70 research outputs found

    Bridge Structrural Health Monitoring Using a Cyber-Physical System Framework

    Full text link
    Highway bridges are critical infrastructure elements supporting commercial and personal traffic. However, bridge deterioration coupled with insufficient funding for bridge maintenance remain a chronic problem faced by the United States. With the emergence of wireless sensor networks (WSN), structural health monitoring (SHM) has gained increasing attention over the last decade as a viable means of assessing bridge structural conditions. While intensive research has been conducted on bridge SHM, few studies have clearly demonstrated the value of SHM to bridge owners, especially using real-world implementation in operational bridges. This thesis first aims to enhance existing bridge SHM implementations by developing a cyber-physical system (CPS) framework that integrates multiple SHM systems with traffic cameras and weigh-in-motion (WIM) stations located along the same corridor. To demonstrate the efficacy of the proposed CPS, a 20-mile segment of the northbound I-275 highway in Michigan is instrumented with four traffic cameras, two bridge SHM systems and a WIM station. Real-time truck detection algorithms are deployed to intelligently trigger the SHM systems for data collection during large truck events. Such a triggering approach can improve data acquisition efficiency by up to 70% (as compared to schedule-based data collection). Leveraging computer vision-based truck re-identification techniques applied to videos from the traffic cameras along the corridor, a two-stage pipeline is proposed to fuse bridge input data (i.e. truck loads as measured by the WIM station) and output data (i.e. bridge responses to a given truck load). From August 2017 to April 2019, over 20,000 truck events have been captured by the CPS. To the author’s best knowledge, the CPS implementation is the first of its kind in the nation and offers large volume of heterogeneous input-output data thereby opening new opportunities for novel data-driven bridge condition assessment methods. Built upon the developed CPS framework, the second half of the thesis focuses on use of the data in real-world bridge asset management applications. Long-term bridge strain response data is used to investigate and model composite action behavior exhibited in slab-on-girder highway bridges. Partial composite action is observed and quantified over negative bending regions of the bridge through the monitoring of slip strain at the girder-deck interface. It is revealed that undesired composite action over negative bending regions might be a cause of deck deterioration. The analysis performed on modeling composite action is a first in studying composite behavior in operational bridges with in-situ SHM measurements. Second, a data-driven analytical method is proposed to derive site-specific parameters such as dynamic load allowance and unit influence lines for bridge load rating using the input-output data. The resulting rating factors more rationally account for the bridge's systematic behavior leading to more accurate rating of a bridge's load-carrying capacity. Third, the proposed CPS framework is shown capable of measuring highway traffic loads. The paired WIM and bridge response data is used for training a learning-based bridge WIM system where truck weight characteristics such as axle weights are derived directly using corresponding bridge response measurements. Such an approach is successfully utilized to extend the functionality of an existing bridge SHM system for truck weighing purposes achieving precision requirements of a Type-II WIM station (e.g. vehicle gross weight error of less than 15%).PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163210/1/rayhou_1.pd

    Development of numerical and data models for the support of digital twins in offshore wind engineering

