria is very important. If they turn out to be

to lax, then processing may be stopped prematurely, producing incomplete or sub-par

separation. On the other hand, if criteria are too strict, they may never be reached

and the program may enter an infinite loop. Such a situation would happen if our

criteria would unknowingly exclude the global optima.

Finding good convergence criteria is not trivial, and there are no algorithmic

methods to find them. In most cases, the criteria are problem dependent, and may

need to be tweaked based on experimental observation. Thus, we decided it would

be best to leave the setting of convergence criteria up to the user. We have defined 4

different ways in which our program can converge, and the user can adjust the exit

values in each category.

The best indicator of convergence is of course the value of f(W,H) as expressed in

equation 2.3. It is the measure of the quality of the NMF extraction. The smaller the

value, the better the results. Unfortunately while f(W,H) generally seems to approach

zero is in most cases, it is not always decreasing (see fig. 2.1.6).

28

450

Figure 2.6: Sample Graph of f(W,H)

Please note that as the number of iterations increases, the value of f seems to be

increasing and decreasing, creating many peaks and valleys on the graph. Frequently,

/ will reach some local minimum, and then start increasing, only to stop at a certain

threshold and start decreasing again. Over time, the local minima seem to become

smaller. Thus the more iterations we allow, the better are chances for finding the

absolute minimum, of the function.

Based on these properties, we have developed 4 different criteria which can be

used when testing for convergence:

1. F ixed C onvergence Target - a fixed desired target value of /(W ,H) can

be chosen. This target is the estimated value of the absolute minimum of the

function. The execution will then continue until that target is reached, or until

it is stopped for some other reason. Choosing a good target value is very crucial.

Poor target can cause the program to either stop prematurely, or enter infinite

loop.

2. C hange o f f(W ,H) - because it is hard to pick a perfect convergence target, it

29

might be beneficial to track how the value of f(W,H) changes at each iteration.

While it is increasing or decreasing from one iteration to the other, it can be

assumed that convergence has not been reached yet. Once it stops changing, it

is safe to assume that an optima has been reached. It also is worth noting that

the magnitude of change decreases as the function is minimized. By picking a

good delta value it is possible to get good distribution in reasonable amount of

time. This might be hard however, because the algorithm may reach a local

optima and change very slightly over many iterations. If it is stopped then it

will yield an incomplete separation. As evidenced by our experiments, a good

starting target value is 10~5 which would yield good separation in the output

matrices and yield reasonable number of iterations.

3. N um b er o f Iteration s - in case both criteria based on evaluation of f(W,H)

are poorly chosen, the user should also have a chance to set the maximum

number of iterations that will be executed before the program terminates. This

prevents unwanted infinite loops caused by poorly chosen convergence values.

4. T im e o f E xecu tion - time of execution measured in hours or minutes may be

an alternative to number of iterations.

It should be possible to find a good stopping conditions for most data sets using

combinations of the four criteria described above.

2.2 O ther M ethods

Nonnegative Matrix Factorization is not the only feature extraction method. An

alyzing the wide range of existing algorithms would be out of scope of this paper.

We refer the reader to the quantitative analysis of various non-NMF extraction al

gorithms conducted by Plaza et all in [23]. In this section we will only describe

30

two most notable competing future extraction algorithms: the Principle Component

Analysis and Independent Component Analysis. We will also explain why we decided

to choose NMF over these attractive alternatives.

2.2.1 P rinc ipa l C om ponent A nalysis

One popular method that can be used in feature extraction is Principal Component

Analysis. PCA is a linear transformation that transforms the data to a new set of

coordinates in a way such that the greatest variance lies on the first few of them.

These coordinates are called the Principal Components of the data set, and they are

usually uncorrelated and will usually contain most of the variation present in all of

the original data [24].

The PCA problem can be defined as finding a linear transform W for a multi

dimensional vector x such that the obtained components are uncorrelated:

Y = W x (2.24)

In equation 2.24 Y represents the Principal Component vector. The transform W is

obtained as:

W = ATxx (2.25)

where A is a matrix of normalized eigenvectors for the covariance matrix The

eigenvalues of Y,x correspond to the variances of the principal components. When

these values are sorted in decreasing order, the values of Y also become sorted in

decreasing order with respect to their variance [15].

PCA can be used to reduce dimensionality of the sample by selecting the compo-

31

nents with the highest variance, and ignoring the rest. The components of interest

will usually be contained the first few variables, but depending on the implementation

approach, they could also potentially appear in the few last ones. The quality of the

reduced sample greatly depends on the correct choice of components. If to few are

chosen, then the new sample will be not be representative of the original set. If there

are to many, then it is possible that there is still redundancy and noise in the sample.

Unfortunately, selecting which Principal Components are significant and which can

be ignored is not a trivial task.

There exist many different methods which aim to make this choice automatically.

One can select the correct components by looking at cumulative percentage which

they contribute to the total variation, or by looking at respective size of variance of

each component. These methods however are mostly ad-hoc rules of thumb which

generally work in practice but lack adequate formal basis [24].

Principal Components can also be found by more formally grounded hypothe

sis testing procedures. Ian T. Jolliffe describes some of these methods in his book

on Principal Component Analysis, but he claims that usually they pose unrealistic

distributional assumptions and tend to retain more components than it is necessary

[24]-

Third category of PC selection methods depend on statistical analysis and cross-

validation. According to Jolliffe most existing algorithms in this category are rela

tively slow and very computationally intensive [24].

It is also noted that PC A can sometimes be less efficient when dealing with small

classes within the image. Since small classes do not contribute to band variance in any

significant way, and thus they could be only featured in low variance components, and

thus get discarded during Principal Component selection. This loss of information

can be very problematic, especially if one would want to use PCA for target detection,

32

when dealing with very small targets [10].

■ 2.2.2 In d ep en d en t C om ponent A nalysis

Another method which could be used for feature extraction is Independent Com

ponent Analysis (ICA). It stems from a more general problem called Blind Source

Separation (BSS). In BSS one deals with a multivariate signal produced by several

unknown sources such as people speaking over each other to a microphone. The aim

is to recover the signal produced by each source without knowing the way they were

mixed. In other words, given an n dimensional vector x containing all the observed

values we want to find an m dimensional vector s in which each value corresponds to

a single source, and a n x m mixing matrix A [15]:

x — As (2.26)

Unfortunately, for a given x, there may exist an infinite number of pairs of s and A

which satisfy 2.26. However, it has been shown, that an unique solution for 2.26 can

be found if it is assumed that all the components of s have non-Gaussian distribution,

are statistically independent (hence the name Independent Component Analysis) and

that their probability density function p(s) can be represented as [15]:

m

v (s) = (2-2?)
i=1

The solution can be found either by minimizing the mutual information of it’s

components as expressed by:

33

(2.28)Sm) = E { l o g ^ — }

ny*)
i= 1

or by maximizing their non-Gaussianity, while keeping them decorelatied [15].

ICA is well suited to work in hyperspectral imaging, because the BSS can be easily

converted into an unmixing problem where each source is a class within the image.

In most scenarios PC A and ICA perform similarly, and could be used interchange

ably. However when dealing with non Gaussian, ICA provides much stronger decor

relation. [10, 25] Some sources suggest that PCA and ICA can be easily combined

for better effect. PCA could be used as a preprocessing step which would reduce

dimensionality of the sample, which in turn could be processed using ICA to achieve

good source separation [15,25].

Similarly to PCA, choosing the correct Independent Components in ICA is prob

lematic. Dimensionality reduction can be accomplished by choosing the most non-

Gaussian ones with respect to their kurtosis, and discarding the rest [10].

2.2.3 L inear M ixing M odel and P C A /IC A F eatu re E x trac

tion

While both PCA and ICA can be used to perform feature extraction on graphical

data, neither one is ideally suited to work with hyperspectral images which conform

to the LMM. There are several noteworthy issues which must be addressed when

attempting to use these methods.

Neither PCA nor ICA have an efficient and clearly defined algorithm to find the

number of endmembers present in the original image. In both cases the methods used

34

to pick the most significant components either involve either an ad-hock approach

based on educated guesswork, or highly inefficient post-processing [10].

In PC A and ICA the endmembers correspond to rows in the linear transform

matrix, and are orthogonal. This condition often proves to be to strict when doing

endmember extraction on materials which may be very similar to each other [10].

This is often the case in hyperspectra photographs where one might find large con

centrations of closely related sources such as different types of vegetation in a forest.

The NMF’s parts based approach handles these special cases much better.

Finally, neither PC A nor ICA can guarantee that equations 1.2 and 1.3 will hold

[10]. Because of these issues, it is recommended to use different methods for LMM

data.

