5,460 research outputs found

    An ant system algorithm for automated trajectory planning

    Get PDF
    The paper presents an Ant System based algorithm to optimally plan multi-gravity assist trajectories. The algorithm is designed to solve planning problems in which there is a strong dependency of one decision one all the previously made decisions. In the case of multi-gravity assist trajectories planning, the number of possible paths grows exponentially with the number of planetary encounters. The proposed algorithm avoids scanning all the possible paths and provides good results at a low computational cost. The algorithm builds the solution incrementally, according to Ant System paradigms. Unlike standard ACO, at every planetary encounter, each ant makes a decision based on the information stored in a tabu and feasible list. The approach demonstrated to be competitive, on a number of instances of a real trajectory design problem, against known GA and PSO algorithms

    New Archive-Based Ant Colony Optimization Algorithms for Learning Predictive Rules from Data

    Get PDF
    Data mining is the process of extracting knowledge and patterns from data. Classification and Regression are among the major data mining tasks, where the goal is to predict a value of an attribute of interest for each data instance, given the values of a set of predictive attributes. Most classification and regression problems involve continuous, ordinal and categorical attributes. Currently Ant Colony Optimization (ACO) algorithms have focused on directly handling categorical attributes only; continuous attributes are transformed using a discretisation procedure in either a preprocessing stage or dynamically during the rule creation. The use of a discretisation procedure has several limitations: (i) it increases the computational runtime, since several candidates values need to evaluated; (ii) requires access to the entire attribute domain, which in some applications all data is not available; (iii) the values used to create discrete intervals are not optimised in combination with the values of other attributes. This thesis investigates the use of solution archive pheromone model, based on Ant Colony Optimization for mixed-variable (ACOMV) algorithm, to directly cope with all attribute types. Firstly, an archive-based ACO classification algorithm is presented, followed by an automatic design framework to generate new configuration of ACO algorithms. Then, we addressed the challenging problem of mining data streams, presenting a new ACO algorithm in combination with a hybrid pheromone model. Finally, the archive-based approach is extended to cope with regression problems. All algorithms presented are compared against well-known algorithms from the literature using publicly available data sets. Our results have been shown to improve the computational time while maintaining a competitive predictive performance

    Automatic MGA trajectory planning with a modified ant colony optimization algorithm

    Get PDF
    This paper assesses the problem of designing multiple gravity assist (MGA) trajectories, including the sequence of planetary encounters. The problem is treated as planning and scheduling of events, such that the original mixed combinatorial-continuous problem is discretised and converted into a purely discrete problem with a finite number of states. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one deep-space manoeuvre. A modified Ant Colony Optimisation (ACO) algorithm is then used to look for the optimal solutions. This approach was applied to the design of optimal transfers to Saturn and to Mercury, and a comparison against standard genetic algorithm based optimisers shows its effectiveness

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Optimizing Laminated Composites Using Ant Colony Algorithms

    Get PDF

    MGA trajectory planning with an ACO-inspired algorithm

    Get PDF
    Given a set of celestial bodies, the problem of finding an optimal sequence of gravity assist manoeuvres, deep space manoeuvres (DSM) and transfer arcs connecting two or more bodies in the set is combinatorial in nature. The number of possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem, and its automated solution would greatly improve the assessment of multiple alternative mission options in a shorter time. This work proposes to formulate the complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The resulting scheduled plan will provide the planetary sequence for a multiple gravity assist trajectory and a good estimation of the optimality of the associated trajectories. We propose the use of a two-dimensional trajectory model in which pairs of celestial bodies are connected by transfer arcs containing one DSM. The problem of matching the position of the planet at the time of arrival is solved by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess velocity, for the first arc. By using this model, for each departure date we can generate a full tree of possible transfers from departure to destination. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An algorithm inspired by Ant Colony Optimization (ACO) is devised to explore the space of possible plans. The ants explore the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is used to select one of the remaining feasible directions. This approach to automatic trajectory planning is applied to the design of optimal transfers to Saturn and among the Galilean moons of Jupiter, and solutions are compared to those found through traditional genetic-algorithm-based techniques

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Solving SVM model selection problem using ACOR and IACOR

    Get PDF
    Ant Colony Optimization (ACO) has been used to solve Support Vector Machine (SVM) model selection problem.ACO originally deals with discrete optimization problem. In applying ACO for optimizing SVM parameters which are continuous variables, there is a need to discretize the continuously value into discrete values.This discretize process would result in loss of some information and hence affect the classification accuracy.In order to enhance SVM performance and solving the discretization problem, this study proposes two algorithms to optimize SVM parameters using Continuous ACO (ACOR) and Incremental Continuous Ant Colony Optimization (IACOR) without the need to discretize continuous value for SVM parameters.Eight datasets from UCI were used to evaluate the credibility of the proposed integrated algorithm in terms of classification accuracy and size of features subset.Promising results were obtained when compared to grid search technique, GA with feature chromosome-SVM, PSO-SVM, and GA-SVM. Results have also shown that IACOR-SVM is better than ACOR-SVM in terms of classification accuracy
    corecore