56 research outputs found

    A hybrid CNN-RNN approach for survival analysis in a Lung Cancer Screening study

    Get PDF
    In this study, we present a hybrid CNN-RNN approach to investigate long-term survival of subjects in a lung cancer screening study. Subjects who died of cardiovascular and respiratory causes were identified whereby the CNN model was used to capture imaging features in the CT scans and the RNN model was used to investigate time series and thus global information. To account for heterogeneity in patients' follow-up times, two different variants of LSTM models were evaluated, each incorporating different strategies to address irregularities in follow-up time. The models were trained on subjects who underwent cardiovascular and respiratory deaths and a control cohort matched to participant age, gender, and smoking history. The combined model can achieve an AUC of 0.76 which outperforms humans at cardiovascular mortality prediction. The corresponding F1 and Matthews Correlation Coefficient are 0.63 and 0.42 respectively. The generalisability of the model is further validated on an 'external' cohort. The same models were applied to survival analysis with the Cox Proportional Hazard model. It was demonstrated that incorporating the follow-up history can lead to improvement in survival prediction. The Cox neural network can achieve an IPCW C-index of 0.75 on the internal dataset and 0.69 on an external dataset. Delineating subjects at increased risk of cardiorespiratory mortality can alert clinicians to request further more detailed functional or imaging studies to improve the assessment of cardiorespiratory disease burden. Such strategies may uncover unsuspected and under-recognised pathologies thereby potentially reducing patient morbidity

    Advanced machine learning methods for oncological image analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally- invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head- neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra- dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis

    A Low-Dose CT-Based Radiomic Model to Improve Characterization and Screening Recall Intervals of Indeterminate Prevalent Pulmonary Nodules.

    Get PDF
    Lung cancer (LC) is currently one of the main causes of cancer-related deaths worldwide. Low-dose computed tomography (LDCT) of the chest has been proven effective in secondary prevention (i.e., early detection) of LC by several trials. In this work, we investigated the potential impact of radiomics on indeterminate prevalent pulmonary nodule (PN) characterization and risk stratification in subjects undergoing LDCT-based LC screening. As a proof-of-concept for radiomic analyses, the first aim of our study was to assess whether indeterminate PNs could be automatically classified by an LDCT radiomic classifier as solid or sub-solid (first-level classification), and in particular for sub-solid lesions, as non-solid versus part-solid (second-level classification). The second aim of the study was to assess whether an LCDT radiomic classifier could automatically predict PN risk of malignancy, and thus optimize LDCT recall timing in screening programs. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, positive predictive value, negative predictive value, sensitivity, and specificity. The experimental results showed that an LDCT radiomic machine learning classifier can achieve excellent performance for characterization of screen-detected PNs (mean AUC of 0.89 ± 0.02 and 0.80 ± 0.18 on the blinded test dataset for the first-level and second-level classifiers, respectively), providing quantitative information to support clinical management. Our study showed that a radiomic classifier could be used to optimize LDCT recall for indeterminate PNs. According to the performance of such a classifier on the blinded test dataset, within the first 6 months, 46% of the malignant PNs and 38% of the benign ones were identified, improving early detection of LC by doubling the current detection rate of malignant nodules from 23% to 46% at a low cost of false positives. In conclusion, we showed the high potential of LDCT-based radiomics for improving the characterization and optimizing screening recall intervals of indeterminate PNs