35

Chapter 3

Parallel Approaches and NM F

Algorithm s

3.1 D ifferent Parallel A pproaches

3.1.1 T he N eed for P ara lle l Im p lem en ta tion of N M F

A major shortcoming of the NMF algorithm is that its execution time grows pro

portionally to the size of processed sample. According to [16] the standard NMF

algorithm conducts O(kmn) operations per iteration. Experimental results from [9]

suggest that the number of iterations necessary for convergence can be very large,

counting in the hundreds. The time of execution was shown to vary depending on the

size of initial sample. Smaller multispectral images are usually processed quickly, but

high resolution hyperspectral photos would take hours to be completely factorized.

The performance could be greatly improved if the two matrices W and H would

be processed simultaneously. The Lee and Seung algorithm, can be easily very paral

lelized without introducing major changes. The operation 2.9 and 2.10 could simply

36

be placed on two different CPU’s via threading or another parallelization technique.

Both processes would work independently, and would only need to exchange the copy

of it’s respective matrix at each iteration. Since both calculations are about equally

CPU intensive the idle time for each CPU would be minimal, and the execution time

would be roughly cut in half. The example with 2 processing nodes is of course

very simplistic. It is worth while to investigate the full extent of benefits of parallel

processing for NMF.

3.1.2 Overview of P ara lle l A rch itec tu res

Parallel hardware architecture is another important factor which will impact the

implementation. There are at least two distinct types of parallel architectures that

need to be taken into account: Shared Memory and Distributed Memory. Each of

these requires a slightly different approach.

Shared Memory systems, also known as Symmetric Multiprocessor (SMP) are

characterized by the fact that all parallel CPUs’ share common memory. Each pro

cessor has access to all memory locations using standard load operations. The cache is

not shared, but specialized hardware is present to keep them synchronized and prevent

conflicts [26]. The CPU scheduling is usually transparent to the user, and done at

the operating system level. When using Java, the programmer is even more removed

from the hardware implementation. When a Java application generates concurrent

threads most modern JVM implementation should try to leverage OS capabilities to

schedule them on different processors if possible. Thus, a considerable speedup can

be expected.

SMP’s are not very scalable. Usually, the number available processing units in this

type of architecture is low, because the cost of cache synchronization, and memory

collision avoidance grows exponentially with the number of processors. The most

37

powerful computers of this type have up to 32 (or in rare cases up to 128) nodes [26].

Most of the commercially available systems however are limited to 2 or 4 CPU’s.

Conversely, the communication overhead between processing nodes is probably the

smallest when compared to other architectures. Working with SMP architecture will

be the primary focus of this thesis.

Distributed Memory architecture is usually a massive array of independent pro

cessing nodes, each with it’s own memory. Access to remote memory is very complex

in this type of system. Most implementations rely on some sort of message passing

programming models (such as Message Passing Interface or MPI) in which CPU’s can

exchange data among each other [26]. The communication is usually done through

a dedicated, fast network connections, or via proprietary high speed communication

interface. Standard local area connection, or even internet can be also used as com

munication media, but at the cost of performance. On average Distributed Memory

systems will have a high communication overhead, but are almost infinitely scalable.

There also exist hybrid systems which combine the two approaches described

above. Most notable are Distributed Shared Memory (DSM) systems and SMP Clus

ters. DSM architecture allows direct access to remote memory via some dedicated

interface. As one can expect most implementation of DSM and proprietary and ex

pensive. SMP Clusters on the other hand try to connect multiple SMP systems

together to create a large distributed memory computer. They can be treated almost

exactly like a standard distributed system, only with 2 CPU nodes. Many message

passing interfaces are designed to seamlessly support this type of architecture [26].

Java does not provide a native message passing interface, but there are successful

implementations that could be employed in the research project. One such imple

mentation is JPVM developed at Virginia University. It provides functionality and

performance equivalent to another message passing interface called PVM that has

38

existing implementations in C and Fortran [27]. It could be adopted to implement

NMF on a Beowulf cluster or another distributed architecture.

The least sophisticated distributed system would be an ad-hock cluster of general

purpose workstations, connected via non-dedicated, multi-purpose TCP/IP network.

Each workstation would run it’s own OS and a copy of the algorithm, and com

munication would be done either via Java Remote Method Invocation (RMI) calls,

sockets communication or both. The communication overhead on that type of system

is expected to be very large, as the processing nodes do not have to be in close phys

ical proximity to each other, or even n the same subnet. Unlike dedicated clusters

and SMP’s however, this architecture is inexpensive, infinitely scalable, and does not

require much hardware.

3.2 D ata D istrib u tion

An important issue for parallelization is the distribution of the processed information.

There are two basic methods that can be used to distribute the workload among many

nodes: spatial-domain partitioning, and spectral-domain partitioning [6,28,29].

The former method, as the name suggests divides the hyperspectral cube by cut

ting the actual image into n sub-images. Each of these subdivisions is an actual

hyperspectral image in it’s own right. Thus, each processing node is required to work

only with a small image which is only a fraction of the original. The borders of sub

images will need to be swapped among the nodes processing neighboring segments

if needed. This provides very natural framework for most processing algorithms,

because all the the pixel vectors remain intact [6].

Spectral-domain partitioning on the other hand separates the original cube into

individual band images. Each node gets to work with it’s own gray scale image

39

representing a single band. Since each sub-image contains all the spatial data of the

original, there are no border cases to be communicated. However, if the processing

algorithm needs to access whole pixel vectors, this method may also require extensive

communication [6].

NMF algorithms are be best parallelized using spectral domain partitioning, be

cause they perform most of their calculations on bandvectors, rather than pixel vec

tors. Piazza suggests that this approach is the most appropriate one for most of the

morphological methodologies similar to NMF [28]. Spatial domain partitioning did

not seem appropriate in any of tested cases. It would require to much communication

overhead and synchronization, as compared to relatively communication light spectral

domain partitioning method.

3.2.1 E valuation C riteria : Speedup

The performance improvement of a parallel implementation over sequential imple

mentation can be measured using the concept of speedup factor. It can be calculated

using the following ratio:

Sp = ^ (3.1)

where Ts is the time of execution of the sequential algorithm, and Tp is the time of

execution of the same algorithm using p processors. An ideal parallel implementation

would of course yield speedup equal to p (also known as linear speedup). In most

cases however speedup factor will be somewhere within the range of 1 < Sp < p [30].

Since the algorithm is divided into more than two parts, each processor will only

work on a limited data set. It is safe to assume that there will be much more com

munication between the nodes required than in the 2 CPU model described above.

40

At each iteration, the H and W matrices will have to be synchronized. Thus, we will

never achieve a linear speedup. However, a significant performance improvement can

be expected.

3.3 P revious Efforts

Distributed hyperspectral image feature extraction is an active research field. How

ever, most of the noteworthy work in that area is done with cluster architectures.

Furthermore, there is very little interest in developing parallel implementations of

NMF algorithms. In this paper we took the road less traveled and chose to investi

gate parallel NMF but it is worth mentioning the related research done in this field.

Achalkul and Taylor implemented and tested a parallel version of the PC A algo

rithm (see Section 2.2.1 in [31]. Their algorithm is designed for a hybrid architecture

that involves networked, SMP machines working as a cluster. Unlike our own ap

proach, Achalkul and Taylor decided to utilize spatial data distribution. In other

words, the original image cube is divided into several sub cubes which can be oper

ated on independently. The allocation of sub cubes is managed by a central managing

(master) node that partitions the image, initiates worker threads, and collects partial

results.

Piazza et all also opted for spatial data distribution in their parallel morphological

algorithms in [29] and [6]. Their work also revolved around a cluster architecture.

The communication overhead in such a system is significant, and therefore using

spatial scheme allowed them to minimize the amount of data that needs to be sent

from one node to another. In our approach we had no communication overhead and

thus sectral partitioning became a viable option.

41

3.4 Parallel N M F A lgorithm s

Following sections will outline the implementation of the parallel algorithms for stan

dard NMF and Projected Gradient NMF, as well as proposed Stochastic NMF ap

proach. First, we will cover the implementation details, and challenges involved with

creating a parallel implementation of complex algorithms. Then each algorithm will

be discussed in details with respect to data distribution, synchronization and etc..

3.4.1 Im p lem en ta tion D etails

The platform for implementation of out parallel algorithms was Sun’s Java 1.4 [32].

This version was chosen over the newer Java 5 platform because it has a potentially

larger install base than the newer version. As mentioned in the introduction one of

the goals of this project, was to create a multi-platform implementation able to run

on a wide array of systems without need for additional setup or installation. Thus

we chose Java 1.4.

SMP was chosen as the target architecture in order to leverage Java’s powerful

Threading implementation. Java message passing algorithms for distributed systems

exist [27], but are neither standard nor widely used. On the other hand, threading

is a native feature of the language ensuring robustness and scalability. Overview of

Java Threads is out of scope for this paper but relevant information on the topic an

be found in Lewis and Berg [33], Oaks and Wong [34] or the official Java tutorials on

concurrency [35], which were all used as reference during implementation.

The code was almost entirely implemented using Eclipse [36] IBM’s Java based,

open source Integrated Development Environment.The IDE was chosen because of

it’s great flexibility and advanced testing and debugging tools. We used Holzner’s

Eclipse guidebook [37] as a reference.

