3,702 research outputs found
RealCertify: a Maple package for certifying non-negativity
Let (resp. ) be the field of rational (resp. real)
numbers and be variables. Deciding the non-negativity
of polynomials in over or over semi-algebraic
domains defined by polynomial constraints in is a classical
algorithmic problem for symbolic computation.
The Maple package \textsc{RealCertify} tackles this decision problem by
computing sum of squares certificates of non-negativity for inputs where such
certificates hold over the rational numbers. It can be applied to numerous
problems coming from engineering sciences, program verification and
cyber-physical systems. It is based on hybrid symbolic-numeric algorithms based
on semi-definite programming.Comment: 4 pages, 2 table
Certification of Bounds of Non-linear Functions: the Templates Method
The aim of this work is to certify lower bounds for real-valued multivariate
functions, defined by semialgebraic or transcendental expressions. The
certificate must be, eventually, formally provable in a proof system such as
Coq. The application range for such a tool is widespread; for instance Hales'
proof of Kepler's conjecture yields thousands of inequalities. We introduce an
approximation algorithm, which combines ideas of the max-plus basis method (in
optimal control) and of the linear templates method developed by Manna et al.
(in static analysis). This algorithm consists in bounding some of the
constituents of the function by suprema of quadratic forms with a well chosen
curvature. This leads to semialgebraic optimization problems, solved by
sum-of-squares relaxations. Templates limit the blow up of these relaxations at
the price of coarsening the approximation. We illustrate the efficiency of our
framework with various examples from the literature and discuss the interfacing
with Coq.Comment: 16 pages, 3 figures, 2 table
Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation
We consider the problem of certifying an inequality of the form ,
, where is a multivariate transcendental function, and
is a compact semialgebraic set. We introduce a certification method, combining
semialgebraic optimization and max-plus approximation. We assume that is
given by a syntaxic tree, the constituents of which involve semialgebraic
operations as well as some transcendental functions like , ,
, etc. We bound some of these constituents by suprema or infima of
quadratic forms (max-plus approximation method, initially introduced in optimal
control), leading to semialgebraic optimization problems which we solve by
semidefinite relaxations. The max-plus approximation is iteratively refined and
combined with branch and bound techniques to reduce the relaxation gap.
Illustrative examples of application of this algorithm are provided, explaining
how we solved tight inequalities issued from the Flyspeck project (one of the
main purposes of which is to certify numerical inequalities used in the proof
of the Kepler conjecture by Thomas Hales).Comment: 7 pages, 3 figures, 3 tables, Appears in the Proceedings of the
European Control Conference ECC'13, July 17-19, 2013, Zurich, pp. 2244--2250,
copyright EUCA 201
Formal Proofs for Nonlinear Optimization
We present a formally verified global optimization framework. Given a
semialgebraic or transcendental function and a compact semialgebraic domain
, we use the nonlinear maxplus template approximation algorithm to provide a
certified lower bound of over . This method allows to bound in a modular
way some of the constituents of by suprema of quadratic forms with a well
chosen curvature. Thus, we reduce the initial goal to a hierarchy of
semialgebraic optimization problems, solved by sums of squares relaxations. Our
implementation tool interleaves semialgebraic approximations with sums of
squares witnesses to form certificates. It is interfaced with Coq and thus
benefits from the trusted arithmetic available inside the proof assistant. This
feature is used to produce, from the certificates, both valid underestimators
and lower bounds for each approximated constituent. The application range for
such a tool is widespread; for instance Hales' proof of Kepler's conjecture
yields thousands of multivariate transcendental inequalities. We illustrate the
performance of our formal framework on some of these inequalities as well as on
examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table
Certifying isolated singular points and their multiplicity structure
This paper presents two new constructions related to singular solutions of
polynomial systems. The first is a new deflation method for an isolated
singular root. This construc-tion uses a single linear differential form
defined from the Jacobian matrix of the input, and defines the deflated system
by applying this differential form to the original system. The advantages of
this new deflation is that it does not introduce new variables and the increase
in the number of equations is linear instead of the quadratic increase of
previous methods. The second construction gives the coefficients of the
so-called inverse system or dual basis, which defines the multiplicity
structure at the singular root. We present a system of equations in the
original variables plus a relatively small number of new vari-ables. We show
that the roots of this new system include the original singular root but now
with multiplicity one, and the new variables uniquely determine the
multiplicity structure. Both constructions are "exact", meaning that they
permit one to treat all conjugate roots simultaneously and can be used in
certification procedures for singular roots and their multiplicity structure
with respect to an exact rational polynomial system
- …