3,880 research outputs found

    Screened poisson hyperfields for shape coding

    Get PDF
    We present a novel perspective on shape characterization using the screened Poisson equation. We discuss that the effect of the screening parameter is a change of measure of the underlying metric space. Screening also indicates a conditioned random walker biased by the choice of measure. A continuum of shape fields is created by varying the screening parameter or, equivalently, the bias of the random walker. In addition to creating a regional encoding of the diffusion with a different bias, we further break down the influence of boundary interactions by considering a number of independent random walks, each emanating from a certain boundary point, whose superposition yields the screened Poisson field. Probing the screened Poisson equation from these two complementary perspectives leads to a high-dimensional hyperfield: a rich characterization of the shape that encodes global, local, interior, and boundary interactions. To extract particular shape information as needed in a compact way from the hyperfield, we apply various decompositions either to unveil parts of a shape or parts of a boundary or to create consistent mappings. The latter technique involves lower-dimensional embeddings, which we call screened Poisson encoding maps (SPEM). The expressive power of the SPEM is demonstrated via illustrative experiments as well as a quantitative shape retrieval experiment over a public benchmark database on which the SPEM method shows a high-ranking performance among the existing state-of-the-art shape retrieval methods

    Brain Categorization: Learning, Attention, and Consciousness

    Full text link
    How do humans and animals learn to recognize objects and events? Two classical views are that exemplars or prototypes are learned. A hybrid view is that a mixture, called rule-plus-exceptions, is learned. None of these models learn their categories. A distributed ARTMAP neural network with self-supervised learning incrementally learns categories that match human learning data on a class of thirty diagnostic experiments called the 5-4 category structure. Key predictions of ART models have received behavioral, neurophysiological, and anatomical support. The ART prediction about what goes wrong during amnesic learning has also been supported: A lesion in its orienting system causes a low vigilance parameter.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-01-1-0624), the National Geospatial Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (EIA-01-30851, IIS-97-20333, SBE-0354378); Office of Naval Research (N00014-95-1-0657, N00014-01-1-0624

    A Batch Learning Framework for Scalable Personalized Ranking

    Full text link
    In designing personalized ranking algorithms, it is desirable to encourage a high precision at the top of the ranked list. Existing methods either seek a smooth convex surrogate for a non-smooth ranking metric or directly modify updating procedures to encourage top accuracy. In this work we point out that these methods do not scale well to a large-scale setting, and this is partly due to the inaccurate pointwise or pairwise rank estimation. We propose a new framework for personalized ranking. It uses batch-based rank estimators and smooth rank-sensitive loss functions. This new batch learning framework leads to more stable and accurate rank approximations compared to previous work. Moreover, it enables explicit use of parallel computation to speed up training. We conduct empirical evaluation on three item recommendation tasks. Our method shows consistent accuracy improvements over state-of-the-art methods. Additionally, we observe time efficiency advantages when data scale increases.Comment: AAAI 2018, Feb 2-7, New Orleans, US

    Region-Based Image Retrieval Revisited

    Full text link
    Region-based image retrieval (RBIR) technique is revisited. In early attempts at RBIR in the late 90s, researchers found many ways to specify region-based queries and spatial relationships; however, the way to characterize the regions, such as by using color histograms, were very poor at that time. Here, we revisit RBIR by incorporating semantic specification of objects and intuitive specification of spatial relationships. Our contributions are the following. First, to support multiple aspects of semantic object specification (category, instance, and attribute), we propose a multitask CNN feature that allows us to use deep learning technique and to jointly handle multi-aspect object specification. Second, to help users specify spatial relationships among objects in an intuitive way, we propose recommendation techniques of spatial relationships. In particular, by mining the search results, a system can recommend feasible spatial relationships among the objects. The system also can recommend likely spatial relationships by assigned object category names based on language prior. Moreover, object-level inverted indexing supports very fast shortlist generation, and re-ranking based on spatial constraints provides users with instant RBIR experiences.Comment: To appear in ACM Multimedia 2017 (Oral

    Intrinsic Universal Measurements of Non-linear Embeddings

    Full text link
    A basic problem in machine learning is to find a mapping ff from a low dimensional latent space to a high dimensional observation space. Equipped with the representation power of non-linearity, a learner can easily find a mapping which perfectly fits all the observations. However such a mapping is often not considered as good as it is not simple enough and over-fits. How to define simplicity? This paper tries to make such a formal definition of the amount of information imposed by a non-linear mapping. This definition is based on information geometry and is independent of observations, nor specific parametrizations. We prove these basic properties and discuss relationships with parametric and non-parametric embeddings.Comment: work in progres
    • …
    corecore