42

3.4.2 P ara lle l N onnegative M atrix F acto riza tion (P -N M F)

The Parallel Nonnegative Matrix Factorization algorithm is based on the modified

Pauca et all algorithm (see Sec 2.1.3). Since we are working with an SMP architecture,

all the threads will share the data located in memory. However, each thread will only

operate on selected bands in the image. We used spectral domain partitioning (see

Sec 3.2) to evenly distribute the workload between the different threads (see 3.1).

Y

}

}

}

}

/ Thread 1

, Thread 2

^ Thread 3

^ Thread 4

Figure 3.1: Data Distribution in P-NMF

New threads are spawned using the following code:

int start, end;

NMFThreadf] tmp = new NMFThread[mimber_of.threads] ;

for(int i=0; i<number_of„threads; i++)
{

start = i*(k/number_of„threads);
end = (i+1)*(k/number_of„threads);

43

if(tt == (number_of.threads -1))
end = k;

tmp[tt] = new NMFThreadCstart, end, times);
tmp[tt].start();

}

where number_of_threads is the actual number of threads to be spawned, and k is the

same k that is defined in Sec 2.1.3. This way each thread will have roughly the same

number of bands to work with. If the bands cannot be easily divided between the

threads, then the last thread will usually have smaller amount of bands. The thread

objects are collected in an array for future reference.

We have also introduced a noteworthy optimization to the original algorithm.

Because we use the non-stochastic approach version H and W stay static during

a single iteration. Therefore any computations involving only W and H could be

computed once at the beginning of each iteration. We noticed that terms W TW and

H H T were computed inside one of the inner loops of the NMF code (see Appendix

A). We have moved it outside of the loop. To speed up the process we decided to

compute this step in parallel. Each thread will simply compute their assigned part of

W TW and H H T before entering the main computation loop.

Therefore the final algorithm has two parallel sections: one is a preprocessing step,

and the other one is the actual NMF computation. Since the processing cannot start

with an incomplete copy of W TW or H H T the threads must synchronize after they all

compute their respective preprocessing step. See Figure 3.2 for detailed diagram. The

yellow squares represent sequential parts of the code, while the threads are marked

in different colors.

44

Figure 3.2: Diagram of P-NMF with 4 Threads

The computational complexity of the algorithm depends on the size of Y (mxn),

W (mxk), H (kxn) and the number of theads t. The complexity of the first parallel

section can be computed as:

k 1
O(-kmn) — 0 (- k 2mn)

The cost of the second parallel section is:

(3.2)

k 1
0 (—nm + nk + mn + mk) — 0 (- k m (n + k) + kn(m + k))

t t
(3.3)

The formulas above only hold if we assume that the parallel speedup grows pro

portionally with the number of threads. The sequential steps do not contribute sig

nificantly to the complexity of the algorithm. The cost of scaling rows or columns of

W or H is 0(mk+k) or 0(kn + n) while the test for convergence is 0(mnk + mn).

We have not extensively tested the results of this algorithm with respect to accu

racy. However it can be noted that the code is semantically equivalent to the steps in

the original algorithm, and our modifications do not modify its outcome. Semantic

proof of this fact is beyond the scope of this paper. However we assume that this

equivalence is true when presenting the experimental results.

3.4.3 P ara lle l P ro jec ted G rad ien t N onnegative M atrix Fac

to riza tio n (P P G -N M F)

Parallelization of Lin’s algorithm posed entirely different challenge than the standard

NMF. Pucca’s algorithm updated both H and W simultaneously in a long compu

tationally expensive manner. It was relatively easy to divide that workload among

different threads, and then collect the data at the end. PG-NMF on the other hand

46

uses much smaller iterative steps in which it calculates a new H or W, then tests it,

and adjusts the a value, and re-calculates if needed. Furthermore, only respective H

or W values change between these iterations, while the rest of data matrices stays

unchanged. We were able to move most of the most computationally expensive calcu

lations to a single preprocessing step which is executed outside the inner loop. This

step is done only once for H and once for W per each major iteration ending in a test

for convergence.

During our tests we noticed that the time spend doing the preprocessing is neg

ligible compared to the time spent in the inner loop. One could usually count 10-15

or more iterations of the inner loop, in a single iteration of the outer loop. However,

if we had used the spectral domain distribution method on H and W calculations

in this algorithm, we would have to stop, and synchronize threads at each iteration

of the inner loop, to evaluate and adjust a. The overhead of creating and stopping

threads would be significant.

Instead we opted for a slightly different approach. Instead of parallelizing a single

inner loop iteration, we decided to compute several of them at the same time. Thus,

each thread receives it’s own a value, which is used to find and test a new H or W

value.

The a values are distributed among the threads using the following algorithm:

1. If we do not have a previous sum (ie. this is the first run):

(a) Initialize a single thread with a — 1 and evaluate it

2. if we do have a previous sum S then:

(a) Let i be the number of threads such that i £ {1,2, ...,n} where n is the

total number of threads; Let e be an integer such that e = l i f S ' < = 0 o r

e = - 1 if S > 0.

47

(b) Initialize all the threads with a = ¡3ie

The first iteration is always performed sequentially. This might be a disadvantage,

but in our experiments we have found that it is more beneficial to calculate the first

step this way. Once we have our fist resulting sum, we know whether to increment or

decrement our a on the next iteration. The complexity of the parallel computations

is:

0 (k 2n + 2 kn) = 0 (k 2n) (3.4)

for H and:

0{k2m + 2km) = 0 (k 2m) (3.5)

for W. The performance gain in this scenario is not always consistent. On some

iteration it might be more drastic than on the others. For example if the sequential

algorithm would need d iterations to find the best possible a then in a perfect situation

our implementation will need only ^ where n is the number of threads because our

algorithm is able to test n values at once. Unfortunately this is not always the case

since many of values tested in parallel may be incorrect.

On the other hand, in the long run PPG-NMF should be able to close-in on an

acceptable a value much faster than sequential algorithm. For example if we start at

a = 1 and the desired value turns out to be a — 10, 000 the sequential algorithms

will need 4 iterations in our algorithm will only need two. On the first iteration it

will test a = 1 and determine that it needs to be increased. On the second iteration

it will test 10, 100, 1,000 and 10,000 selecting the desired value.

Figure 3.3 shows a detailed diagram of the PPG-NMF algorithm. As before, the

48

parallel sections are in color, the sequential blocks are yellow, and logical branches

are in gray.

Figure 3.3: PPG-NMF Diagram

49

Chapter 4

Experim ental R esults

4.1 E xperim ental D ata Set

We used two data sets in our experiments. Visualizations of both images are shown in

Figure 4.1. The first sample (Fig. 4.1a) comes from the Hyperspectral Digital Imagery

Collection Experiment (HYDICE) [38]. It is an areal photo of a foliage scene taken

with a spatial resolution of 1.5m at wavelengths between 400nm and 2.5 micron. The

data set uses sub-scenes provided by the Spectral Information Technology Application

Center and has 85x185 pixels and 40 bands.

The second data sample (Fig. 4.1b) was taken using SOC 700 hyperspectral sensor

currently available in the Remote Sensing Laboratory at Montclair State University.

Originally the image was 160x160 pixels with 120 bands equally spaced within the

400nm and 900nm range (which encompasses the visible and and near-infrared spec

trum of light). For this experiment we have used 40 bands uniformly extracted from

the image cube. The image depicts an artificial plant, in a light brown ceramic pot.

Several leaves (shown in enhanced green on the picture) were placed between artificial

leaves of the plant. The picture was taken outside on a sunny day to benefit from

50

the full spectrum illumination. The pot was placed on a large rock formation, with a

brick wall forming the background.

□ □ □
□ □ □

□ □ □
□ □ □
□ □ □
CE □ □
□ □ □
a E □

Figure 4.1: Experimental Data: a) HYDICE data set - aerial shot of panels of various materials, b)
SOC 700 data set with real and artificial vegetation.

Figure 4.2 shows the HYDICE sample with all the hidden panels highlighted.

dark olive parachute (nylon)

light olive parachute (nylon)

nomex kevlar (woodland)

green tenting

cotton (green woodland)

nylon (green woodland)

cotton (green)

desert BDU (nylon)

Figure 4.2: HYDICE Data Sample with the panels hilighted

Figure 4.3 shows the separated spectra obtained from the source image after sta

bility was achieved.

51

Figure 4.3: Abundance graphs for ten different materials present in the HYDICE sample after the
stability was achieved, a) - h) panels in rows 1-8 (top down), i) vegetation patch, j) exposed ground

A similar separation graphs were observed for the SOC 700 sample (See Figure

4.4).

The same set of images was used in [10] and [9] producing very promising results

in endmember extraction. The spectra graphs in Fig. 4.3 and 4.4 were obtained from

these experiments. In this paper we will focued our discussion mainly on the speedup

obtained thanks to parallel processing. For detailed discussion on the accuracy of the

sequential NMF algorithms used to get these results we refer the reader to [10].