    Get PDF
    Error on title page. Date of award is 2022.As offshore wind farms grow there is a continued demand for reduced costs. Maintenance costs and downtime can be reduced through greater information on the asset in relation to its operational loads and structural resistance to damage and so there is an increasing interest in digital twin technologies. Through digital twins, an operational asset can be replicated computationally, thus providing more information. Modelling these aspects requires a wide variety of models in different fields. To advance the feasibility of digital twin technology this thesis aims to develop the multi-disciplinary set of modelling domains which help form the basis of future digital twins. Throughout this work, results have been validated against operational data recorded from sensors on offshore structures. This has provided value and confidence to the results as it shows how well the mix of state-of-the art models compare to real world engineering systems. This research presents a portfolio of five research areas which have been published in a mix of peer-reviewed journal articles and conference papers. These areas are: 1) A computational fluid dynamics (CFD) model of an offshore wind farm conducted using a modified solver in the opensource software. This work implements actuator disk turbine models and uses Reynolds averaged Naiver Stokes approaches to represent the turbulence. This investigates the impact of modelling choices and demonstrates the impact of varied model parameters. The results are compared to operational site data and the modelling errors are quantified. There is good agreement between the models and site data. 2) An expansion on traditional CFD approaches through incorporating machine learning (ML). These ML models are used to approximate the results of the CFD and thereby allow for further analysis which retains the fidelity of CFD at comparatively negligible computational cost. The results are compared to operational site data and the errors at each step are quantified for validation. 3) A time-series forecasting of weather variables based on past measured data. A novel approach for forecasting time-series is developed and compared to two existing methods: Markov-Chains and Gradient Boosting. While this new method is more complex and requires more time to train, it has the desirable feature of incorporating seasonality at multiple timescales and thus providing a more representative time-series. 4) An investigation of the change in modal parameters in an offshore wind jacket structure from damages or from changing operational conditions. In this work the detailed design model of the structure from Ramboll is used. This section relates the measurable modal parameters to the operational condition through a modelling approach. 5) A study conducted using accelerometer data from an Offshore Substation located in a wind farm site. Operational data from 12 accelerometers is used to investigate the efficacy of several potential sensor layouts and therefore to quantify the consequence of placement decisions. The results of these developments are an overall improvement in the modelling approaches necessary towards the realisation of digital twins as well as useful development in each of the component areas. Both areas related to wind loading as well as structural dynamics have been related to operational data. The validation of this link between the measured and the modelled domains facilitates operators and those in maintenance in gaining more information and greater insights into the conditions of their assets.As offshore wind farms grow there is a continued demand for reduced costs. Maintenance costs and downtime can be reduced through greater information on the asset in relation to its operational loads and structural resistance to damage and so there is an increasing interest in digital twin technologies. Through digital twins, an operational asset can be replicated computationally, thus providing more information. Modelling these aspects requires a wide variety of models in different fields. To advance the feasibility of digital twin technology this thesis aims to develop the multi-disciplinary set of modelling domains which help form the basis of future digital twins. Throughout this work, results have been validated against operational data recorded from sensors on offshore structures. This has provided value and confidence to the results as it shows how well the mix of state-of-the art models compare to real world engineering systems. This research presents a portfolio of five research areas which have been published in a mix of peer-reviewed journal articles and conference papers. These areas are: 1) A computational fluid dynamics (CFD) model of an offshore wind farm conducted using a modified solver in the opensource software. This work implements actuator disk turbine models and uses Reynolds averaged Naiver Stokes approaches to represent the turbulence. This investigates the impact of modelling choices and demonstrates the impact of varied model parameters. The results are compared to operational site data and the modelling errors are quantified. There is good agreement between the models and site data. 2) An expansion on traditional CFD approaches through incorporating machine learning (ML). These ML models are used to approximate the results of the CFD and thereby allow for further analysis which retains the fidelity of CFD at comparatively negligible computational cost. The results are compared to operational site data and the errors at each step are quantified for validation. 3) A time-series forecasting of weather variables based on past measured data. A novel approach for forecasting time-series is developed and compared to two existing methods: Markov-Chains and Gradient Boosting. While this new method is more complex and requires more time to train, it has the desirable feature of incorporating seasonality at multiple timescales and thus providing a more representative time-series. 4) An investigation of the change in modal parameters in an offshore wind jacket structure from damages or from changing operational conditions. In this work the detailed design model of the structure from Ramboll is used. This section relates the measurable modal parameters to the operational condition through a modelling approach. 5) A study conducted using accelerometer data from an Offshore Substation located in a wind farm site. Operational data from 12 accelerometers is used to investigate the efficacy of several potential sensor layouts and therefore to quantify the consequence of placement decisions. The results of these developments are an overall improvement in the modelling approaches necessary towards the realisation of digital twins as well as useful development in each of the component areas. Both areas related to wind loading as well as structural dynamics have been related to operational data. The validation of this link between the measured and the modelled domains facilitates operators and those in maintenance in gaining more information and greater insights into the conditions of their assets