    Evaluering av maskinlæringsmetoder for automatisk tumorsegmentering

    Get PDF
    The definition of target volumes and organs at risk (OARs) is a critical part of radiotherapy planning. In routine practice, this is typically done manually by clinical experts who contour the structures in medical images prior to dosimetric planning. This is a time-consuming and labor-intensive task. Moreover, manual contouring is inherently a subjective task and substantial contour variability can occur, potentially impacting on radiotherapy treatment and image-derived biomarkers. Automatic segmentation (auto-segmentation) of target volumes and OARs has the potential to save time and resources while reducing contouring variability. Recently, auto-segmentation of OARs using machine learning methods has been integrated into the clinical workflow by several institutions and such tools have been made commercially available by major vendors. The use of machine learning methods for auto-segmentation of target volumes including the gross tumor volume (GTV) is less mature at present but is the focus of extensive ongoing research. The primary aim of this thesis was to investigate the use of machine learning methods for auto-segmentation of the GTV in medical images. Manual GTV contours constituted the ground truth in the analyses. Volumetric overlap and distance-based metrics were used to quantify auto-segmentation performance. Four different image datasets were evaluated. The first dataset, analyzed in papers I–II, consisted of positron emission tomography (PET) and contrast-enhanced computed tomography (ceCT) images of 197 patients with head and neck cancer (HNC). The ceCT images of this dataset were also included in paper IV. Two datasets were analyzed separately in paper III, namely (i) PET, ceCT, and low-dose CT (ldCT) images of 86 patients with anal cancer (AC), and (ii) PET, ceCT, ldCT, and T2 and diffusion-weighted (T2W and DW, respectively) MR images of a subset (n = 36) of the aforementioned AC patients. The last dataset consisted of ceCT images of 36 canine patients with HNC and was analyzed in paper IV. In paper I, three approaches to auto-segmentation of the GTV in patients with HNC were evaluated and compared, namely conventional PET thresholding, classical machine learning algorithms, and deep learning using a 2-dimensional (2D) U-Net convolutional neural network (CNN). For the latter two approaches the effect of imaging modality on auto-segmentation performance was also assessed. Deep learning based on multimodality PET/ceCT image input resulted in superior agreement with the manual ground truth contours, as quantified by geometric overlap and distance-based performance evaluation metrics calculated on a per patient basis. Moreover, only deep learning provided adequate performance for segmentation based solely on ceCT images. For segmentation based on PET-only, all three approaches provided adequate segmentation performance, though deep learning ranked first, followed by classical machine learning, and PET thresholding. In paper II, deep learning-based auto-segmentation of the GTV in patients with HNC using a 2D U-Net architecture was evaluated more thoroughly by introducing new structure-based performance evaluation metrics and including qualitative expert evaluation of the resulting auto-segmentation quality. As in paper I, multimodal PET/ceCT image input provided superior segmentation performance, compared to the single modality CNN models. The structure-based metrics showed quantitatively that the PET signal was vital for the sensitivity of the CNN models, as the superior PET/ceCT-based model identified 86 % of all malignant GTV structures whereas the ceCT-based model only identified 53 % of these structures. Furthermore, the majority of the qualitatively evaluated auto-segmentations (~ 90 %) generated by the best PET/ceCT-based CNN were given a quality score corresponding to substantial clinical value. Based on papers I and II, deep learning with multimodality PET/ceCT image input would be the recommended approach for auto-segmentation of the GTV in human patients with HNC. In paper III, deep learning-based auto-segmentation of the GTV in patients with AC was evaluated for the first time, using a 2D U-Net architecture. Furthermore, an