In section 4.4 we only discuss the speed and performance related issues. Both

52

Figure 4.4: Abundance graphs for ten different materials present in the SOC700 scene after the
stability was achieved, a) vegetation, b) artificial plant, c) ceramic pot, d) base rock

algorithms are semantically analogous to their sequential counterparts described and

tested earlier, thus there was no need to collect their spectra. We believe that they

would produce results very similar to the ones presented here.

4.2 T esting P latform and M achine L im itations

All the tests described in this paper were run on a SunFire v880 machine. The system

has 4 UltraSparc9 processors clocked at 750MHz, 8 GB of RAM and is running Solaris

8. The code was run on Java 2 Runtime Environment, Standard Edition 1.4.0.1

(build 1.4.0_01-b03). This was a public university machine available to graduate

and undergraduate Computer Science students and faculty. We had no control over

system wide resource quota, and the tests were run from a standard student level

account. The tests were ran from a shell script starting new processes automatically.

We have tried to run the test during off hours where the system load was low, and

few users were logged in. Each test would take several hours, and once the testing

53

started it would run through 5 complete sets before stopped. During that time there

was no mechanism to check for system load or stop execution if some other users start

resource intensive processes of their own. Therefore it is entirely possible that some

of our results were skewed by outside interruptions caused by other people using the

same machine. We collected several data sets and averaged them in an attempt to

limit the impact of such outside influences on our experiments.

4.3 T esting P rocedure

For each data set we conducted 5 tests using P-NMF and 5 tests using PPG-NMF.

Each test consisted of independent 8 runs. The application was restarted and reini

tialized after each run. Random matrices were initialized using a seed value. In total

5 randomly chosen seed values were used. Each one was assigned to one P-NMF test

and PPG-NMF test. All the runs withing a given test were initialized with the same

seed value so that they could be easily compared.

As our stooping criteria we have picked the change of f(W,H). At each iteration

the function was evaluated and compared to the result from previous evaluation. If

the difference between the two was less than 0.001 the execution was stopped.

4.4 R esu lts

In this section we will discuss the results of our tests. The following metrics were

used to test our algorithms:

1. Accuracy - as the data is processed, at each iteration we evaluated the Equation

2.3 and stored the resulting value. We then graph this data against the number

54

of iterations to show how the value changes over time. The accuracy graphs are

created by tracking 5 different sequential runs and graphing their results.

2. Average Execution Time - each run is timed using built in Java time functions.

The average execution graph is created by averaging the execution times of all

the runs in each test.

3. Average Execution Time per Iteration - we also graph the approximate execu

tion time of each iteration. The graph is created by dividing the total execution

time, by the number of iterations.

4. Speedup - finally, we also calculate speedup as defined in Section 3.2.1.

4.4.1 P -N M F

Figure 4.5 shows the accuracy progression of the P-NMF algorithm using the HYDICE

data. Please note the the most of the significant changes in the value of Equation

2.3 happen during the first 100 iterations. After around 200 iterations the changes

become very small. Choosing a better convergence criteria could potentially cut

the total execution time in half or more. One should be careful however, since the

graph shows very clearly that close to 100 iterations there are several ’’bumps” in the

curve. These are local optima of the function which can cause the execution to end

prematurely, with less than perfect distribution.

The SOC 700 tests show a similar pattern. The accuracy curve is much smoother,

and even though the test ran for 2000 iterations, the change after the first 100 inte

grations was insignificant (see Fig. 4.6). If we use less strict convergence criteria, it

would stop much sooner.

As it was, the sequential algorithm took approximately 45 minutes to finish. The

best time was when ran with 4 threads, finishing around 23 minutes (See Fig. 4.7).

55

Figure 4.5: Accuracy Graph for P-NMF applied to the HYDICE data sample

Figure 4.6: Accuracy Graph for P-NMF applied to the SOC 700 data sample

56

The SOC 700 sample took considerably more time due to it’s size. However the

overall performance scaled very similarly to the HYDICE sample (See Fig. 4.8).

H Y D iC E P P G -N M F

Figure 4.7: Average Execution Time for P-NMF applied to the HYDICE data sample

Figure 4.8: Average Execution Time for P-NMF applied to the SOC 700 data sample

You can also see that the average execution time per iteration is also drastically

reduced in the multi threaded runs. (See Fig 4.9 and 4.10).

The average speedup values of P-NMF on HYDICE data set are present in Figure

4.11 and for the SOC 700 in Fig. 4.12. The parallel performance falls short of the

57

8000

7500

7000

.9 6000

5500

4500

H Y D IC E P -N M F

1 8
N u m ber of T h re a d s

Figure 4.9: Average Time per Iteration for P-NMF applied to the HYDICE data sample

N u m ber of T h re a d s

Figure 4.10: Average Time per Iteration for P-NMF applied to the SOC 700 data sample

58

ideal speedup but it is still a significant improvement over the sequential algorithm,

since the best case scenario in our case manages to roughly cut the execution time in

half.

H Y D IC E P P G -N M F S p e e d u p

N u m ber of T h re a d s

Figure 4.11: Average Speedup for P-NMF applied to the HYDICE data sample

N u m ber of T h re a d s

Figure 4.12: Average Speedup for P-NMF applied to the SOC 700 data sample

A perfect speedup, as described in Sec. 3.2.1 could not possibly be achieved

because some parts of the algorithm must be run in sequence. Therefore at multiple

occasions during the execution, the threads will stop, queue up or wait.

59

Since our test machine has only 4 CPU’s available the runs with 5-8 threads

performed relatively poorly compared to the 4 threaded run. Having more than 4

threads executed at the same time on a 4 CPU machine means that several threads

will be assigned to a single processing unit, and will have to be swapped in and out

at equal intervals. Thus the speedup is always dictated by the number of available

processors.

As shown in the graphs above, the performance of P-NMF is directly proportional

to the number of available CPU’s. It can be expected that the algorithm will scale

very well when run on machines with more than 4 CPU’s. A workstation with 8

processors for example should be able to cut down the execution time up to 4 times.

4.4.2 P P G -N M F

The accuracy curves for PPG-NMF are very similar to the P-NMF ones. It is worth

noting that unlike P-NMF, PPG-NMF does not seem to have very pronounced local

optima. Instead it seems to decrease really fast in the first 10 iterations, then hit a

small plateau and, drop again and then decrease very smoothly for the rest of the

run. After 50 iterations changes are very minuscule. (See 4.13)

The PPG-NMF finishes processing the HYDICE sample in roughly 12 minutes.

The multi-threaded runs show some improvement, but it is not as large as in case of

P-NMF. Using 4 threads we can shave off over 2 minutes from the total execution

time. (See Fig. 4.14 and 4.15)

The calculated speedup values show that the 4 thread algorithm is only 1.14

times better than the sequential one. (See Fig. 4.16). We will attempt to explain the

difference in speedup between the two algorithms in Section 4.4.3.

The accuracy curve for PPG-NMF with the SOC 700 data set is very similar to

60

400

300

250

< 200 -

< 150

50

P P G -N M F

ttimHIHHIIIIIII||jHmHHHHIIIIHIIIIHIIHHmilllllHIHIIII|IIHIIIIIIIIIIIIIHIIIIIIIIIHHIHHIIHHIIIIIIjllHHIIIIIIHItlllim

50 150
Iterations

Figure 4.13: Accuracy Graph for PPG-NMF applied to the HYDICE data sample

H Y D IC E P P G -N M F

Figure 4.14: Average Execution Time PPG-NMF applied to the HYDICE data sample

61

13500

12500 -

® 12000

11500 -

11000 -

H Y D IC E P P G -N M F

0 1 2 3 4 5 6 7 8 9
N u m ber of T h re a d s

Figure 4.15: Average Execution Time per Iteration PPG-NMF applied to the HYDICE data sample

H Y D IC E P P G -N M F S p e e d u p

N u m ber of T h re a d s

Figure 4.16: Speedup for PPG-NMF applied to the HYDICE data sample

62

the HYDICE one. In both cases the function 2.3 stops changing rapidly after roughly

50 iterations.

Figure 4.17: Accuracy Graph for PPG-NMF applied to the SOC 700 sample

Plotting the average execution time (Fig. 4.18), and average execution time iter

ation (Fig. 4.19) shows a strange anomaly. The run executed with 3 threads ends up

being slightly slower than both the 2 and 4 thread runs. It is worth noting that no

such phenomena was observed with the HYDICE data set (See Fig. 4.14).

Figure 4.18: Average Execution Time for PPG-NMF applied to the SOC 700 sample

63

72000

N u m ber of T h re a d s

Figure 4.19: Average Execution Time per Iteration for PPG-NMF applied to the SOC 700 sample

The speedup achieved with the SOC 700 data was slightly better than the one

observed with HYDICE. The run with 4 threads ended up being 1.27 times better

than the sequential one.

