7 research outputs found

    Outage performance analysis of non-orthogonal multiple access with time-switching energy harvesting

    Get PDF
    In recent years, although non-orthogonal multiple access (NOMA) has shown its potentials thanks to its ability to enhance the performance of future wireless communication networks, a number of issues emerge related to the improvement of NOMA systems. In this work, we consider a half-duplex (HD) relaying cooperative NOMA network using decode-and-forward (DF) transmission mode with energy harvesting (Ell) capacity, where we assume the NOMA destination (D) is able to receive two data symbols in two continuous time slots which leads to the higher transmission rate than traditional relaying networks. To analyse EH, we deploy time-switching (TS) architecture to comprehensively study the optimal transmission time and outage performance at D. In particular, we are going to obtain closed-form expressions for outage probability (OP) with optimal TS ratio for both data symbols with both exact and approximate forms. The given simulation results show that the placement of the relay (R) plays an important role in the system performance.Web of Science253918

    Outage performance analysis of non-orthogonal multiple access systems with RF energy harvesting

    Get PDF
    Non-orthogonal multiple access (NOMA) has drawn enormous attention from the research community as a promising technology for future wireless communications with increasing demands of capacity and throughput. Especially, in the light of fifth-generation (5G) communication where multiple internet-of-things (IoT) devices are connected, the application of NOMA to indoor wireless networks has become more interesting to study. In view of this, we investigate the NOMA technique in energy harvesting (EH) half-duplex (HD) decode-and-forward (DF) power-splitting relaying (PSR) networks over indoor scenarios which are characterized by log-normal fading channels. The system performance of such networks is evaluated in terms of outage probability (OP) and total throughput for delay-limited transmission mode whose expressions are derived herein. In general, we can see in details how different system parameters affect such networks thanks to the results from Monte Carlo simulations. For illustrating the accuracy of our analytical results, we plot them along with the theoretical ones for comparison

    Outage and bit error probability analysis in energy harvesting wireless cooperative networks

    Get PDF
    This study focuses on a wireless powered cooperative communication network (WPCCN), which includes a hybrid access point (HAP), a source and a relay. The considered source and relay are installed without embedded energy supply (EES), thus are dependent on energy harvested from signals from the HAP to power their cooperative information transmission (IT). Taking inspiration from this, the author group investigates into a harvest-then-cooperate (HTC) protocol, whereas the source and the relay first harvest the energy from the AP in a downlink (DL) and then collaboratively work in uplink (UL) for IT of the source. For careful evaluation of the system performance, derivations of the approximate closed-form expression of the outage probability (OP) and an average bit error probability ( ABER) for the HTC protocol over Rayleigh fading channels are done. Lastly, the author group performs Monte-Carlo simulations to reassure the numerical results they obtained.Web of Science255746

    Outage probability analysis for hybrid TSR-PSR based SWIPT systems over log-normal fading channels

    Get PDF
    Employing simultaneous information and power transfer (SWIPT) technology in cooperative relaying networks has drawn considerable attention from the research community. We can find several studies that focus on Rayleigh and Nakagami-m fading channels, which are used to model outdoor scenarios. Differing itself from several existing studies, this study is conducted in the context of indoor scenario modelled by log-normal fading channels. Specifically, we investigate a so-called hybrid time switching relaying (TSR)-power splitting relaying (PSR) protocol in an energy-constrained cooperative amplify-and-forward (AF) relaying network. We evaluate the system performance with outage probability (OP) by analytically expressing and simulating it with Monte Carlo method. The impact of power-splitting (PS), time-switching (TS) and signal-to-noise ratio (SNR) on the OP was as well investigated. Subsequently, the system performance of TSR, PSR and hybrid TSR-PSR schemes were compared. The simulation results are relatively accurate because they align well with the theory

    Threshold-based wireless-based NOMA systems over log-normal channels: Ergodic outage probability of joint time allocation and power splitting schemes

    Get PDF
    Due to the development of state-of-the-art fifth-generation communication (5G) and Internet-of-Things (IoT), the demands for capacity and throughput of wireless networks have increased significantly. As a promising solution for this, a radio access technique, namely, non-orthogonal multiple access (NOMA) has been investigated. Particularly, in this paper, we analyse the system performance of a joint time allocation and power splitting (JTAPS) protocol for NOMA-based energy harvesting (EH) wireless networks over indoor scenarios, which we modelled with log-normal fading channels. Accordingly, for the performance analysis of such networks, the analytical expression of a metric so-called "ergodic outage probability" was derived. Then, thanks to Monte Carlo simulations done in Matlab, we are able to see how different EH power splitting (PS) and EH time switching (TS) factors influence the ergodic outage probability. Last, but not least, we plot the simulation results along with the theoretical results for comparison studies.Web of Science27

    Hybrid full-duplex/half-duplex relay selection scheme with optimal power under individual power constraints and energy harvesting

    No full text
    In practice, full-duplex (FD) transmission achieves better system outage performance than that of half-duplex (HD) transmission but suffers from strong self-interference (SI). In this paper, we provide performance analysis of relay selection (RS) schemes in multi-relay wireless networks, where we obtain the exact and approximate closed-form expressions for outage probability (OP) in the high signal-to-noise ratio (SNR) regime over independent and identically distributed (i.i.d.) Rayleigh fading channels in three proposed optimal RS schemes, i.e., HD deploying maximal ratio combine (HDMRC) and FD deploying joint decoding (FDJD) and hybrid FD/HD relaying transmission scheme (HTS). Most importantly, these schemes operate in two proposed optimal power supply policies so-called optimal power under the individual power constraints (OPIPC) and optimal power with energy harvesting ability (OPEHA). Additionally, asymptotic expressions in high SNR regime are given to help gain better insights on the system performance. It is also shown that the proposed HTS scheme outperforms HDMRC and FDJD schemes in terms of outage performance, where OPEHA is better than OPIPC under the impact of SI. Besides that, HTS RS scheme significantly decreases the power consumption which helps enhance energy efficiency. The validity of the proposed analyses is proven by simulations.Web of Science124443
    corecore