1,278 research outputs found

    Acting rehearsal in collaborative multimodal mixed reality environments

    Get PDF
    This paper presents the use of our multimodal mixed reality telecommunication system to support remote acting rehearsal. The rehearsals involved two actors, located in London and Barcelona, and a director in another location in London. This triadic audiovisual telecommunication was performed in a spatial and multimodal collaborative mixed reality environment based on the 'destination-visitor' paradigm, which we define and put into use. We detail our heterogeneous system architecture, which spans the three distributed and technologically asymmetric sites, and features a range of capture, display, and transmission technologies. The actors' and director's experience of rehearsing a scene via the system are then discussed, exploring successes and failures of this heterogeneous form of telecollaboration. Overall, the common spatial frame of reference presented by the system to all parties was highly conducive to theatrical acting and directing, allowing blocking, gross gesture, and unambiguous instruction to be issued. The relative inexpressivity of the actors' embodiments was identified as the central limitation of the telecommunication, meaning that moments relying on performing and reacting to consequential facial expression and subtle gesture were less successful

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    Large scale collaborative virtual environments

    Get PDF
    [N.B. Pagination of eThesis differs from printed thesis. The content is identical.] This thesis is concerned with the theory, design, realisation and evaluation of large-scale collaborative virtual environments. These are 3D audio-graphical computer generated environments which actively support collaboration between potentially large numbers of distributed users. The approach taken in this thesis reflects both the sociology of interpersonal communication and the management of communication in distributed systems. The first part of this thesis presents and evaluates MASSIVE-1, a virtual reality tele-conferencing system which implements the spatial model of interaction of Benford and Fahlén. The evaluation of MASSIVE-1 has two components: a user-oriented evaluation of the system’s facilities and the underlying awareness model; and a network-oriented evaluation and modelling of the communication requirements of the system with varying numbers of users. This thesis proposes the “third party object” concept as an extension to the spatial model of interaction. Third party objects can be used to represent the influence of context or environment on interaction and awareness, for example, the effects of boundaries, rooms and crowds. Third party objects can also be used to introduce and manage dynamic aggregates or abstractions within the environments (for example abstract overviews of distant crowds of participants). The third party object concept is prototyped in a second system, MASSIVE-2. MASSIVE-2 is also evaluated in two stages. The first is a user-oriented reflection on the capabilities and effectiveness of the third party concept as realised in the system. The second stage of the evaluation develops a predictive model of total and per-participant network bandwidth requirements for systems of this kind. This is used to analyse a number of design decisions relating to this type of system, including the use of multicasting and the form of communication management adopted

    Examination of interactive experience: Construction of physical and social presence in virtual environments

    Get PDF
    Interactivity seems to be a familiar concept, which partially explains its frequent use in discussions about new communication technologies and what they can bring to communication studies. However, interactivity research has yet to reach a comprehensive and concrete consensus concerning the antecedents and consequences of interactive experiences. The main objective of this research is to determine the factors responsible for fostering the interactivity experience in the multiuser virtual environments and to observe how this variance in interactivity will affect the formation of physical and social presence. The study also examines the possible relationship between physical and social presence via correlation analysis and uses a one-way ANOVA with Post-Hoc Tests to designate the effects of interactivity on physical and social presence
    corecore