N u m ber of T h re a d s

Figure 4.20: Speedup for PPG-NMF applied to the SOC 700 sample

This might seem like a very poor result, but in fact this is a significant improvement

with respect to actual processing being done. For example, let’s examine how many

times on average does the PPG-NMF algorithm have to re-evaluate a on any given

64

iteration. Let’s assume that a PPG-NMF ’’round” consists of evaluating Equations

2.16 and 2.17 and testing their results using Equations 2.18 and 2.19. If the test fails,

we need to go back and calculate a new H or W with a modified a.

In our sequential runs we essentially saw on average 5.5 rounds per iteration. For

example, it would take 3 — 4 rounds to find H and 5-6 rounds to find W. Figure

4.21 shows that the ratio of rounds per iteration drops significantly as we add more

threads. This ratio is almost identical in the HYDICE sample. With two threads we

only require an average of 3 rounds per iteration. With 4 threads this ratio drops to

1.5 — 2. With seven or more threads, we always get one round per iteration. This

means that the correct a was always found among the 7 increment steps above or

below the starting point.

R oun ds pe r Iteration

N u m ber of T h re a d s

Figure 4.21: Rounds Per Iteration in PPG-NMF (SOC 700 sample)

One explanation of the poor speedup can be the fact that 4 threads we still occa

sionally have to do more than one round per iteration. Therefore, our parallelization

scheme was not being used up to full potential. To get the best performance we

needed at least 6 or 7 threads. Of course our experiments with 5-8 threads performed

poorly, because of hardware limitations. With only 4 CPU’s available the threads

65

were competing for resources. Given 8 processors PPG-NMF could potentially show

much better speedup results because.

It is worth noting that executing PPG-NMF on a machine with more than 8

CPU’s will not impact it’s performance since the efficiency of the algorithm is largely

dependent on rounds per iteration. It is not possible to further improve this ratio

beyond the 1 round per iteration average. The peak performance of PPG-NMF can

be achieved with factorization dedicated 8 CPU machine running with 8 threads.

4.4.3 D iscussion of R esu lts

As can be seen from the results above, PPG-NMF is on average faster than P-NMF.

However, P-NMF is better suited toward parallelization. The multi threaded P-NMF

implementation will scale well as more CPU’s and threads are added making it a very

attractive choice for high end, multiple CPU machines. It can also be ported over

into clustered.

On the other hand, PPG-NMF doesn’t scale that well. There seems to be an

upper cap on how fast the algorithm can go, beyond which adding more processors

would be wasteful. However, since it was on average able to process the same data

sample in roughly half the time as PPG-NMF it might be a good alternative for

the low and medium range multiprocessors. The optimal performance seems to be

achieved at around 8 CPU’s.

This implementation is not appropriate for clusters. However an alternative im

plementation which distributes data in a different way could potentially change this.

66

Chapter 5

Java Based H yperspectral Image

Processing Toolkit

5.1 In troduction

To perform any analysis or feature extraction, it is necessary to implement tools

that are able to manipulate the hyperspectral data. The integral part of this thesis

was developing a Java based hyperspectral processing framework with a graphical

user interface. This posed several challenges that needed to be overcome before a

workable implementation could be created.

The framework needed appropriate data structures to store, and process hyper

spectral files. A graphical user interface including image visualization tools were

needed to display processed image on the screen either in gray scale or in color.

Other auxiliary tools were also needed in order to allow users to obtain a data dump

of the image, or inspect the spectra values at a given location Finally, a complex

input/ output system had to be designed to handle the wide variety of hyperspectral

data formats available.

67

5.2 D ata S tructures and R epresen tation

In Section 1.2.2 we explained the complexity of hyperspectral files. One of the most

fundamental problems when developing algorithms for processing such data, is com

ing up with data structure which would support their complexity. What are the

requirements for such a data structure?

1. ability to store multidimensional data

2. support for large number of data types

3. compatibility with Java visualization tools

Since java does have limited support for rendering raster images we chose to extend

that functionality to include handling hyperspectral data. The DataBuffer class in

the j ava. awt is used internally by several of the raster image implementations. It

is an abstract container class designed to hold a set of arrays (bands). Each band is

composed of a set of scan lines which can be accessed individually [39].

Usually only 3 bands are used for red, green and blue channels but there is no limit

to how many bands can be defined. Furthermore, DataBuffer class itself is abstract.

There is a dozen of implementations of this class, each designed specifically for a

certain data type (ie. DataBufferDouble, DataBufferlnt, DataBufferByte and

etc..). While not all possible data type implementations are present in the standard

libraries, new ones can be easily added by extending the DataBuffer.

In our application all the hyperspectral data is internally stored in data buffers.

When reading in, the data format, be it BIL, BIP or BSQ is ”unrolled” into the

standardized format described in Section 2.1.2, and then fitted into appropriate

DataBuffer implementation.

Since the underlying structure of DataBuf f er is a two dimensional array, we some

times choose to extract it for performance reasons. During the iterative processing

of NMF, interfacing DataBuffer via method calls would create unnecessary overhead.

Thus the processing algorithms work with raw arrays, usually of type double. When

processing is done, data is once more wrapped into a DataBuffer before being returned

to caller.

Nearly all the modules, save for those which actually perform I/O operations,

only need to know how to read from, and write to the generic DataBuffer class.

This provides a unified application-wide data interface that makes it easy to write

additional modules, or since DataBuffer is part of the core AWT API, to the share

data with other Java imaging applications.

5.3 D esign ing a G raphical U ser Interface

The discussion of GUI design should start by choosing appropriate widget toolkit.

Java offers developers several attractive graphical environments. We will first take a

closer look on each of them. Visualization details will then be explained in terms of

that chosen toolkit.

5.3.1 C hoosing a W idget Toolkit

There are three competing major widget toolkits that can be used for building graph

ical user interfaces in Java: AWT, Swing and SWT. Both AWT and Swing are cur

rently included in Java Standard Edition, while SWT is an external set of libraries

that needs to be downloaded and deployed separately.

The AWT toolkit was the first widget system implemented for Java. It is composed

69

from fairly simple wrapper classes which in turn make calls to the native windowing

environment to display GUI elements. Since each platform has a different set of native

widgets, Sun only included the most basic ones in AWT [37].

Swing toolkit was developed in 1998 as a replacement of AWT. It abandoned the

idea of using the systems native windowing environment, and designed a complete,

feature rich widget toolkit entirely in Java. Swing is still in active development,

and offers an impressing number of different graphical tools and GUI elements to

the developers. For example, the package included in Java 1.4 includes 85 public

interfaces, and 451 public classes [40].

The pure Java implementation however has proved to be both a blessing and a

curse for this toolkit. Since Swing elements are really Java objects, they can only

communicate with the underlying operating system through the JVM. In some cases

this can create significant overhead, and thus Java based interfaces will often appear

to be less responsive, or slower than their native counterparts [37].

The Standard Widget Toolkit (SWT) [41] developed by IBM is a hybrid between

Swing and AWT. It combines both approaches by including both calls to native widget

elements, as well as implementing pure Java based ones. This helps to significantly

improve the performance without sacrificing any of the advanced features one may

look for in an enterprise grade product [37].

The difference in performance, and responsiveness between Swing and SWT how

ever is widely disputed and highly controversial. For example some benchmarks claim

that Swing can outperform it’s competitor with respect to speed of rendering and re

drawing windows on non-windows platforms [42]. Thus is is not very clear if SWT is

really faster than Swing, or if overhead of the native calls and communication between

Java and non-Java elements diminishes any performance gains stemming from using

a native widget implementation.

70

Benchmarking the two toolkits is out of scope for this paper, and thus we chose

Swing as our GUI toolkit because it is a Java standard, and it reduces the complexity

of our code by eliminating dependency on a third party library.

5.3.2 G U I Overview

When designing a graphical user interface for our framework, we wanted to emulate

some of the existing graphical suites such as Photoshop, by using a single program

window. Since our application would usually require several different graphical mod

ules to be on the screen at the same time (image viewing pane, processing toolbar

etc..) we wanted to bind them all to a single system window which would be easily

minimized or closed. This is different from the approach used in graphical suites such

as the open source photoshop like GIMP suite or the popular hyperspectral process

ing suite called ENVI. These applications employ several free floating windows, each

of which has to be closed, minimized or repositioned separately.

The main program window is built using the Swing class called JDesktopPane. It

creates a single window, which can contain several sub windows that are completely

contained within it (ie. can’t be detached, or moved outside of the main window).

See Figure 5.1.

Since the hyperspectral images are usually simple binary files with no headers, we

do not attempt to guess the type and format of the file upon opening. Instead we

pass that responsibility to the user. Identification of data type and file format based

on analysis of raw binary data is a very complex problem that is out of scope for this

paper.

The Open dialog allows the user to input important information about the files

such as it’s width and height in pixels, number of bands, data type and hyperspectral

71

Figure 5.1: Hyper J GUI: Main Window

encoding format. It also allows the user to browse and choose the file he wants to

open (see Figures 5.2 and 5.3).