extensive comparison of the impact of different single modality and multimodality combinations of PET, ceCT, ldCT, T2W, and/or DW image input on quantitative auto-segmentation performance was conducted. For both the 86-patient and 36-patient datasets, the models based on PET/ceCT provided the highest mean overlap with the manual ground truth contours. For this task, however, comparable auto-segmentation quality was obtained for solely ceCT-based CNN models. The CNN model based solely on T2W images also obtained acceptable auto-segmentation performance and was ranked as the second-best single modality model for the 36-patient dataset. These results indicate that deep learning could prove a versatile future tool for auto-segmentation of the GTV in patients with AC. Paper IV investigated for the first time the applicability of deep learning-based auto-segmentation of the GTV in canine patients with HNC, using a 3-dimensional (3D) U-Net architecture and ceCT image input. A transfer learning approach where CNN models were pre-trained on the human HNC data and subsequently fine-tuned on canine data was compared to training models from scratch on canine data. These two approaches resulted in similar auto-segmentation performances, which on average was comparable to the overlap metrics obtained for ceCT-based auto-segmentation in human HNC patients. Auto-segmentation in canine HNC patients appeared particularly promising for nasal cavity tumors, as the average overlap with manual contours was 25 % higher for this subgroup, compared to the average for all included tumor sites. In conclusion, deep learning with CNNs provided high-quality GTV autosegmentations for all datasets included in this thesis. In all cases, the best-performing deep learning models resulted in an average overlap with manual contours which was comparable to the reported interobserver agreements between human experts performing manual GTV contouring for the given cancer type and imaging modality. Based on these findings, further investigation of deep learning-based auto-segmentation of the GTV in the given diagnoses would be highly warranted.Definisjon av målvolum og risikoorganer er en kritisk del av planleggingen av strålebehandling. I praksis gjøres dette vanligvis manuelt av kliniske eksperter som tegner inn strukturenes konturer i medisinske bilder før dosimetrisk planlegging. Dette er en tids- og arbeidskrevende oppgave. Manuell inntegning er også subjektiv, og betydelig variasjon i inntegnede konturer kan forekomme. Slik variasjon kan potensielt påvirke strålebehandlingen og bildebaserte biomarkører. Automatisk segmentering (auto-segmentering) av målvolum og risikoorganer kan potensielt spare tid og ressurser samtidig som konturvariasjonen reduseres. Autosegmentering av risikoorganer ved hjelp av maskinlæringsmetoder har nylig blitt implementert som del av den kliniske arbeidsflyten ved flere helseinstitusjoner, og slike verktøy er kommersielt tilgjengelige hos store leverandører av medisinsk teknologi. Auto-segmentering av målvolum inkludert tumorvolumet gross tumor volume (GTV) ved hjelp av maskinlæringsmetoder er per i dag mindre teknologisk modent, men dette området er fokus for omfattende pågående forskning. Hovedmålet med denne avhandlingen var å undersøke bruken av maskinlæringsmetoder for auto-segmentering av GTV i medisinske bilder. Manuelle GTVinntegninger utgjorde grunnsannheten (the ground truth) i analysene. Mål på volumetrisk overlapp og avstand mellom sanne og predikerte konturer ble brukt til å kvantifisere kvaliteten til de automatisk genererte GTV-konturene. Fire forskjellige bildedatasett ble evaluert. Det første datasettet, analysert i artikkel I–II, bestod av positronemisjonstomografi (PET) og kontrastforsterkede computertomografi (ceCT) bilder av 197 pasienter med hode/halskreft. ceCT-bildene i dette datasettet ble også inkludert i artikkel IV. To datasett ble analysert separat i artikkel III, nemlig (i) PET, ceCT og lavdose CT (ldCT) bilder av 86 pasienter med analkreft, og (ii) PET, ceCT, ldCT og T2- og diffusjonsvektet (henholdsvis T2W og DW) MR-bilder av en undergruppe (n = 36) av de ovennevnte analkreftpasientene. Det siste datasettet, som bestod av ceCT-bilder av 36 hunder med hode/halskreft, ble analysert i artikkel IV

