33 research outputs found

    Hypersequent Calculi for S5: The Methods of Cut Elimination

    Get PDF
    S5 is one of the most important modal logic with nice syntactic, semantic and algebraic properties. In spite of that, a successful (i.e. cut-free) formalization of S5 on the ground of standard sequent calculus (SC) was problematic and led to the invention of numerous nonstandard, generalized forms of SC. One of the most interesting framework which was very often used for this aim is that of hypersequent calculi (HC). The paper is a survey of HC for S5 proposed by Pottinger, Avron, Restall, Poggiolesi, Lahav and Kurokawa. We are particularly interested in examining different methods which were used for proving the eliminability/admissibility of cut in these systems and present our own variant of a system which admits relatively simple proof of cut elimination

    Bounded-analytic sequent calculi and embeddings for hypersequent logics

    Get PDF
    A sequent calculus with the subformula property has long been recognised as a highly favourable starting point for the proof theoretic investigation of a logic. However, most logics of interest cannot be presented using a sequent calculus with the subformula property. In response, many formalisms more intricate than the sequent calculus have been formulated. In this work we identify an alternative: retain the sequent calculus but generalise the subformula property to permit specific axiom substitutions and their subformulas. Our investigation leads to a classification of generalised subformula properties and is applied to infinitely many substructural, intermediate, and modal logics (specifically: those with a cut-free hypersequent calculus). We also develop a complementary perspective on the generalised subformula properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle substructural logics and situates isolated results on the so-called simple substitution property within a general theory

    Semantically informed methods in structural proof theory

    Get PDF

    Cut-restriction: from cuts to analytic cuts

    Full text link
    Cut-elimination is the bedrock of proof theory with a multitude of applications from computational interpretations to proof analysis. It is also the starting point for important meta-theoretical investigations including decidability, complexity, disjunction property, and interpolation. Unfortunately cut-elimination does not hold for the sequent calculi of most non-classical logics. It is well-known that the key to applications is the subformula property (a typical consequence of cut-elimination) rather than cut-elimination itself. With this in mind we introduce cut-restriction, a procedure to restrict arbitrary cuts to analytic cuts (when elimination is not possible). The algorithm applies to all sequent calculi satisfying language-independent and simple-to-check conditions, and it is obtained by adapting age-old cut-elimination. Our work encompasses existing results in a uniform way, and establishes novel analytic subformula properties.Comment: 13 pages, conference preprin

    Cut-restriction: from cuts to analytic cuts

    Get PDF
    Cut-elimination is the bedrock of proof theory with a multitude of applications from computational interpretations to proof analysis. It is also the starting point for important meta-theoretical investigations into decidability, complexity, disjunction property, interpolation, and more. Unfortunately cut-elimination does not hold for the sequent calculi of most non-classical logics. It is well-known that the key to applications is the subformula property (a typical consequence of cut-elimination) rather than cut-elimination itself. With this in mind, we introduce cut-restriction, a procedure to restrict arbitrary cuts to analytic cuts (when elimination is not possible). The algorithm applies to all sequent calculi satisfying language-independent and simple-to-check conditions, and it is obtained by adapting age-old cut-elimination. Our work encompasses existing results in a uniform way, subsumes Gentzen’s cut-elimination, and establishes new analytic cut properties

    Some Remarks on Relations between Proofs and Games

    Get PDF
    International audienceThis paper aims at studying relations between proof systems and games in a given logic and at analyzing what can be the interest and limits of a game formulation as an alternative semantic framework for modelling proof search and also for understanding relations between logics. In this perspective, we firstly study proofs and games at an abstract level which is neither related to a particular logic nor adopts a specific focus on their relations. Then, in order to instantiate such an analysis, we describe a dialogue game for intu-itionistic logic and emphasize the adequateness between proofs and winning strategies in this game. Finally, we consider how games can be seen to provide an alternative formulation for proof search and we stress on the possible mix of logical rules and search strategies inside games rules. We conclude on the merits and limits of the game semantics as a tool for studying logics, validity in these logics and some relations between them. 2 Proofs and Games In this section, we present a common terminology to present both proof systems and games at a relatively abstract level. Our aim consists in obtaining tools on which bridges can be built between the proof-theoretical approach and the game semantics approach in establishing the (universal) validity of logical formulae. We explain how proofs and games can be viewed as complementary notions. We illustrate how proof trees in calculi correspond to winning strategies in games and vice-versa

    Fragments and frame classes:Towards a uniform proof theory for modal fixed point logics

    Get PDF
    This thesis studies the proof theory of modal fixed point logics. In particular, we construct proof systems for various fragments of the modal mu-calculus, interpreted over various classes of frames. With an emphasis on uniform constructions and general results, we aim to bring the relatively underdeveloped proof theory of modal fixed point logics closer to the well-established proof theory of basic modal logic. We employ two main approaches. First, we seek to generalise existing methods for basic modal logic to accommodate fragments of the modal mu-calculus. We use this approach for obtaining Hilbert-style proof systems. Secondly, we adapt existing proof systems for the modal mu-calculus to various classes of frames. This approach yields proof systems which are non-well-founded, or cyclic.The thesis starts with an introduction and some mathematical preliminaries. In Chapter 3 we give hypersequent calculi for modal logic with the master modality, building on work by Ori Lahav. This is followed by an Intermezzo, where we present an abstract framework for cyclic proofs, in which we give sufficient conditions for establishing the bounded proof property. In Chapter 4 we generalise existing work on Hilbert-style proof systems for PDL to the level of the continuous modal mu-calculus. Chapter 5 contains a novel cyclic proof system for the alternation-free two-way modal mu-calculus. Finally, in Chapter 6, we present a cyclic proof system for Guarded Kleene Algebra with Tests and take a first step towards using it to establish the completeness of an algebraic counterpart

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established
    corecore