Figure 5.2: HyperJ GUI: Open File Dialog

The user input will be automatically saved into a file . hyper j located in the user’s

home directory. On windows machines this would usually be:

72

Open File

BYTE ▼
BYTE
SHORT
U SHORT
I NT
FLOAT
DOUBLE

Format; BIL ▼ Significant Bits 8

File Info

File Path: /home/maciakl/Documents/TIPJULl.LAN

Data Type:

Image Prod1
c

Image Widtf;
Red: 4

Browse

mage Heigth:
Green: Blue:

Open Cancel

[Use 0 for Default]

169 Bands: 7 Header Length: 128
□ Load only RGB

Figure 5.3: HyperJ GUI: Open File Dialog Details

C:\Documents and Settings\[Username]\Application DataVhyperj or
°/0appdata7o\. hyper j

On Linux and Unix on the other had it would be:

/home/ [username]/.hyperj or
~/.hyperj

It is a very simple text file formated according to the ”key=value” formula that

is standard for java Properties. On subsequent runs, the application automatically

reads in the file, and fills in the data. Thus the user can easily go back and reopen

last viewed file without the need of retyping all the information in the Open File

dialog. The . hyper j file is also used in the command line mode (see Section 5.5).

Please note that under Linux and Unix this will be a hidden file, but under Windows

it will be a normal file located in a hidden directory.

Once the file is open, the user will see the Image Toolbox (See Fig: 5.4). It

includes some information on the file and a set of function buttons that allow the

user to display the image on the screen, or show a textual representation of the image

contained in each band on the screen. It also allows to initiate one of the NMF

processing algorithms.

73

Figure 5.4: HyperJ GUI: Image Toolbox

Figure 5.5 shows the application in action. The opened hyperspectral image can

be seen on the rights, and the text dump of the bandvector data is visible below the

toolbox.

IQ Image Tool Box c f t f 13
File Path: /home/maciakl/Documents/TIPJ

j Data Type: 0
Mj Format: 0

t . Hide Toolbox

Show Image
Significant Bits 8

plmage Width: 169 Te xt Dump

|; Image Heigth: 169 Run Standard NMF

j. H eader Length: 128 Run Parallel NMF
Red: 4 ! Green: 3 Run Sequential Projected Gradient NMF

Blue: 2
|. Only RGB: false

Run Stochastic NMF

<

E3 Text Dump ¿ € iEf
Band #0:
Band #1:
Band #2:
Band #3:
Band #4:
Band #5:
Band #6:

♦ HI

86.0 89.0 91.0 87 .0 85.0 85.0 86.0 89 .0 93 .0 91.0 92.0 87.0 92.0 95.0 96.0 91.0 91.0 93 .0 91.0 93.0 95.0 87.0 89.0 91.0 91.0 95.0 101.0 102.0 97.0 98.0 94.q
32.0 35.0 35.0 35 .0 34.0 31.0 34 .0 36 .0 36 .0 36.0 37.0 33.0 37.0 38.0 38.0 38 .0 35.0 35 .0 37 .0 38.0 39.0 34 .0 34 .0 35.0 36 .0 39.0 41 .0 43 .0 40.0 40.0 39 .0 3
28.0 31.0 35 .0 34 .0 28.0 30.0 33 .0 34 .0 34 .0 36.0 38.0 30.0 37.0 39.0 39.0 39.0 33.0 36 .0 37.0 37.0 39.0 32.0 32.0 33.0 36.0 38.0 43 .0 47.0 45.0 43.0 39.0 3
121.0 114.0 107.0 105.0 103.0 122.0 118.0 113.0 108.0 109.0 116.0 119.0 114.0 113.0 114.0 115.0 131.0 127.0 119.0 116.0 116.0 126.0 123.0 120.0 115.0
72.0 76 .0 76.0 74.0 72.0 67 .0 73.0 74 .0 77.0 74.0 76.0 74.0 84 .0 85.0 81.0 81 .0 82 .0 83 .0 83 .0 81.0 82.0 81 .0 82 .0 79.0 79 .0 81.0 107.0 117.0 103.0 97.0 93
22.0 24.0 24.0 23.0 22.0 19.0 21.0 23 .0 25.0 23.0 23.0 23.0 27.0 29.0 25.0 24.0 26.0 26 .0 27.0 25.0 26.0 26.0 25.0 25.0 24.0 27.0 43 .0 51.0 44.0 37.0 37 .0 3
151.0 150.0 150.0 150.0 150.0 149.0 148.0 148.0 148.0 148.0 148.0 147.0 147.0 148.0 148.0 147.0 148.0 147.0 147.0 147.0 147.0 146.0 147,0 147.0 148.0 t

Figure 5.5: HyperJ GUI: HyperJ with an open image and text dump

At the present, only one image can be open within the GUI at a time. When

making the decision regarding opening images, we were mostly concerned about per-

74

formance and memory usage. Holding several large images in memory would easily

degrade the overall performance, and interfere with the NMF algorithms. However,

the code could be easily modified in the future to allow multiple images to be open

at the same time.

5.3.3 V isualization of H y p ersp ec tra l D a ta

In Java 2D API the basic representation of an image data is the Raster class. Raster
is a high level abstraction which encapsulates the raw image data (as a DataBuf f er)
and a SampleModel object which describes how that data is organized. For our

purposes we used BandedSampleModel implementation which accurately represents

multi-band data and which can be easily generated based on the DataBuffer and

known properties of the image [39].

Unfortunately BandedSampleModel does not implement all of the required datatypes.

The only available types are byte, unsigned short, short, integer, float and double.

We are planning to extended this class and add implementation for unsigned inte

gers, bytes and long integers at some point in the future. In the meantime however,

our application was designed to handle only the DataBuffers with the known and

supported types [39].

In order to display a Raster on the screen, we must combine it with a ColorModel
object which encapsulates methods for translating a pixel value to color components

(red, green and blue) and an alpha component. Raw pixels contained in the Raster
must be transformed to these components before they are rendered. Similarly to

SampleModel the ColorModel only supports the same 6 basic data types and will at

some point need to be extended.

Given a Raster and a ColorModel one can generate a Bufferedlmage object

75

which is an actual renderable element. It can be displayed on using any Java tools

support rendering images. For example, in the maciak.hyper .gui. ImageViewer
class we use JLabel as he canvas on which out image is displayed.

The mac iak. hyper. img. Spectral Image class aims to simplify this rather com

plex environment. It can be initialized with a DataBuffer object, and few other

atributes (passed in as integers, or predefined constants) and then automatically gen

erate a SampleModel, ColorModel, Raster and Bufferedlmage as needed. Figure

5.6 illustrates the relationship of the Spectral Image class to built in elements of Java

2D API.

Figure 5.6: Visualization of Hyperspectral Images using Java

76

5.3.4 S ta rtin g th e G U I In terface

To start the GUI Interface you need to run the Main class located in the maciak.hyper

package. To accommodate the memory requirements of this program you may need

to increase the maximum heap size for the virtual machine. In our tests we used the

following line to start the program:

java -Xmxl024mb maciak.hyper.Main

We recommend using at least 1GB of heap memory. When using the pre-compiled

compresssed JAR file version of the tool the start command would look as follows:

java -Xmxl024mb hyp.jar

Please see Apendix A for instructions on how to compile the code and create the

JAR file.

5.4 H andling I /O

Choosing a unified data exchange format to be DataBuffer as outlined in Section

5.2 is only part pf the solution. The input and output algorithms for a hyperspectral

processing toolkit must be able to handle the variety of different image encodings

(see Section 1.2.2). Following steps have been taken to implement a working I/O

framework for our application.

77

5.4.1 U nified Fram ew ork for H andling D ifferent H yperspec-

tra l D a ta Types

We have developed two base classes called SpectralReader and SpectralWriter
as part of the maciak.hyper. io package. These two methods create general frame

work for handling I/O data, and include abstract methods such as readFullyO or

writeFullyO that need to be implemented by child classes. Since hyperspectral

images use so many different data types and encodings creating a generic logic for

read and write methods is not possible.

Thus, next we developed a set of child classes which implement the abstract read

and write methods for different data types. In total, we need up to 42 different

child classes to fully support all the possible combinations of data types and encoding

formats. Following convention was adopted to name these classes:

(Encoding F or mat) (DataT ype) [Reader \ W riter]

For example: BSQDoubleReader,BILIntReader or BILUnsignedByteWriter.

The SpectralReader and SpectralWriter classes also have a stic methods called

getReaderByTypeO and getWriterByTypeO respectively. Both methods take in a

ImageFile object which is also part of the maciak.hyper.io package. This ob

ject is used for storing information about an image file on the disk. As opposed to

maciak. hyper. img. Spectral Image it does not contain any actual data in it. What

it does contain is information and methods directly related to I/O such as image

header offset, line length, data type, encoding format and etc.. It can also be used to

generate blank data buffers of appropriate type.

