4,931 research outputs found

    Hybrid Simulation and Test of Vessel Traffic Systems on the Cloud

    Get PDF
    This paper presents a cloud-based hybrid simulation platform to test large-scale distributed System-of-Systems (SoS) for the management and control of maritime traffic, the so-called Vessel Traffic Systems (VTS). A VTS consists of multiple, heterogeneous, distributed and interoperating systems, including radar, automatic identification systems, direction finders, electro-optical sensors, gateways to external VTSs, information systems; identifying, representing and analyzing interactions is a challenge to the evaluation of the real risks for safety and security of the marine environment. The need for reproducing in fabric the system behaviors that could occur in situ demands for the ability of integrating emulated and simulated environments to cope with the different testability requirements of involved systems and to keep testing cost sustainable. The platform exploits hybrid simulation and virtualization technologies, and it is deployable on a private cloud, reducing the cost of setting up realistic and effective testing scenarios

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Integrated satellite-terrestrial connectivity for autonomous ships:Survey and future research directions

    Get PDF
    An autonomous vessel uses multiple different radio technologies such as satellites, mobile networks and dedicated narrowband systems, to connect to other ships, services, and the remote operations center (ROC). In-ship communication is mainly implemented with wired technologies but also wireless links can be used. In this survey paper, we provide a short overview of autonomous and remote-controlled systems. This paper reviews 5G-related standardization in the maritime domain, covering main use cases and both the role of autonomous ships and that of people onboard. We discuss the concept of a connectivity manager, an intelligent entity that manages complex set of technologies, integrating satellite and terrestrial technologies together, ensuring robust in-ship connections and ship-to-outside connections in any environment. This survey paper describes the architecture and functionalities of connectivity management required for an autonomous ship to be able to operate globally. As a specific case example, we have implemented a research environment consisting of ship simulators with connectivity components. Our simulation results on the effects of delays to collision avoidance confirm the role of reliable connectivity for safety. Finally, we outline future research directions for autonomous ship connectivity research, providing ideas for further work

    Research on new communication and navigation technologies on aids to navigation

    Get PDF

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art

    A Survey of Recent Machine Learning Solutions for Ship Collision Avoidance and Mission Planning

    Get PDF
    Machine Learning (ML) techniques have gained significant traction as a means of improving the autonomy of marine vehicles over the last few years. This article surveys the recent ML approaches utilised for ship collision avoidance (COLAV) and mission planning. Following an overview of the ever-expanding ML exploitation for maritime vehicles, key topics in the mission planning of ships are outlined. Notable papers with direct and indirect applications to the COLAV subject are technically reviewed and compared. Critiques, challenges, and future directions are also identified. The outcome clearly demonstrates the thriving research in this field, even though commercial marine ships incorporating machine intelligence able to perform autonomously under all operating conditions are still a long way off.Peer reviewe

    TRAVISIONS 2022

    Get PDF
    corecore