    BREAST CANCER DIAGNOSIS USING WRAPPER-BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORK

    Get PDF
    Breast cancer is commonest type of cancers among women. Early diagnosis plays a significant role in reducing the fatality rate. The main objective of this study is to propose an efficient approach to classify breast cancer tumor into either benign or malignant based on digitized image of a fine needle aspirate (FNA) of a breast mass represented by the Wisconsin Breast Cancer Dataset. Two wrapper-based feature selection methods, namely, sequential forward selection(SFS) and sequential backward selection (SBS) are used to identify the most discriminant features which can contribute to improve the classification performance. The feed forward neural network (FFNN) is used as a classification algorithm. The learning algorithm hyper-parameters are optimized using the grid search process. After selecting the optimal classification model, the data is divided into training set and testing set and the performance was evaluated. The feature space is reduced from nine feature to seven and six features using SFS and SBS respectively. The highest classification accuracy recorded was 99.03% with FFNN using the seven SFS selected features. While accuracy recorded with the six SBS selected features was 98.54%. The obtained results indicate that the proposed approach is effective in terms of feature space reduction leading to better accuracy and efficient classification model

    Capsule Network-based Radiomics: From Diagnosis to Treatment

    Get PDF
    Recent advancements in signal processing and machine learning coupled with developments of electronic medical record keeping in hospitals have resulted in a surge of significant interest in ``radiomics". Radiomics is an emerging and relatively new research field, which refers to semi-quantitative and/or quantitative features extracted from medical images with the goal of developing predictive and/or prognostic models. Radiomics is expected to become a critical component for integration of image-derived information for personalized treatment in the near future. The conventional radiomics workflow is, typically, based on extracting pre-designed features (also referred to as hand-crafted or engineered features) from a segmented region of interest. Clinical application of hand-crafted radiomics is, however, limited by the fact that features are pre-defined and extracted without taking the desired outcome into account. The aforementioned drawback has motivated trends towards development of deep learning-based radiomics (also referred to as discovery radiomics). Discovery radiomics has the advantage of learning the desired features on its own in an end-to-end fashion. Discovery radiomics has several applications in disease prediction/ diagnosis. Through this Ph.D. thesis, we develop deep learning-based architectures to address the following critical challenges identified within the radiomics domain. First, we cover the tumor type classification problem, which is of high importance for treatment selection. We address this problem, by designing a Capsule network-based architecture that has several advantages over existing solutions such as eliminating the need for access to a huge amount of training data, and its capability to learn input transformations on its own. We apply different modifications to the Capsule network architecture to make it more suitable for radiomics. At one hand, we equip the proposed architecture with access to the tumor boundary box, and on the other hand, a multi-scale Capsule network architecture is designed. Furthermore, capitalizing on the advantages of ensemble learning paradigms, we design a boosting and also a mixture of experts capsule network. A Bayesian capsule network is also developed to capture the uncertainty of the tumor classification. Beside knowing the tumor type (through classification), predicting the patient's response to treatment plays an important role in treatment design. Predicting patient's response, including survival and tumor recurrence, is another goal of this thesis, which we address by designing a deep learning-based model that takes not only the medical images, but also different clinical factors (such as age and gender) as inputs. Finally, COVID-19 diagnosis, another challenging and crucial problem within the radiomics domain, is dealt with using both X-ray and Computed Tomography (CT) images (in particular low-dose ones), where two in-house datasets are collected for the latter and different capsule network-based models are developed for COVID-19 diagnosis

    Applying Deep Learning To Identify Imaging Biomarkers To Predict Cardiac Outcomes In Cancer Patients

    Get PDF
    Cancer patients are a unique population with increased mortality from cardiovascular disease, however only half of high-risk patients are medically optimized. Physicians ascertain cardiovascular risk from several risk predictors using demographic information, family history, and imaging data. The Agatston score, a measure of total calcium burden in coronary arteries on CT scans, is the current best predictor for major adverse cardiac events (MACE). Yet, the score is limited as it does not provide information on atherosclerotic plaque characteristics or distribution. In this study, we use deep learning techniques to develop an imaging-based biomarker that can robustly predict MACE in lung cancer patients. We selected participants with screen-detected lung cancer from the National Lung Screening Trial (NLST) and used cardiovascular mortality as our primary outcome. We applied automated segmentation algorithms to low-dose chest CT scans from NLST participants to segment cardiac substructures. Following segmentation, we extracted radiomic features from selected cardiac structures. We then used this dataset to train a regression model to predict cardiovascular death. We used a pre-trained nnU-Net model to successfully segment large cardiac structures on CT scans. These automated large cardiac structures had features that were predictive of MACE. We then successfully extract radiomic features from our areas of interest and use this high-dimensional dataset to train a regression model to predict MACE. We demonstrated that automated segmentation algorithms can result in low-cost non-invasive predictive biomarkers for MACE. We were able to demonstrate that radiomic feature extraction from segmented substructures can be used to develop a high-dimensional biomarker. We hope that such a scoring system can help physicians adequately determine cardiovascular risk and intervene, resulting in better patient outcomes
    corecore