thesis

Executable Refinement Types

Abstract

This dissertation introduces executable refinement types, which refine structural types by semi-decidable predicates, and establishes their metatheory and accompanying implementation techniques. These results are useful for undecidable type systems in general. Particular contributions include: (1) Type soundness and a logical relation for extensional equivalence for executable refinement types (though type checking is undecidable); (2) hybrid type checking for executable refinement types, which blends static and dynamic checks in a novel way, in some sense performing better statically than any decidable approximation; (3) a type reconstruction algorithm - reconstruction is decidable even though type checking is not, when suitably redefined to apply to undecidable type systems; (4) a novel use of existential types with dependent types to ensure that the language of logical formulae is closed under type checking (5) a prototype implementation, Sage, of executable refinement types such that all dynamic errors are communicated back to the compiler and are thenceforth static errors.Comment: Ph.D. dissertation. Accepted by the University of California, Santa Cruz, in March 2014. 278 pages (295 including frontmatter

    Similar works