3 research outputs found

    Hybrid meta-heuristic algorithms for independent job scheduling in grid computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The term ’grid computing’ is used to describe an infrastructure that connects geographically distributed computers and heterogeneous platforms owned by multiple organizations allowing their computational power, storage capabilities and other resources to be selected and shared. The job scheduling problem is recognized as being one of the most important and challenging issues in grid computing environments. This paper proposes two strongly coupled hybrid meta-heuristic schedulers. The first scheduler combines Ant Colony Optimisation and Variable Neighbourhood Search in which the former acts as the primary algorithm which, during its execution, calls the latter as a supporting algorithm, while the second merges the Genetic Algorithm with Variable Neighbourhood Search in the same fashion. Several experiments were carried out to analyse the performance of the proposed schedulers in terms of minimizing the makespan using well known benchmarks. The experiments show that the proposed schedulers achieved impressive results compared to other selected approaches from the bibliography

    A Minimum Cost Design Approach for Steel Frames Based on a Parallelized Firefly Algorithm and Parameter Control

    Get PDF
    In this work, the applicability of a Firefly Algorithm (FA) to the real problem of the minimum cost of a detailed design for steel frames is studied. To reduce the calculation time, which is a common problem of meta-heuristic algorithms when they are used to solve real design cases, and to better suit the characteristics of the algorithm, a parallel migration strategy has been implemented and tested. As it is well known that the performance of any metaheuristic algorithm depends on the chosen value of its parameters, an extensive sensitivity analysis has been carried out. This not only serves to improve performance but also provides information on how it depends on the values of these parameters. With the information obtained from this analysis, and in order to achieve the robust behavior of the algorithm, a parameter control strategy has also been implemented and tested. Finally, a study demonstrating the close dependence between one of the parameters and the number of variables considered in the examples has been carried out. As a result of this final study, a simple expression is proposed that provides the minimum necessary population based on the number of variables in the problem

    An enhanced ant colony system algorithm for dynamic fault tolerance in grid computing

    Get PDF
    Fault tolerance in grid computing allows the system to continue operate despite occurrence of failure. Most fault tolerance algorithms focus on fault handling techniques such as task reprocessing, checkpointing, task replication, penalty, and task migration. Ant colony system (ACS), a variant of ant colony optimization (ACO), is one of the promising algorithms for fault tolerance due to its ability to adapt to both static and dynamic combinatorial optimization problems. However, ACS algorithm does not consider the resource fitness during task scheduling which leads to poor load balancing and lower execution success rate. This research proposes dynamic ACS fault tolerance with suspension (DAFTS) in grid computing that focuses on providing effective fault tolerance techniques to improve the execution success rate and load balancing. The proposed algorithm consists of dynamic evaporation rate, resource fitness-based scheduling process, enhanced pheromone update with trust factor and suspension, and checkpoint-based task reprocessing. The research framework consists of four phases which are identifying fault tolerance techniques, enhancing resource assignment and job scheduling, improving fault tolerance algorithm and, evaluating the performance of the proposed algorithm. The proposed algorithm was developed in a simulated grid environment called GridSim and evaluated against other fault tolerance algorithms such as trust-based ACO, fault tolerance ACO, ACO without fault tolerance and ACO with fault tolerance in terms of total execution time, average latency, average makespan, throughput, execution success rate and load balancing. Experimental results showed that the proposed algorithm achieved the best performance in most aspects, and second best in terms of load balancing. The DAFTS achieved the smallest increase on execution time, average makespan and average latency by 7%, 11% and 5% respectively, and smallest decrease on throughput and execution success rate by 6.49% and 9% respectively as the failure rate increases. The DAFTS also achieved the smallest increment on execution time, average makespan and average latency by 5.8, 8.5 and 8.7 times respectively, and highest increase on throughput and highest execution success rate by 72.9% and 93.7% respectively as the number of jobs increases. The proposed algorithm can effectively overcome load balancing problems and increase execution success rates in distributed systems that are prone to faults
    corecore