    A Controller Development Methodology Incorporating Unsteady, Coupled Aerodynamics and Flight Control Modeling for Atmospheric Entry Vehicles

    Get PDF
    Atmospheric entry vehicle aerodynamics, flight dynamics, and control mechanisms are inherently coupled and unsteady. The state-of-the-art disciplinary models used for Mars entry vehicle simulation do not directly account for these time-dependent interactions, resulting in increased model fidelity uncertainty that can negatively affect controller performance. This can be especially detrimental given the more rigorous landing precision requirements and increased technological and volitional uncertainty expected for future missions. This work seeks to formulate and implement an entry controller tuning methodology that directly accounts for coupled, unsteady entry vehicle aerodynamic and control system behavior. The methodology uses a 6-degree-of-freedom coupled CFD-rigid body dynamics (RBD) model, extended to include flight control system modeling, for flight simulation while preserving unsteady flow history. This is capable of high-fidelity simulation to evaluate the performance of a controller, but the high cost makes it infeasible to directly use the state-of-the-art methodology for controller tuning which relies on thousands of short-duration simulations. Instead, multifidelity optimization is used. The coupled model is run to evaluate promising designs at high fidelity, while a lower-fidelity model is used to rapidly explore the design space. Crucially, each time the coupled model is executed, it produces new time-accurate trajectory and aerodynamic data that can be added to the training data for the low-fidelity aerodynamic surrogate model. A multifidelity surrogate is then constructed to provide a correction between the low- and high-fidelity results. As tuning proceeds, knowledge of the model is thus gained both by data fusion of the controller performance metrics, and by decreasing aerodynamic error in the low-fidelity surrogate. The methodology was developed through numerical experimentation with an entry vehicle equipped with a single-axis internal moving mass actuator for pitch control. A feed-forward neural network architecture with better performance than a state-of-the-art database was identified for use as the low-fidelity aerodynamic surrogate. A fusion-based multifidelity optimization method is implemented to leverage the quasi-hierarchical nature of the coupled and low-fidelity models. The methodology is demonstrated for tuning an angle of attack controller, yielding a controller that has better performance than one that is tuned using the state-of-the-art methodology.Ph.D

    Design and computational aspects of compliant tensegrity robots

    Get PDF

    Optimal seismic retrofitting of existing RC frames through soft-computing approaches

    Get PDF
    2016 - 2017Ph.D. Thesis proposes a Soft-Computing approach capable of supporting the engineer judgement in the selection and design of the cheapest solution for seismic retrofitting of existing RC framed structure. Chapter 1 points out the need for strengthening the existing buildings as one of the main way of decreasing economic and life losses as direct consequences of earthquake disasters. Moreover, it proposes a wide, but not-exhaustive, list of the most frequently observed deficiencies contributing to the vulnerability of concrete buildings. Chapter 2 collects the state of practice on seismic analysis methods for the assessment the safety of the existing buildings within the framework of a performancebased design. The most common approaches for modeling the material plasticity in the frame non-linear analysis are also reviewed. Chapter 3 presents a wide state of practice on the retrofitting strategies, intended as preventive measures aimed at mitigating the effect of a future earthquake by a) decreasing the seismic hazard demands; b) improving the dynamic characteristics supplied to the existing building. The chapter presents also a list of retrofitting systems, intended as technical interventions commonly classified into local intervention (also known “member-level” techniques) and global intervention (also called “structure-level” techniques) that might be used in synergistic combination to achieve the adopted strategy. In particular, the available approaches and the common criteria, respectively for selecting an optimum retrofit strategy and an optimal system are discussed. Chapter 4 highlights the usefulness of the Soft-Computing methods as efficient tools for providing “objective” answer in reasonable time for complex situation governed by approximation and imprecision. In particular, Chapter 4 collects the applications found in the scientific literature for Fuzzy Logic, Artificial Neural Network and Evolutionary Computing in the fields of structural and earthquake engineering with a taxonomic classification of the problems in modeling, simulation and optimization. Chapter 5 “translates” the search for the cheapest retrofitting system into a constrained optimization problem. To this end, the chapter includes a formulation of a novel procedure that assembles a numerical model for seismic assessment of framed structures within a Soft-Computing-driven optimization algorithm capable to minimize the objective function defined as the total initial cost of intervention. The main components required to assemble the procedure are described in the chapter: the optimization algorithm (Genetic Algorithm); the simulation framework (OpenSees); and the software environment (Matlab). Chapter 6 describes step-by-step the flow-chart of the proposed procedure and it focuses on the main implementation aspects and working details, ranging from a clever initialization of the population of candidate solutions up to a proposal of tuning procedure for the genetic parameters. Chapter 7 discusses numerical examples, where the Soft-Computing procedure is applied to the model of multi-storey RC frames obtained through simulated design. A total of fifteen “scenarios” are studied in order to assess its “robustness” to changes in input data. Finally, Chapter 8, on the base of the outcomes observed, summarizes the capabilities of the proposed procedure, yet highlighting its “limitations” at the current state of development. Some possible modifications are discussed to enhance its efficiency and completeness. [edited by author]XVI n.s

