158,756 research outputs found

    Executable Refinement Types

    Full text link
    This dissertation introduces executable refinement types, which refine structural types by semi-decidable predicates, and establishes their metatheory and accompanying implementation techniques. These results are useful for undecidable type systems in general. Particular contributions include: (1) Type soundness and a logical relation for extensional equivalence for executable refinement types (though type checking is undecidable); (2) hybrid type checking for executable refinement types, which blends static and dynamic checks in a novel way, in some sense performing better statically than any decidable approximation; (3) a type reconstruction algorithm - reconstruction is decidable even though type checking is not, when suitably redefined to apply to undecidable type systems; (4) a novel use of existential types with dependent types to ensure that the language of logical formulae is closed under type checking (5) a prototype implementation, Sage, of executable refinement types such that all dynamic errors are communicated back to the compiler and are thenceforth static errors.Comment: Ph.D. dissertation. Accepted by the University of California, Santa Cruz, in March 2014. 278 pages (295 including frontmatter

    Hybrid Session Verification through Endpoint API Generation

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.This paper proposes a new hybrid session verification methodology for applying session types directly to mainstream languages, based on generating protocol-specific endpoint APIs from multiparty session types. The API generation promotes static type checking of the behavioural aspect of the source protocol by mapping the state space of an endpoint in the protocol to a family of channel types in the target language. This is supplemented by very light run-time checks in the generated API that enforce a linear usage discipline on instances of the channel types. The resulting hybrid verification guarantees the absence of protocol violation errors during the execution of the session. We implement our methodology for Java as an extension to the Scribble framework, and use it to specify and implement compliant clients and servers for real-world protocols such as HTTP and SMTP

    "Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News Detection

    Full text link
    Automatic fake news detection is a challenging problem in deception detection, and it has tremendous real-world political and social impacts. However, statistical approaches to combating fake news has been dramatically limited by the lack of labeled benchmark datasets. In this paper, we present liar: a new, publicly available dataset for fake news detection. We collected a decade-long, 12.8K manually labeled short statements in various contexts from PolitiFact.com, which provides detailed analysis report and links to source documents for each case. This dataset can be used for fact-checking research as well. Notably, this new dataset is an order of magnitude larger than previously largest public fake news datasets of similar type. Empirically, we investigate automatic fake news detection based on surface-level linguistic patterns. We have designed a novel, hybrid convolutional neural network to integrate meta-data with text. We show that this hybrid approach can improve a text-only deep learning model.Comment: ACL 201

    A hybrid type system for lock-freedom of mobile processes

    Get PDF
    We propose a type system for lock-freedom in the π-calculus, which guarantees that certain communications will eventually succeed. Distinguishing features of our type system are: it can verify lock-freedom of concurrent programs that have sophisticated recursive communication structures; it can be fully automated; it is hybrid, in that it combines a type system for lock-freedom with local reasoning about deadlockfreedom, termination, and confluence analyses. Moreover, the type system is parameterized by deadlock-freedom/termination/confluence analyses, so that any methods (e.g. type systems and model checking) can be used for those analyses. A lock-freedom analysis tool has been implemented based on the proposed type system, and tested for non-trivial programs

    The Complexity of Model Checking Higher-Order Fixpoint Logic

    Full text link
    Higher-Order Fixpoint Logic (HFL) is a hybrid of the simply typed \lambda-calculus and the modal \lambda-calculus. This makes it a highly expressive temporal logic that is capable of expressing various interesting correctness properties of programs that are not expressible in the modal \lambda-calculus. This paper provides complexity results for its model checking problem. In particular we consider those fragments of HFL built by using only types of bounded order k and arity m. We establish k-fold exponential time completeness for model checking each such fragment. For the upper bound we use fixpoint elimination to obtain reachability games that are singly-exponential in the size of the formula and k-fold exponential in the size of the underlying transition system. These games can be solved in deterministic linear time. As a simple consequence, we obtain an exponential time upper bound on the expression complexity of each such fragment. The lower bound is established by a reduction from the word problem for alternating (k-1)-fold exponential space bounded Turing Machines. Since there are fixed machines of that type whose word problems are already hard with respect to k-fold exponential time, we obtain, as a corollary, k-fold exponential time completeness for the data complexity of our fragments of HFL, provided m exceeds 3. This also yields a hierarchy result in expressive power.Comment: 33 pages, 2 figures, to be published in Logical Methods in Computer Scienc

    Verifying nondeterministic probabilistic channel systems against ω\omega-regular linear-time properties

    Full text link
    Lossy channel systems (LCSs) are systems of finite state automata that communicate via unreliable unbounded fifo channels. In order to circumvent the undecidability of model checking for nondeterministic LCSs, probabilistic models have been introduced, where it can be decided whether a linear-time property holds almost surely. However, such fully probabilistic systems are not a faithful model of nondeterministic protocols. We study a hybrid model for LCSs where losses of messages are seen as faults occurring with some given probability, and where the internal behavior of the system remains nondeterministic. Thus the semantics is in terms of infinite-state Markov decision processes. The purpose of this article is to discuss the decidability of linear-time properties formalized by formulas of linear temporal logic (LTL). Our focus is on the qualitative setting where one asks, e.g., whether a LTL-formula holds almost surely or with zero probability (in case the formula describes the bad behaviors). Surprisingly, it turns out that -- in contrast to finite-state Markov decision processes -- the satisfaction relation for LTL formulas depends on the chosen type of schedulers that resolve the nondeterminism. While all variants of the qualitative LTL model checking problem for the full class of history-dependent schedulers are undecidable, the same questions for finite-memory scheduler can be solved algorithmically. However, the restriction to reachability properties and special kinds of recurrent reachability properties yields decidable verification problems for the full class of schedulers, which -- for this restricted class of properties -- are as powerful as finite-memory schedulers, or even a subclass of them.Comment: 39 page

    Weak Singular Hybrid Automata

    Full text link
    The framework of Hybrid automata, introduced by Alur, Courcourbetis, Henzinger, and Ho, provides a formal modeling and analysis environment to analyze the interaction between the discrete and the continuous parts of cyber-physical systems. Hybrid automata can be considered as generalizations of finite state automata augmented with a finite set of real-valued variables whose dynamics in each state is governed by a system of ordinary differential equations. Moreover, the discrete transitions of hybrid automata are guarded by constraints over the values of these real-valued variables, and enable discontinuous jumps in the evolution of these variables. Singular hybrid automata are a subclass of hybrid automata where dynamics is specified by state-dependent constant vectors. Henzinger, Kopke, Puri, and Varaiya showed that for even very restricted subclasses of singular hybrid automata, the fundamental verification questions, like reachability and schedulability, are undecidable. In this paper we present \emph{weak singular hybrid automata} (WSHA), a previously unexplored subclass of singular hybrid automata, and show the decidability (and the exact complexity) of various verification questions for this class including reachability (NP-Complete) and LTL model-checking (PSPACE-Complete). We further show that extending WSHA with a single unrestricted clock or extending WSHA with unrestricted variable updates lead to undecidability of reachability problem
    corecore