Based on the information stored in the ImageFile object SpectralReader and

78

SpectralWriter create and return a reader or writer object of given type back to the

caller. However, the return type of the get methods is generic SpectralReader and

SpectralWriter object. This is intended polymorphism ensuring that outside classes

only have to deal with a single interface for reading and writing, even though there

are actually 42 different low level implementations of the read and write methods.

There is a higher level of abstraction built into the system. Most of the display,

and GUI based classes never interact directly with the reader and writer classes

or the ImageFile class. All of them simply interface with static methods of the

ImageFactory class from the maciak.hyper.gui package. This class takes a set of

parameters, and then simply returns a Spectrallmage object.

Figure 5.7 shows a partial class diagram for the I/O framework, showing the

relationships between classes involved in reading hyperspectral images. Only two

implementations of SpectralReader were shown in the image, to avoid visual clutter

(including 42 nearly identical classes would add unnecessary complexity to the dia

gram). Similarly, writer classes were also omitted. They they have the same kind of

relationship with ImageFactory as the reader classes.

5.4.2 Big E n d ia n /L ittle E nd ian C onversion

Java presumes that binary data is stored most significant byte first. All the files

written by java are in Big Endian notation. When reading data from a file Java will

usually assume that it is in Big Endian notation as well. This is not necessarily an

issue when reading files using basic stream reader applications, byte by byte. In such

situation one is free to choose the reading order. However at times it is convenient to

harness the power of Java core libraries to streamline, and automate mundane I/O

functions. For example java, io.RandomAccessFile provides much more convenient

set of methods allowing one to specify the type of read data and avoid tedious byte

79

Figure 5.7: Partial Class Diagram of the I/O Framework

shifting, and type conversions and concentrate on the program logic.

Unfortunately most the methods of RandomAccessFile assume big endian byte

order in the read files. This may sometimes coause problems as binary files generated

on the Intel x86 platform are usually stored in the little endian notation. To counter

this shortcoming we have developed the maciak.hyper. io .ByteFlipper class. It

offers a very simple solution to a complex problem. If a file is encoded in little endian

notation, we simply run it through ByteFlipper and convert it to big endian for

further processing.

80

This is accomplished by reading in the file one word (4 bytes) at a time. Each

word represented as a byte array of length 4 then reversed:

bytef] reversedWord = new byte[word.length];

for(int i=0, j=word.length-1; i<word.length; i++, j—)
reversedWord[i] = a[j] ;

Each word is then written into a file, creating an exact copy of the original, only

with opposite endian encoding. The conversion can be carried out both ways. For

example, if necessary an output file written by the Java application can be converted

back to little endian for further processing using Intel based tools using the exact

same notation and method calls.

5.5 C om m and Line U ser Interface

In addition to a graphical user interface, we also wanted to have a command line mode

of operation. Not having to load a GUI interface can be an advantage. Drawing

windows on the screen, and capturing user events takes up memory and resources

which could be beter used elsewhere when processing large data sets. In addition

it makes the code more portable. Some Unix and Linux SMP worstations may not

have X server installed, or do not allow X forwarding. Therefore only way to run the

processing algorithms on a headless remote machine like that is to have a command

line mode.

Both the GUI and the CLI interfaces can be accessed by running the main method

of the mac iak. hyper .Main class. If the class is run without any command line pa

rameters then the graphical mode is invoked. If on the other hand it is run with the

81

-c argument, it will then launch in the CLI mode. The full command line usage for

this mode is as follows:

java -Xmxl024mb maciak.hyper.Main -c -t=threads -i=iterations -o=outbands
-m=mode -s=seed -l=logging -k=stop-condition

The two first arguments are mandatory, while the last two are optional. The

explanation of arguments can be found in Table 5.5.

Argument Explanation Default Value Accepted Values
-t number of threads to be used 1 any int
-i maximum number of iterations 1000 any int
-o desired number of output bands same as orig any int
-1 enable logging to a file no yes or no
-s seed for random number generator none any int
-k stop condition (kill value) 0.0001 any float < 1
-m nmf algorithm to be used standard standard

sprojected
pprojected
stochastic

Table 5.1: CLI Arguments

An example of usage could be:

java -Xmxl024mb maciak.hyper.Main -c -t=3 -i=2000 -o=20
-m=pprojected -s=1234567890 -l=yes

or for the pre-compiled JAR file:

java -Xmxl024mb -jar hyp.jar -c -t=3 -i=2000 -o=20
-m=pprojected -s=1234567890 -l=yes

The above commands would run the Parallel Projected Gradient algorithm for 1000 it

erations, or until it convergers (whichever comes first) using 3 threads and outputting

82

an abundance array image with 20 bands. If the band specification is omitted then

the output will have the same number of bands as the original image. If the algorithm

is omitted, default NMF algorithm will be used.

In the CLI mode all the messages are written into standard output. When the

application is started in the GUI mode however, the output is redirected to a log file

. hyper j-log located in the same directory as . hyper j.

83

Chapter 6

Conclusions and Future Work

In this paper we set out to research investigate two new approaches to solving the

Nonnegative Matrix Factorization problem when employed for feature extraction in

hyperspectral imagery. Previous work partially reviewed in this document has shown

that NMF is a viable, and effective tool in that research area. We devised two

parallel algorithms based on known and tested NMF implementations with the aim

of improving their overall performance when run on a multi processor machine. We

then implemented these algorithms using Java, and tested them on a 4 CPU Solaris

workstation

In both cases we were successful. Upon conducting a series of tests we concluded

that our parallel implementations clearly outperform their sequential predecessors. In

the case of standard NMF, we found that our algorithm is very flexible and scalable.

Parallel Projected Gradient algorithm on the other hand could only be improved to

some extent. Our implementation was shown not to be as scalable as the standard

P-NMF one. However it still offers a notable improvement in performance.

Because of hardware limitations and time constraints we were unable to test our

algorithms on machines with more than 4 CPU’s. In our findings we made theoretical

84

assumptions about their scalability based on the collected data. In the future, we

would like to conduct some more thorough testing on a SMP machine with 6-8 CPU’s.

This would help us to verify the claims about potential increase in speedup for our

PPG-NMF implementation.

We would also like to investigate alternative methods of parallelization that could

have been used for the PPG-NMF algorithm. The fact that our current implementa

tion does not seem to scale with the number of available processors warrants further

research into this subject. Developing a more scalable implementation would be highly

desirable, because PPG-NMF is both faster and more accurate than the P-NMF.

A final logical continuation of this work would be extending P-NMF into a dis

tributed cluster based implementation. This could be done using Java PRC API,

or custom third party clustering tools outlined in this paper. Since we already have

the parallelization framework, we would only have to develop and model efficient

mechanism to share data between the parallel nodes without introducing to much

communication overhead.

While working on this paper we have also developed an extendibles, java based

hyperspectral imaging framework, and a Graphical User Interface for our factorization

tools. This framework is by no means complete, and could be extended to support

new data types, or even feature extraction algorithms. It could be worth while to

implement both sequential and parallel versions of other popular algorithms such as

PCA, ICA and more.

85

Bibliography

[1] D. Lee and H. Seung, “Learning the parts of objects by non-negative matrix

factorizaton,” Nature, vol. 401, pp. 788-791, 1999.

[2] C.-J. Lin, “Projected gradient methods for non-negative matrix fac

torization,” Neural Computation, 2007, to appear. [Online]. Available:

http://www.csie.ntu.edu.tw/ cjlin/papers/pgradnmf.pdf

[3] J. B. Campbell, Introduction to Remote Sensing. Guilford Press, 2002.

[4] A. P. Cracknell and L. Hayes, Introduction to Remote Sensing. Taylor and

Francis, 1991.

[5] S. A. Robila, “Using spectral distances for speedup in hyperspectral image pro

cessing,” International Journal of Remote Sensing, vol. 26, pp. 5629-5650, 2005.

[6] A. Plaza, D. Valencia, J. Plaza, and C.-I. Chang, “Parallel implementation of

endmember extraction algorithms for hyperspectral data,” Geoscience and Re

mote Sensing, IEEE Transactions on, vol. 42, pp. 650-663, March 2004.

[7] C. I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Clas

sification. Springer, 2006.

[8] N. M. Short. (2006, March) Remote sensing tutorial. [Online]. Available:

h ttp ://r st.gsfc.nasa.gov/

http://www.csie.ntu.edu.tw/
http://r

[9] S. A. Robila and L. G. Maciak, “A parallel unmixing algorithm for hyper spectral

images,” D. P. Casasent, E. L. Hall, and J. Ronning, Eds. SPIE.

[10] S. A. Robila and L. G. Maciak, “New approaches for feature extraction in hy-

perspectral imagery.” IEEE LISAT, 2006.

[11] N. Keshawa and J. Mustard, “Spectral unmixing,” IEEE Signal Processing Mag

azine, pp. 47-57, 2002.

[12] D. Landgrebe, “On information extraction principles for hyperspectral data,”

School of Electrical and ComputerEngineering, Purdue University, 1997.