    Aeronautical engineering: A continuing bibliography with indexes (supplement 238)

    Get PDF
    This bibliography lists 458 reports, articles, and other documents introduced into the NASA scientific and technical information system in March, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Modeling of the ASDEX-U ECRH Launcher

    Get PDF

    Volume 1 – Symposium

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group A: Materials Group B: System design & integration Group C: Novel system solutions Group D: Additive manufacturing Group E: Components Group F: Intelligent control Group G: Fluids Group H | K: Pumps Group I | L: Mobile applications Group J: Fundamental

    Dynamics and control of electromagnetic satellite formations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 197-203).Satellite formation flying is an enabling technology for many space missions, especially for space-based telescopes. Usually there is a tight formation-keeping requirement that may need constant expenditure of fuel or at least fuel is required for formation reconfiguration. Electromagnetic Formation Flying (EMFF) is a novel concept that uses superconducting electromagnetic coils to provide forces and torques between different satellites in a formation which enables the control of all the relative degrees of freedom. With EMFF, the life-span of the mission becomes independent of the fuel available on board. Also the contamination of optics or sensitive formation instruments, due to thruster plumes, is avoided. This comes at the cost of coupled and nonlinear dynamics of the formation and makes the control problem a challenging one. In this thesis, the dynamics for a general N-satellite electromagnetic formation will be derived for both deep space missions and Low Earth Orbit (LEO) formations. Nonlinear control laws using adaptive techniques will be derived for general formations in LEO. Angular momentum management in LEO is a problem for EMFF due to interaction of the magnetic dipoles with the Earth's magnetic field. A solution of this problem for general Electromagnetic (EM) formations will be presented in the form of a dipole polarity switching control law. For EMFF, the formation reconfiguration problem is a nonlinear and constrained optimal time control problem as fuel cost for EMFF is zero. Two different methods of trajectory generation, namely feedback motion planning using the Artificial Potential Function Method (APFM) and optimal trajectory generation using the Legendre Pseudospectral method, will be derived for general EM Formations.(cont.) The results of these methods are compared for random EM Formations. This comparison shows that the artificial potential function method is a promising technique for solving the real-time motion planning problem of nonlinear and constrained systems, such as EMFF, with low computational cost. Specifically it is the purpose of this thesis to show that a fully-actuated N-satellite EM formation can be stabilized and controlled under fairly general assumptions, therefore showing the viability of this novel approach for satellite formation flying from a dynamics and controls perspective.by Umair Ahsun.Ph.D

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 110

    Get PDF
    This bibliography lists 504 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1979
    • …
    corecore