7,657 research outputs found

    Impact of remote sensing upon the planning, management, and development of water resources

    Get PDF
    A survey of the principal water resource users was conducted to determine the impact of new remote data streams on hydrologic computer models. The analysis of the responses and direct contact demonstrated that: (1) the majority of water resource effort of the type suitable to remote sensing inputs is conducted by major federal water resources agencies or through federally stimulated research, (2) the federal government develops most of the hydrologic models used in this effort; and (3) federal computer power is extensive. The computers, computer power, and hydrologic models in current use were determined

    From hydrological modelling to decision support

    Get PDF
    Decision support for planning and management of water resources needs to consider many target criteria simultaneously like water availability, water quality, flood protection, agriculture, ecology, etc. Hydrologic models provide information about the water balance components and are fundamental for the simulation of ecological processes. Objective of this contribution is to discuss the suitability of classical hydrologic models on one hand and of complex eco-hydrologic models on the other hand to be used as part of decision support systems. The discussion is based on results from two model comparison studies. It becomes clear that none of the hydrologic models tested fulfils all requirements in an optimal sense. Regarding the simulation of water quality parameters like nitrogen leaching a high uncertainty needs to be considered. Recommended for decision support is a hybrid metamodel approach, which comprises a hydrologic model, empirical relationships for the less dynamic processes and makes use of simulation results from complex eco-hydrologic models through second-order modelling at a generalized level

    Effective and efficient algorithm for multiobjective optimization of hydrologic models

    Get PDF
    Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity

    Strategies for using remotely sensed data in hydrologic models

    Get PDF
    Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established
    • …
    corecore