[Online]. Available: http://dynamo.ecn.purdue.edu/ landgreb/whitepaper.pdf

[13] D. Landgrebe, “Multispectral data analysis: A signal theory perspective,” School

of Electrical and ComputerEngineering, Purdue University, April 1998. [Online].

Available: http://cobweb.ecn.purdue.edu/ beihl/MultiSpec/SignaLTheory.pdf

[14] “Envi refference guide,” ITT Visual Solutions, July 2006. [Online]. Available:

http://www.ittvis/envi

[15] S. A. Robila, “Advanced image processing techniques for remotely sensed hy

perspectral data: Independent component analysis,” P. K. Varshney and M. K.

Arora, Eds. Springer, 2004, pp. 109-132.

[16] V. P. Pauca, J. Piper, and R. J. Plemmons, “Nonnegative matrix factorization

for spectral data analysis,” Linear Algebra and its Applications, vol. 416, no. 1,

pp. 29-47, July 2006.

[17] M. Chu and R. Plemmons, “Nonnegatie matrix factorization and applications,”

Bulletin of the International Linear Algebra Society, vol. 34, pp. 2-7, 2005.

[18] D. Lee and H. Seung, “Algorithms for non-negative matrix factorization,” Ad

vances in Neural Processing, 2000.

87

http://dynamo.ecn.purdue.edu/
http://cobweb.ecn.purdue.edu/
http://www.ittvis/envi

[19] M. Chu, F. Diele, R. Plemmons, and S. Ragni, “Theory, numerical methods and

applications of the nonnegative matrix factorization,” SIAM Journal on Matrix

Analysis and Application, 2004.

[20] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA: Athena Sci

entific, 1999.

[21] S. Ingram, “An improved projected gradient method

for nonnegative matrix factorization.” [Online]. Available:

http: / / aux.planetmath.org/files/papers/332/ cs542_final.pdf

[22] A. Cichocki and R. Zdunek, “Multilayer nonnegative matrix factoriza

tion,” Electronics Letters, vol. 42, pp. 947-948, 2006. [Online]. Avail

able: http://www.bsp.brain.riken.jp/publications/2006/CichZd_EL06-rev-www-

final. pdf

[23] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A quantitative and comparative

analysis of endmember extraction algorithms from hyperspectral data,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 42, March 2004.

[24] I. T. Jolliffe, Principal Component Analysis. Springer, 2002.

[25] S. A. Robila and P. K. Varshney, “Advanced image processing techniques for

remotely sensed hyperspectral data: Feature extraction from hyperspectral data

using ica,” P. K. Varshney and M. K. Arora, Eds. Springer, 2004, pp. 199-216.

[26] J. Dongarra, I. Foster, G. C. Fox, W. Gropp, K. Kennedy, L. Torczon, and

A. White, The Sourcebook of Parallel Computing. Morgan Kaufmann, 2002.

[27] A. Ferrari, “Jpvm: Network parallel computing in java,” Concurrency: Practice

and Experience, vol. 10, pp. 985-992, 1998.

http://www.bsp.brain.riken.jp/publications/2006/CichZd_EL06-rev-www-final
http://www.bsp.brain.riken.jp/publications/2006/CichZd_EL06-rev-www-final

[28] A. J. Piazza, “Hyperspectral data exploitation, theory and applications: Mor-

phologicall hyperspectral image classification - a parallel processing perspective,”

C.-I. Chang, Ed. Wiley, 2007, pp. 353-378.

[29] A. Plaza, D. Valencia, J. Plaza, and P. Martinez, “Commodity cluster-based

parallel processing of hyperspectral imagery,” Journal of Parallel and Distributed

Computing, voi. 66, pp. 345-358, March 2006.

[30] S. H. Roosta, Parallel Processing and Parallel Algorithms. Springer, 1999.

[31] T. Achalkul and S. Taylor, “A distributed spectral screening pet algorithm,”

Journal of Parallel and Distributed Computing, voi. 63, pp. 373-384, March 2003.

[32] “Java sdk 1.4,” Sun Microsystems, 2006. [Online]. Available:

http://java.sun.com

[33] B. Lewis and D. J. Berg, Multithreaded Programming with Java Technology.

Prentice Hall PTR, 1999.

[34] S. Oaks and H. Wong, Java Threads. O’Reilly, 1999.

[35] S. Microsystems, “The java tutorials: Concurrency,” 1995-2006. [Online].

Available: h ttp ://java.sun.com/docs/books/ tutorial/ essential/ concurrency/

[36] “Eclipse java ide,” IBM. [Online]. Available: http://eclipse.org

[37] S. Holzner, Eclipse: Programming Java Applications. O’Reilly, 2004.

[38] “Hyperspectral digital imagery collection experiment documentation,” August

1995.

[39] Programmer’s Guide to the Java 2D API: Echanced Graphics and Imaging for

Java. Sun Microsystems, Inc., April 2004.

http://java.sun.com
http://java.sun.com/docs/books/tutorial/essential/concurrency/
http://eclipse.org

[40] R. Eckstein, J. Elliott, B. Cole, D. Wood, and M. Loy, Java Swing. O’Reilly,

2002.

[41] “The standard widget toolkit,” IBM. [Online]. Available: http://eclipse.org/swt

[42] I. Kriznar, “Swt vs. swing performance comparison,” Cosylab D.O.O,

2005. [Online]. Available: http://cosylib.cosylab.com/pub/CSS/DOC-

SWT_Vs._Swing_Performance_Comparisson.pdf

90

http://eclipse.org/swt
http://cosylib.cosylab.com/pub/CSS/DOC-

A ppendix A

Source Code

This appendix contains additional information regarding the source code of the ap

plications used in this work. The code is organized in the following file structure:

t h e s i s [r o o t d i r e c t o r y]

- d o c [j a v a d o c d o c u m e n t a t i o n]

- m a c i a k [r o o t p r o j e c t d i r e c t o r y]

- m s c

- h y p e r

I
+ ---------g u i

I

+----- img

I

+------ io

[a s s o r t e d m i s e c l a s s e s]

[h y p e r s p e c r a l p r o c e s s i n g c l a s s e s]

[g u i r e l a t e d c l a s s e s]

[i m a g e p r o c e s s i n g c l a s s e s]

[i / o a n d e n c o d i n g c l a s s e s]

91

The maciak directory is the root level package which contains all the thesis related

code. Inside one can find the msc package containing assorted classes that deal

with tasks such as type conversions or handling Java Properties. The hyper package

contains the Main class used to launch the GUI interface or command line client and

three sub packages: img, gui and io.

The img package contains all the classes that deal with handling hyperspectral

data, as well as the actual factorization code.

The gui package contains all the files related to displaying the graphical user

interface and handling user interaction.

Finally, the io package contains classes dealing with input and output.

A .l D ocu m en tation

The doc directory contains javadoc generated HTML documentation describing the

publicly visible API’s of all the classes. Also see the Chapter 5 and this appendix for

more information.

A .2 C om piling th e C ode

There are no special requirements for compiling the code. Sun’s version of Java 1.4

or better is required to compile and run the samples.

92

A .3 R unning T he C ode

See Section 5.3.4 for details on how to start the GUI interface, and Section 5.5 for

how to run the application from the command line. Table 5.5 show all the available

command line switches.

A .4 E xtend ing th e Toolkit

At the moment there is no plug in support but given more time it would be built into

the system. When adding new features it will be necessary to recompile certain files.

A .4.1 A dding new R eader or W rite r Class

To add a new Reader/Writer class for a new file type, simply extend the base ma-

ciak.hyper.io.SpectralReader or maciak.hyper.io.SpectralWriter class. Once this is

done, simply add a single line to getReaderByType or getWriterByType method in

that base class and recompile it. The new functionality will then become available as

long as correc data type parameters are specified in .hyperj file or via the GUI dialog.

A .4.2 A dding new F acto riza tion A lgorithm

To add a new factorization algorithm, extend the maciak.hyper.img.Factorizer class.

You will need to edit the maciak.hyper.Main and potentially some of the classes in

maciak.hyper.gui to add a new command line switch, and/or GUI button to launch

the new algorithm.

93

A .4.3 A dding new D ataB uffer

Not all data types commonly used in hyperspectral imaging are supported by the

java.awt. It should be relatively easy to create new DataBuffer subclasses that would

accommodate these non-standard types. See the Java API for implementation details.

A .5 K now n Issues

There are some known issues with the code that we haven’t worked out yet. The

visualization feature is very slow. Displaying large images in Swing does not seem

to work well, and some sort of partial loading, and caching algorithm is needed to

resolve this. Alternatively it might be necessary to port the visualization features to

a 3rd party widget toolkit.

In addition some of the buttons in the GUI mode do not work properly. Since our

main testing machine had no X I1 installation, we mainly concentrated on the CLI

interface.

94

	Parallel Nonnegative Matrix Factorization Algorithms for Hyperspectral Images
	tmp.1670598511.pdf.hdRH8

